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Abstract. The chromatic polynomial πG(k) of a graph G can be viewed as counting the number of vertices

in a family of coloring graphs Ck(G) associated with (proper) k-colorings of G as a function of the number of

colors k. These coloring graphs can be understood as a reconfiguration system. We generalize the chromatic

polynomial to π
(H)
G (k), counting occurrences of arbitrary induced subgraphs H in these coloring graphs, and

we prove that these functions are polynomial in k. In particular, we study the chromatic pairs polynomial

π
(P2)
G (k), which counts the number of edges in coloring graphs, corresponding to the number of pairs of

colorings that differ on a single vertex. We show two trees share a chromatic pairs polynomial if and only
if they have the same degree sequence, and we conjecture that the chromatic pairs polynomial refines the

chromatic polynomial in general. We also instantiate our polynomials with other choices of H to generate

new graph invariants.
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1. Introduction

For positive integer k, a (proper) k-coloring of a graph G is an assignment of each vertex in G to a number
in {1, . . . , k} such that no two adjacent vertices have the same color. The chromatic polynomial πG(k) counts
the number of k-colorings of G as a function of k. Birkhoff originally introduced this function to tackle the 4-
color conjecture and showed that πG(k) is a polynomial function in k [Bir12]. Read’s article on the chromatic
polynomial [Rea68] is an excellent introduction to this important function and graph invariant.

The function πG(k) satisfies the deletion-contraction recurrence: πG(k) = πG−e(k) − πG/e(k) for any
graph G and edge e ∈ E(G). By induction on the number of edges, the recurrence implies that πG(k) is a
polynomial. This graph invariant contains information such as the number of vertices, edges, triangles, and
connected components of G. However, it is far from a complete invariant. For example, every tree T on n
vertices shares the chromatic polynomial πT (k) = k(k − 1)n−1.

1.1. Our Results. Noting that the chromatic polynomial counts colorings in isolation, we examine the
relationship between related colorings. In particular, we call two colorings adjacent if one can be obtained
from the other by toggling the color of a single vertex. Counting the number of such pairs of colorings, we
obtain a new invariant, which we call the chromatic pairs polynomial. We show that this function takes a
particular form for trees (see Table 1) that immediately implies that two trees with the same degree sequence
agree on this function. Conversely, the degree sequence can be extracted from this function to show that two
trees share a chromatic pairs polynomial if and only if they have the same degree sequence (Theorem 5.1).

Our main result is a generalization of this function that allows us to count more complex relationships
between colorings. More precisely, we consider an object called a k-coloring graph, which organizes all proper
k-colorings of G in a single graph Ck(G). Each vertex of Ck(G) corresponds to a k-coloring of G, and the edge
set of Ck(G) corresponds to the pairs of adjacent colorings. From this point of view, the chromatic polynomial
and chromatic pairs polynomial count the number of vertices and edges, respectively, of the coloring graph.

Our generalization provides a formula for π
(H)
G (k), counting the number of times an arbitrary graph H

appears as an induced subgraph of G in Ck(G) as a function of k. Our main result, Theorem 3.1 in Section 3,
is summarized as follows:

Theorem (Theorem 3.1). Fix graphs G and H, and let π
(H)
G (k) denote the number of induced subgraphs of

Ck(G) that are isomorphic to H. Then π
(H)
G (k) is a polynomial in k for k sufficiently large relative to H.
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We note that π
(P2)
G (k) yields the chromatic pairs polynomial, and further exploration of this special

case reveals additional insight about how it may be used as a refined invariant relative to the chromatic
polynomial. In Section 4, we instantiate the chromatic pairs polynomial for the classes of graphs in Table 1.

Graph Chromatic Polynomial Chromatic Pairs Polynomial

Nn kn n
(
k
2

)
kn−1

Kn k(k − 1)(k − 2) · · · (k − n + 1) n
2 k(k − 1)(k − 2) · · · (k − n)

Tree k(k − 1)n−1
(
k
2

)∑
v∈V (T )(k − 2)deg(v)(k − 1)n−deg(v)−1

Cn (k − 1)n + (−1)n(k − 1) n
2 k(k − 4)(k − 1)n−1 + 2n(k − 1)n−1 + (−1)nn(k − 1)(k − 2)

Table 1. Comparison of chromatic polynomials and chromatic pairs polynomials for various graphs

In Section 5, we derive explicit formulas for several coefficients in the chromatic pairs polynomial.

Theorem (Theorem 5.2). Let G be a graph with n vertices, m edges, degree sequence {di}i∈[n], ℓ triangles,
and t connected components. Then there exist positive rational numbers an−2, an−3, . . . , at such that

π
(P2)
G (k) =

n

2
kn+1 − n + nm + 2m

2
kn +

1

2

(
nm(m + 1)

2
+ 2m2 −m− (n + 3)ℓ +

1

2

n∑
i=1

d2i

)
kn−1

− an−2k
n−2 + an−3k

n−3 − . . . + (−1)n+1−tatk
t .

Collectively, this gives us results analogous to chromatic uniqueness. Specifically, we show that chromatic
pairs polynomials for null and complete graphs, certain types of trees, and cycles are unique. All of these
results point to the conjecture that the chromatic pairs polynomial is a refined invariant of the chromatic
polynomial in the following sense:

Conjecture (Conjecture 6.1). If two graphs have the same chromatic pairs polynomial, then they have the
same chromatic polynomial.

We also study additional instantiations of our general result, including the task of counting cycles in
coloring graphs. This task is increasingly difficult for cycles of growing length. We also study necessary and
sufficient conditions for occurrences of induced hypercubes in coloring graphs, which relates to independent
sets and can be used to distinguish graphs based on coarse information about their coloring graphs.

Failing to identify non-isomorphic graphs that match on all H-polynomials, we predict that a graph G is

completely determined by the infinite family of polynomials π
(H)
G (k) as H ranges through all graphs.

Conjecture (Conjecture 6.3). For graphs G1 and G2, G1
∼= G2 if and only if π

(H)
G1

(k) = π
(H)
G1

(k) for every H.

1.2. Related works. This paper contributes to the broad literature on graph invariants and specifically
those works studying generalizations and refinements of the chromatic polynomial. Core to our construction

of π
(H)
G (k) is the notion of restrained chromatic polynomials due to Erey [Ere15]. This generalization of the

chromatic polynomial counts the number of proper colorings of a graph G where each vertex is restrained by

a finite list of forbidden colors. Our polynomial π
(H)
G (k) is a linear combination of these restrained chromatic

polynomials. Central to Erey’s work on restrained chromatic polynomials is the proof that they are, in fact,
polynomials for large enough k. We rely heavily on this result in proving the eventual polynomiality of our

function π
(H)
G (k).

Our work is inspired in part by coloring graphs Ck(G). Coloring graphs generalize the chromatic polyno-
mial in the sense that πG(k) = |V (Ck(G))|. These objects were initially studied in the context of counting
and sampling colorings [DFFV06, Mol04, Vig00]. For these applications, it is important for Ck(G) to be
connected, and work has been done to establish bounds on k that guarantee connectedness [CvdHJ08].
More recently, other features of coloring graphs have been explored, including cycles, cut vertices, and block
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structures [ABFR18,BFH+16,BKM+23,BBF+19]. By counting instances of induced copies of H within a k-

coloring graph, π
(H)
G (k) seeks to translate structural information about the coloring graph into the language

of polynomial functions.
Coloring graphs are one example of the more general notion of reconfiguration graphs. In reconfiguration

problems, one considers a set of states of some system equipped with a specific transition rule. From this
setup, we construct a reconfiguration graph in which the vertices are states of the system and edges connect
states that differ by a single application of a transition rule. Examples abound from reconfiguration systems
for dominating sets [ABC+21,HS14] and shortest paths [AEH+18] to reconfiguration systems encoding pos-

sible positions of a robotic arm within a restricted space [AG04]. Analogs of π
(H)
G (k) in other reconfiguration

contexts might provide interesting statistics for these systems.
There are many generalizations of the chromatic polynomial, including the important Tutte polynomial

([Tut54], see [Bol98, Chapter 10]). This two-variable graph invariant appears in other fields, such as knot
theory, where one of its specializations yields the famed Jones polynomial for a certain family of knots. The
Tutte polynomial can be defined in various ways including via a deletion-contraction process. While the Tutte
polynomial is indeed a rich invariant, it exhibits some of the same deficiencies as the chromatic polynomial.
In particular, it cannot distinguish between any pair of trees with the same number of edges. In contrast,

our chromatic pairs polynomial π
(P2)
G (k) can distinguish between trees with distinct degree sequences.

In another direction, the chromatic symmetric function [Sta95] and the non-commutative chromatic sym-
metric function [GS01] extend the chromatic polynomial by encoding each coloring as a monomial with a
different variable representing each color. In the non-commutative case, this function provides a complete
invariant as it is essentially a list of all possible colorings of the graph (see [GS01, Proposition 8.1]). As

mentioned above, we conjecture (in Conjecture 6.3) that the family of polynomials π
(H)
G (k) also provides a

complete invariant without retaining such granular coloring data.

1.3. Structure of the paper. In Section 2, we streamline notation and discuss preliminary tools, including
restrained chromatic polynomials. In Section 3, we introduce the concept of an H-generator and prove

Theorem 3.1, stating that for any graphs H and G, the function π
(H)
G (k), counting the number of occurrences

of H as an induced subgraph of Ck(G), grows polynomially with k. Section 4 explores π
(H)
G for several choices

of H, focusing on the cases when H is a 2-path or a cycle. In particular, we compute the chromatic pairs
polynomials (H = P2) for null graphs, complete graphs, trees, cycles, and pseudotrees. Section 5 showcases

how these polynomials π
(H)
G serve as invariants for various graph families. For example, Theorem 5.1 proves

that the chromatic pairs polynomial of a tree determines its degree sequence, and Theorem 5.6 establishes
the uniqueness of the chromatic pairs polynomial for the cycle graph. Section 6 discusses our final conjecture,
which predicts that the infinite set of coloring graphs is a complete graph invariant, and we show how this
conjecture is equivalent to another conjecture written in terms of our H-polynomials.

Update on our conjectures. In response to a posted preprint of this work, Hogan, Scott, Tamitegama,
and Tan [HSTT24] prove new results that resolve our Conjecture 6.4. This recent work also gave an alterna-
tive proof of our main result (Theorem 3.1). Their proof did not rely on restrained chromatic polynomials

and showed that π
(H)
G (k) is a polynomial for all k ≥ 1. Our original preprint established that π

(H)
G (k) is

polynomial for sufficiently large k. We have left our original theorem statement and proof, and we have now
added Remark 3.2 after Theorem 3.1 observing that our function is in fact also polynomial for all k ≥ 1.

2. Preliminaries

We use N = {1, 2, . . . } to denote the set of positive integers, and for k ∈ N, we let [k] = {1, . . . , k}. For
integers n ≥ k ≥ 0, let

(
n
k

)
= n!

k!(n−k)! . For simplicity, let
(
n
k

)
= 0 when k > n ≥ 0.

A (simple, finite) graph G consists of a finite vertex set V (G) and edge set E(G), where E(G) is a subset
of (unordered) pairs of elements in V (G). For u, v ∈ V (G), we often use uv as shorthand for {u, v} with the
understanding that uv = vu for undirected edges. For v ∈ V (G), we let N(v) = {u ∈ V (G) : uv ∈ E(G)}
denote the neighborhood of v, and we let deg(v) = |N(v)| denote the degree of v. For any U ⊆ V (G), we let
G[U ] denote the subgraph of G induced by U , that is, the graph with vertex set U and an edge for every
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edge in G with both ends in U . We also write G−U as shorthand for G[V −U ] and write G−v as shorthand
for G[V − {v}] for some v ∈ V (G).

In this paper, we will consider several well-studied families of graphs. These families include null graphs,
where Nn denotes the edgeless n-vertex graph; complete graphs, where Kn denotes the n-vertex graph with(
n
2

)
edges; trees, which are connected graphs with |E(G)| = |V (G)|−1; pseudotrees (also known as unicyclic

graphs), which are trees augmented by one edge; paths, where Pn denotes the n-vertex tree with max
degree 2; cycle graphs, where Cn denotes the n-vertex graph that is connected and 2-regular; and hypercube
graphs, most easily defined in terms of Cartesian products. For two graphs G1 and G2, we let G1 □ G2

denote the Cartesian product of G1 and G2, with vertex set V (G1)×V (G2) and edge set {{u1u2, v1v2} | u1 =
v1 and u2v2 ∈ E(G2), or u2 = v2 and u1v1 ∈ E(G1)}. The d-dimensional hypercube Qd is the Cartesian
product of d copies of P2, which has 2d vertices and d · 2d−1 edges.

For e ∈ E(G), we let G − e denote the graph with vertex set V (G) and edge set E(G) − {e}, and G/e
denotes the graph contracted on edge e, in which e is removed and its ends are replaced with a single vertex
adjacent to every vertex in the neighborhood of either end of e in G. For graph G and k ∈ N, a (proper)
k-coloring of G is a function c : V (G) → [k] such that c(u) ̸= c(v) for all uv ∈ E(G). The chromatic
polynomial of G is defined as

πG(k) = # distinct k-colorings of G

The fact that πG(k) is a polynomial in k can be derived from the deletion-contraction principle, which
observes that πG(k) = πG−e(k)− πG/e(k) for any graph G and edge e ∈ E(G) [Rea68, Theorem 1].

For graph G, a restraint r is a mapping from V (G) to finite subsets of N. That is, the function r maps
each vertex of G to a particular finite subset of N. Fixing graph G and restraint r, we define a corresponding
restrained chromatic polynomial as

ρG,r(k) = |{c : V (G)→ [k] s.t. c is a k-coloring of G and c(v) ̸∈ r(v) for all v ∈ V (G)}|.

We drop the subscript G when clear from context. This function counts the number of proper k-colorings in
which no vertex is colored one of its colors forbidden by r. This function specializes to the usual chromatic
polynomial for the trivial restraint r0 with r0(v) = ∅ for all v ∈ V (G). The edge deletion-contraction
recurrence for chromatic polynomials can be generalized to establish that ρG,r(k) = p(k) for some polynomial
p and any k ≥ k0, where k0 denotes the maximum integer that appears in r [Ere15, Theorem 4.1.2]. We
refer to these functions ρG,r as polynomial for sufficiently large k.

For graph G and k ∈ N, we can organize the πG(k) distinct k-colorings of G in a graph Ck(G), called
the k-coloring graph of G, whose vertex set corresponds to the set of k-colorings of G and whose edge set
corresponds to pairs of k-colorings that differ on a single vertex of G. Figure 1 below depicts the 3-coloring
graph for a 3-path, with each vertex of the coloring graph represented as a labeled rectangle.

1 2 3

3 2 3 121

3 2 1

3 1 3

2 1 3 213

2 1 2

1 3 1

2 3 1 1 3 2

2 3 2

Figure 1. C3(P3), the 3-coloring graph for P3, with vertex labels indicating their underlying colorings
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3. Generalization of the Chromatic Polynomial

In this section, we prove that for any fixed graphs G and H, the number of times H appears as an
induced subgraph in Ck(G), the k-coloring graph of G, is polynomial in k for sufficiently large k. We call

this polynomial π
(H)
G (k) the chromatic H-polynomial of G. This generalizes the chromatic polynomial, with

πG(k) = π
(N1)
G (k). Our proof demonstrates a finite enumeration of all the ways to color particular subsets of

U ⊆ V (G) in order to yield an induced copy of H in Ck(G), and it uses restrained chromatic polynomials to
count the number of consistent colorings of V (G−U). We note that while deletion-contraction is used to prove
polynomiality of the chromatic polynomial (and restrained chromatic polynomials), deletion-contraction does
not hold for the chromatic H-polynomial of G for general H. Instead, we rely on writing this function as a
sum of restrained polynomials, each of which are known to be polynomial for sufficiently large k. We give
the necessary notation and technical definitions before stating and proving the result.

3.1. Definitions. Fix graphs G and H. Let U be a subset of V (G), and let C be |V (H)| functions from the
set of all functions c : U → N. We call the pair (U,C) an H-generator in G if the following two conditions
hold:

• The elements of C correspond to proper colorings of G[U ], in that for every c ∈ C and vivj ∈ E(G[U ]),
we have c(vi) ̸= c(vj); and

• H is isomorphic to the graph identified by vertex set C with edges between every pair of colorings
that differ on their assignment for a single vertex in U .

We further call (U,C) a minimal H-generator if the following two additional conditions hold:

• U includes only vertices that take on at least two colors in C, that is, for every v ∈ U there exist
c1, c2 ∈ C with c1(v) ̸= c2(v); and

• C uses its full range of colors, that is, if κ ∈ N is in the image of some c ∈ C, then any value less
than κ must be in the image of some c′ ∈ C.

Intuitively, an H-generator describes a set of coloring changes in a subgraph of G that corresponds to
a realized induced copy of H in the coloring graph of G. For example, consider G = P3 (with vertices v1,
v2, and v3 in their natural, left-to-right ordering) and H = P3. Note that G = H in this example, but
G corresponds to the base graph and H is the subgraph we are counting in Ck(G). Let U = {v1, v3} and
C = {c1, c2, c3} where:

c1(v1) = 2 , c1(v3) = 2

c2(v1) = 2 , c2(v3) = 3(3.1)

c3(v1) = 3 , c3(v3) = 3 .

This (U,C) is a P3-generator (but not minimal as color 1 is not used), corresponding to at least one copy
of P3 in Ck(P3) where v1 and v3 alternately change between colors 2 and 3. There is only one such instance
in C3(P3), which is indicated in the subgraph of Figure 1 reproduced in Figure 2. Other choices of U and C
would correspond to additional copies of P3 in Ck(P3).

3 1 3

2 1 3

2 1 2

Figure 2. The induced P3 in C3(P3) generated by ({v1, v3}, C), for C = {c1, c2, c3} as in Eqs. (3.1)

In counting the occurrences of H in the coloring graphs for G, our result considers the restraints imposed
by each H-generator. Specifically, for H-generator (U,C), we specify a restraint on G− U given by

(3.2) r(U,C)(v) = {j : c(u) = j for some u ∈ N(v) ∩ U and c ∈ C} for v ∈ V (G)− U .
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This restraint corresponds to forbidding any vertex not in U from having any of the colors assigned by C to
any neighbor of the vertex in U .

Returning to the example of G = H = P3 with U = {v1, v3}, and C = {c1, c2, c3} as defined in Eq. (3.1),
in this case, V (G)− U = {v2} and r(U,C) is defined by r(U,C)(v2) = {2, 3}. In Figure 1, this corresponds to
the copy of P3 shown in Figure 2, which occurs only where v2 does not take colors 2 or 3.

We say a minimal generator (U,C) uses κ colors if κ is the largest value in the image of any c ∈ C. In the
special case that U = ∅, we let c∅ denote the coloring with empty domain and say (∅, {c∅}) uses zero colors,
as in Corollary 3.3 of our main result. Let k0(G,H) denote the largest value of κ such that G has a minimal
H-generator that uses κ colors, dropping the arguments G and H when clear from context. This value k0 is
bounded above by 2|E(H)|, because every minimal generator must yield |E(H)| edges that each correspond
to a (not necessarily distinct) vertex of G swapping between one of 2 colors. Then we let G(G,H) denote the
set of all minimal H-generators in G, dropping the superscript when clear from context, and we partition
this set as G = G0 ∪ G1 ∪ G2 ∪ · · · ∪ Gk0

, where Gκ corresponds to minimal H-generators that use κ colors.
We also define a particular permutation that will be useful in establishing a bijection for our main result.

For natural numbers κ ≤ k and color palette P = {j1, . . . , jκ} with j1 < · · · < jκ ≤ k, we let σP denote the
permutation of [k] defined such that

σP(ji) = i for i ∈ [κ] , and

σP(j) < σP(j′) for any j < j′ with j, j′ ̸∈ P.(3.3)

This is the unique permutation that maps the elements of P to [κ] while maintaining the order of colors in
P and the order of colors not in P.

3.2. Polynomiality of Induced Subgraph Counts. We now prove that the number of induced copies of
a graph H in Ck(G) grows as a polynomial function in k. This polynomial function can be written as a sum
of restrained chromatic polynomials whose restraints correspond to minimal H-generators. The key idea of
the proof is that every isomorphic copy of H in Ck(G) corresponds to a unique H-generator by applying σP
to the palette P used by that copy of H in Ck(G).

Theorem 3.1. Fix graphs G and H, and let π
(H)
G (k) denote the number of induced subgraphs of Ck(G) that

are isomorphic to H. Then π
(H)
G (k) is a polynomial function of k for sufficiently large k. In particular,

(3.4) π
(H)
G (k) =

2|E(H)|∑
κ=0

∑
(U,C)∈Gκ

(
k

κ

)
· ρr(U,C)

(k) .

Proof. We will show that for fixed graphs G on n vertices and H on ℓ vertices and m edges, there is a
finite set of minimal H-generators that use at most 2m colors and none that use more. We argue each such
generator contributes a number of occurrences of H as an induced subgraph of Ck(G) that is polynomial in
k for k ≥ k0, and these contributions account for all occurrences of H in Ck(G), establishing polynomiality

of π
(H)
G (k) for k ≥ k0.

To enumerate the minimal generators (U,C) ∈ G, observe that there are
∑m

s=0

(
n
s

)
candidate choices for

U ⊆ V (G) of size at most m, and for each U there are at most
(
(2m)m

ℓ

)
choices for C. This is because each

of ℓ functions must assign each of at most m vertices to one of at most 2m colors. Hence, |G| is finite.
Because each minimal generator uses only colors in [k0] (recalling k0 ≤ 2m), each ρr(U,C)

(k) is guaranteed

to be polynomial for k ≥ k0 [Ere15]. Therefore, it suffices to show that each (U,C) ∈ Gκ accounts for exactly(
k
κ

)
· ρr(U,C)

(k) occurrences of H in Ck(G) and that there are no other occurrences of H.

For k ≥ k0, fix any particular occurrence of H as an induced subgraph of Ck(G), and let P be the palette
of κ ≤ 2m colors used for the vertices of G that change color in this induced subgraph. Applying σP to
the colorings associated with the vertices of this subgraph yields a unique minimal generator and choice of
coloring of the vertices of G frozen in the occurrence of H in Ck(G). Likewise, any choice of minimal generator

(U,C) combined with one of the ρr(U,C)
(k) compatible assignments for V (G) − U contributes

(
k
κ

)
distinct

occurrences of H as an induced subgraph in Ck(G). Hence we have our desired expression for k ≥ k0. □

Remark 3.2. Hogan, Scott, Tamitegama, and Tan [HSTT24] strengthened the statement of Theorem 3.1 to
hold for all k ≥ 1, as opposed to sufficiently large k. We note that our proof holds for k ≥ 1 as well. The
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restrained chromatic polynomials appearing in Eq. (3.4) are all polynomial for k ≥ κ, and the binomial term(
k
κ

)
is identically 0 for all k < κ.

We note that the chromatic N1-polynomial by definition is the chromatic polynomial. To check that
the right-hand side of Eq. (3.4) evaluates to πG(k), note that any minimal N1-generator must have exactly
|V (N1)| = 1 coloring c ∈ C. Any v ∈ U must take on at least two colors in C, so we have U = ∅ and C
consists of the unique coloring with empty domain, with this generator using zero colors. (Note in fact that
N1 is the only choice of H with G0 ̸= ∅.) Hence, the summation consists of this unique (U,C) ∈ G0. Then(
k
0

)
= 1, and because U = ∅, r(U,C) imposes no constraints, we have ρr(U,C)

(k) = πG(k).

Corollary 3.3. For any graph G, the chromatic N1-polynomial of G equals the chromatic polynomial of G.

Before studying particular instantiations of chromatic H-polynomials, we make a few observations about
these polynomials that apply to any H and G that do not rely on the polynomiality of these functions. In

particular, we observe that π
(H)
G is monotonic in three different senses.

(1) (Monotonic in k) Because Ck(G) is an induced subgraph of Ck+1(G), we have π
(H)
G (k+ 1) ≥ π

(H)
G (k)

for each k ∈ N.

(2) (Monotonic in H) For any induced subgraph H1 of graph H2, every minimal H2-generator in G

contains a minimal H1-generator in G, so π
(H1)
G (k) ≥ π

(H2)
G (k) for each k ∈ N.

(3) (Monotonic in G) If G1 is a subgraph of G2 with the same vertex set, then Ck(G2) is an induced

subgraph of Ck(G1). Thus, π
(H)
G1

(k) ≥ π
(H)
G2

(k) for each k ∈ N.

4. Instantiations

In this section, we illustrate how to instantiate new generalizations of this polynomial π
(H)
G (k) beyond

the well-studied chromatic polynomial with H = N1. We begin with the smallest subgraph with an edge,

H = P2. The polynomial π
(P2)
G (k) counts the number of edges in the coloring graph Ck(G), which equivalently

counts the number of pairs of k-colorings of G that differ on exactly one vertex. For that reason, we refer to

π
(P2)
G as the chromatic pairs polynomial.

We give a general formula in Eq. (4.1) for the chromatic pairs polynomial as a sum of particular restrained
chromatic polynomials, and we derive closed-form expressions for the chromatic pairs polynomial for certain
families of graphs. We remark that these results immediately yield results for H = N2, which counts the

number of pairs of colorings that differ on more than a single vertex, because π
(N2)
G (k) =

(
π
(N1)

G (k)
2

)
−π(P2)

G (k).
After our discussion of chromatic pairs polynomials, we discuss how our general polynomial result can

additionally be applied to count cliques and small cycles in coloring graphs.

4.1. Counting Edges in Coloring Graphs. To provide a general expression counting the number of
pairs of colorings of a graph that differ on a single vertex, we first observe that minimal P2-generators all
have a particular form, regardless of the base graph G. Any edge in the coloring graph corresponds to
one vertex swapping between two colors, so minimality requires that any minimal P2-generator (U,C) is
such that U = {v}, where v is a single color-changing vertex, and C = {c1, c2} with c1(v) = 1, c2(v) = 2.

Correspondingly let r({v},{c1,c2}) = r
(2)
v denote the restraint on G− v that forbids neighbors of v from taking

colors 1 or 2. Then Theorem 3.1 simplifies to the following formula counting edges in a coloring graph:

(4.1) π
(P2)
G (k) =

(
k

2

) ∑
v∈V (G)

ρ
r
(2)
v

(k) .

In general, the forms of the individual ρ
r
(2)
v

are vertex- and graph-dependent. We now provide a few

specific examples for certain classes of graphs.

4.1.1. Counting chromatic pairs for null and complete graphs. The ρ
r
(2)
v

are particularly easy to compute for

highly structured graphs such as null and complete graphs. The vertices in a null graph have no neighbors, so
when one vertex changes colors, the remaining n−1 vertices each have their full palette available. Therefore,
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for any vertex v in a null graph, ρ
r
(2)
v

(k) = πNn−1(k) = kn−1. This yields the following chromatic pairs

polynomial:

(4.2) π
(P2)
Nn

(k) = n

(
k

2

)
kn−1 .

On the other hand, any vertex of a complete graph restrains all other vertices from taking two colors. Thus
ρ
r
(2)
v

(k) = πKn−1(k − 2) = (k − 2)(k − 3) · · · (k − n). The chromatic pairs polynomial is then given by:

(4.3) π
(P2)
Kn

(k) = n

(
k

2

)
(k − 2) · · · (k − n) =

n

2
k(k − 1)(k − 2) · · · (k − n) .

4.1.2. Counting chromatic pairs for trees. Null and complete graphs are vertex-transitive, meaning that for
any two vertices there is an automorphism of the graph mapping one to another. This is not true for trees
in general, so the restrained chromatic polynomials differ across vertices. However, we show that for any
vertex v in a tree T , ρ

r
(2)
v

depends only on the degree of v in T . That is because each neighbor of v has 2

colors forbidden by v and then serves as the root of a subtree. Each non-root node of these subtrees has
exactly k− 1 color options because it is restrained only by its parent. Hence, for any tree T with |V (T )| = n
vertices, the number of edges in its k-coloring graph is given by

(4.4) π
(P2)
T (k) =

(
k

2

) ∑
v∈V (T )

(k − 2)deg(v)(k − 1)n−deg(v)−1 .

4.1.3. Counting chromatic pairs for cycles and other pseudotrees. We can similarly reason about the chro-
matic pairs polynomial for pseudotrees, which are connected graphs with equal numbers of vertices and edges.
We first examine the special case of cycle graphs. We define the following restrained chromatic polynomials
to help with the notation of the argument:

• σn(k) is the number of k-colorings of Pn with restraints {1, 2} for each leaf; and
• τn(k) is the number of k-colorings of Pn with restraint {1} for the first leaf and {2} for the second.

Figure 3 illustrates how to write π
(P2)
Cn

in terms of σn−1 and τn in terms of πCn+2
, respectively. First,

observe that each edge in Ck(Cn) corresponds to one of n vertices swapping between any of
(
k
2

)
pairs of

colors. The resulting number of ways to k-color the rest of the graph is exactly the number of ways to color
Pn−1 such that neither leaf takes colors 1 or 2. Hence, we can write the chromatic pairs polynomial for Cn

in terms of σn as follows:

(4.5) π
(P2)
Cn

(k) = n

(
k

2

)
σn−1(k) .

Next, note that we can color an (n + 2)-cycle by fixing the colors of two adjacent vertices and coloring the
remaining Pn such that each leaf has a single distinct restraint, so we can write τn as follows:

(4.6) τn(k) =
1

k(k − 1)
πCn+2

(k) .

a b c

x1/2

{1, 2}
...Pn−1

{1, 2}
a b c

x 71 2

{1}
...Pn−2

{2}

Figure 3. Explaining σ and τ in terms of cycles (Eqs. (4.5) and (4.6))

Note that the chromatic polynomial for a cycle is πCn
(k) = (k − 1)n + (−1)n(k − 1) [Rea68, Theorem 6],

yielding a closed-form expression for τn(k). We can further express σ in terms of τ with the following

inclusion-exclusion argument in order to give a closed-form expression for π
(P2)
Cn

. There are k(k − 1)n−1

unrestrained colorings of Pn. Out of these colorings, there are 2(k − 1)n−1 colorings that violate a restraint
of σ by coloring the left leaf 1 or 2, with another 2(k−1)n−1 colorings that violate the same right leaf restraint.
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Subtracting these two sets from the total yields (k− 4)(k− 1)n−1 colorings that satisfy the restraints {1, 2}
for each leaf. However, this undercounts the total number of such colorings because these two sets with
violating colorings have a nonempty intersection. We need to add back in the colorings in this overlap which
include two types, depicted in Figure 4:

• Colorings in which one leaf is 1 and the other is 2, and
• Colorings in which both leaves are 1 or both leaves are 2.

a b c d e f1

{1}
...

Pn−2

{2}
2 a b c d e f1

{1}
...

Pn−3

{c}
c 1

Figure 4. Colorings of Pn that violate {1, 2} restraints for both leaves

The number of colorings in which one leaf in Pn is 1 and the other is 2 (left side of Figure 4) is the number
of colorings of Pn−2 in which one leaf is not 1 and the other is not 2, which is exactly 2τn−2(k), where the
factor 2 accounts for which leaf is colored 1. The number of colorings in which both leaves are 1 (right side
of Figure 4) is the number of colorings of Pn−3 in which one leaf is not 1, respecting the constraint of the
left leaf of Pn, and the other leaf is not c ̸= 1 for any of k − 1 choices the neighbor of the right leaf in Pn.
The number of colorings in which both leaves are 1 or both leaves are 2 is thus 2(k − 1)τn−3(k).

Adding back these overlap colorings yields an expression for σ in terms of τ as follows:

σn(k) = (k − 4)(k − 1)n−1 + 2(k − 1)τn−3(k) + 2τn−2(k) .

Then substituting this into our closed-form expression for τ into Eq. (4.5), we have the following chromatic
pairs polynomial for cycle graphs:

π
(P2)
Cn

(k) =
n

2
k(k − 4)(k − 1)n−1 + 2n(k − 1)n−1 + (−1)nn(k − 1)(k − 2).

We now use this result for cycle graphs to give a chromatic pairs polynomial for any pseudotree. For
pseudotree G on n vertices with a unique cycle of length ℓ ≤ n, let d1, . . . , dℓ be the degrees of the cycle
vertices v1, . . . , vℓ, and let dℓ+1, . . . , dn be the degrees of the remaining vertices vℓ+1, . . . , vn, noting that∑

i∈[n] di = 2n. Every edge (occurrence of H = P2) in Ck(G) corresponds to either a cycle vertex changing

color or a non-cycle vertex changing color; we will count these types of edges separately.

To count the occurrences of P2 corresponding to cycle vertices, we note that of the π
(P2)
Cℓ

(k) edges in an

ℓ-cycle’s coloring graph, each vertex in Cℓ contributes an equal proportion. In Ck(G), each of these edges due
to cycle vertex vi appears (k − 2)di−2(k − 1)n−ℓ−(di−2) times because of the restraint this edge’s colorings
impose on the remaining n− ℓ non-cycle vertices.

Figure 5 gives an example of how to count the occurrences of P2 corresponding to a non-cycle vertex. In
general, we first choose one of

(
k
2

)
pairs of colors for non-cycle vertex vi. Each of its neighbors has these two

restraints, so there are (k− 2)di neighborhood colorings. Then a breadth-first coloring of the rest of vi’s tree
gives k − 1 options for each of those vertices, locking the cycle vertex present in that tree. With one cycle
vertex color fixed, the rest of the cycle has πCℓ

(k)/k colorings, and then breadth-first coloring from the cycle
vertices gives k − 1 choices for each of the remaining vertices.

v5

k − 1

v8

(k
2

)
v6

k − 2

v9

k − 2

v4

πCℓ
(k)

k

v1 v2

k − 1

v3 v7

k − 1

Figure 5. Counting the
(
k
2

)πC4
(k)

k (k − 2)2(k − 1)3 occurrences of P2 due to non-cycle vertex v8
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Counting each type of edge, we have the following chromatic pairs polynomial for pseudotree G:

(4.7) π
(P2)
G (k) =

π
(P2)
Cℓ

(k)

ℓ

ℓ∑
i=1

(k − 2)di−2(k − 1)n−ℓ−(di−2) +

(
k

2

)
πCℓ

(k)

k

n∑
i=ℓ+1

(k − 2)di(k − 1)n−ℓ−di .

4.2. Counting Cliques in Coloring Graphs. The chromatic pairs polynomial counts occurrences of P2

in coloring graphs, which is the same as counting cliques of size 2. We can reason about any minimal K3-
generator (U,C) in the same way that we reasoned that any minimal P2-generator must be of a particular
form. The coloring set C for a K3-generator must consist of three partial colorings. Furthermore, because
K3 has edges between each pair of its vertices, these colorings each must differ on a single vertex, so there can
only be one color-changing vertex in U . Extending this argument, for any t ≥ 2, any minimal Kt-generator

must be of the form ({v}, {c1, . . . , ct}), with ci(v) = i for i ∈ [t]. Then let r({v},{c1,...,ct}) = r
(t)
v denote the

restraint on G − v that forbids neighbors of v from taking colors 1 through t, and we have the following
generalization of Eq. (4.1) for counting chromatic t-tuples:

(4.8) π
(Kt)
G (k) =

(
k

t

) ∑
v∈V (G)

ρ
r
(t)
v

(k).

This formula is easily specialized for several classes of graphs we’ve just studied with t = 2. Specifically, for
null graphs, complete graphs, and trees we have

π
(Kt)
Nn

(k) = n

(
k

t

)
kn−1 ,(4.9)

π
(Kt)
Kn

(k) = n

(
k

t

)
(k − t)(k − t− 1) · · · (k − t− (n− 2)) ,(4.10)

π
(Kt)
T (k) =

(
k

t

)∑
v∈V

(k − t)deg(v)(k − 1)n−deg(v)−1 .(4.11)

In Eq. (4.11), we note that counting chromatic t-tuples for a tree has a similar dependence on degree sequence
independent of t. We return to the implication of this in the following section. For now, rather than extending
this analysis to counting cliques in coloring graphs for pseudotrees, we remark that counting larger cliques
may not provide much structural insight beyond counting P2. Instead, we turn to exploring formulas for
counting induced cycles in coloring graphs.

4.3. Counting Cycles in Coloring Graphs. In this subsection we provide several additional examples of
how to enumerate generators for different H by focusing on small cycles. We will see that the structure of
the restraints vary substantially depending on the length of the cycles we are searching for in the coloring
graph.

4.3.1. Counting triangles. Because a 3-cycle (triangle) is the same as a 3-clique, Eqs. (4.8)-(4.11) with t = 3
show how to count triangles general graphs, null graphs, complete graphs, and trees, respectively.

4.3.2. Counting squares. A more complex general expression can be used to calculate the number of induced
4-cycles (or squares) in a coloring graph. Any C4-generator must involve two distinct vertices in G changing
color. This is because each vertex involved in a cycle in a coloring graph must be associated with at least
two edges (so it can return to its original color), and if the same vertex were associated with all the cycle
edges, then every pair of cycle vertices should be adjacent, creating a clique rather than an induced cycle.

If the two color-changing vertices in a C4-generator are adjacent in G, they must take on two disjoint pairs
of colors in H; if they are independent, their colors in the C that induces H may be disjoint or overlapping.
For any u, v ∈ V (G), we define the following restraints on G− {u, v}.

• r
(4)
uv restrains neighbors of u with {1, 2} and neighbors of v with {3, 4};

• r
(3)
uv restrains neighbors of u with {1, 2} and neighbors of v with {1, 3}; and

• r
(2)
uv restrains neighbors of u or v with {1, 2}.
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For uv ∈ E(G), there are no minimal generators that use fewer than four colors. For uv ̸∈ E(G), there is
exactly one minimal generator that uses two colors. For uv ̸∈ E(G), there are six minimal generators in G3
that use three colors. That is because any of the colors 1, 2, or 3 may be the one that colors both u and v
in one of the vertices of the induced H, and either of the other two can be the other color assigned to u in
two other vertices of H. Similarly, for any u, v ∈ V (G) there are six minimal generators in G4 that use four
colors, because there are

(
4
2

)
= 6 choices of two colors from {1, 2, 3, 4} that u may take on in H. Hence, we

can write the number of induced squares in a coloring graph as follows:

(4.12) π
(C4)
G (k) =

∑
{u,v}∈(V (G)

2 )

6

(
k

4

)
ρ
r
(4)
uv

(k) +
∑

{u,v}∈(V (G)
2 ),

uv ̸∈E(G)

6

(
k

3

)
ρ
r
(3)
uv

(k) +
∑

{u,v}∈(V (G)
2 ),

uv ̸∈E(G)

(
k

2

)
ρ
r
(2)
uv

(k) .

Note that this formula yields π
(C4)
P3

(3) = 3, corresponding to the three squares that can be observed in

Figure 1. That is because the
(
k
4

)
term goes to 0 with k = 3 and because ρ

(3)
ruv (3) = 0 for outer (non-

adjacent) vertices u, v, because the collective restraints on the center vertex would leave no remaining color
for it. Finally we note that ρ

r
(2)
uv

(3) = 1 for outer vertices u, v because their overlapping colors leave exactly

one remaining color for the center vertex. That is why each of the squares in the figure have a fixed color
for the center vertex. The

(
3
2

)
= 3 choices of pairs of outer vertex colors yield the three squares.

4.3.3. Counting five-cycles. Coloring graphs never contain induced 5-cycles, and so π
(C5)
G (k) = 0 [BFH+16,

Corollary 12]. Subsection 4.3.5 summarizes this argument and explains why C5 is the only cycle that cannot
appear in coloring graphs.

Before continuing to the task of counting 6-cycles, we briefly note that 5-cycles are not the only H for
which the H-polynomial of any graph is identically zero. For example, it has been shown that any occurrence
of K4− e, the graph on four vertices with five edges, cannot be induced in a coloring graph. This is because
any triangle in a coloring graph corresponds to a single vertex taking on three colors. Thus, any two
triangles sharing an edge (see Figure 6) must correspond to a single vertex taking on four colors without any
other color changes, forcing the missing edge to appear in the coloring graph. In fact, there are infinitely

many minimal forbidden subgraphs and therefore infinitely many H such that π
(H)
G (k) vanishes on all G

[BFH+16, Theorem 17] [ABFR18, Theorem 13].

Figure 6. K4 − e in a coloring graph must include the dotted line, so π
(K4−e)
G (k) = 0 for any G

4.3.4. Counting six-cycles. Generators for 6-cycles in coloring graphs fall into two categories. C6 can appear
as an induced subgraph of a coloring graph by two vertices alternately swapping between three colors each
or by three vertices independently swapping between two colors each, the former of which may or may not
occur as part of K3□K3, and the latter of which always occurs as part of a 3-cube. For example, the thick
edges in the graphs of Figure 7 depict an induced 6-cycle in the 3-coloring graph of N2, which is K3□K3,
the 3-coloring graph of P2, which itself is a 6-cycle, and an induced 6-cycle in the 2-coloring graph of N3,
which is a 3-cube.

The two-vertex C6-generators use at least three and at most six colors. The three-vertex C6-generators
use at least two colors (which is only possible if the three-vertices are pairwise non-adjacent) and up to
six. Moreover, there are multiple three-vertex C6-generators that use three or four colors. Writing down a

closed-form formula for π
(C6)
G is substantially more complicated than our formula for π

(C4)
G albeit mechanically

similar. We do this for completeness in Appendix A, with an expression given in Eq. A.1.
11



a b

cd

e f

2 1 3 11 1

2 2

3 3

3 21 2

1 3 2 3

a b

cd

e f

2 1 3 1

3 21 2

1 3 2 3

a b

cd

e f

gh

1 1 1 2 1 1

1 2 1 2 2 1

1 1 2 2 1 2

1 2 2 2 2 2

Figure 7. Induced 6-cycles in C3(N2), C3(P2), and C2(N3)

4.3.5. General approach for counting cycles. We conclude this section by describing the framework used for
counting cycles in the previous examples (cf. [ABFR18]). Each induced ℓ-cycle on colorings has an associated
partition λ = (λ1, . . . , λm) ⊢ ℓ with λ1 ≥ · · ·λm > 0 where m is the number of distinct vertices of the base
graph that change color as the cycle is traversed, and λi is the number of times the ith vertex changes color.

A partition describing an induced ℓ-cycle in this way must satisfy certain conditions. First, the partition
must have λi > 1 for all i since a cycle starts and ends with the same coloring. For ℓ > 3, the same vertex
cannot change color twice consecutively since this would imply existence of a chord in the cycle. Hence a
partition coming from an induced ℓ-cycle with ℓ > 3 must have λi ≤ ⌊ ℓ2⌋ for all i. Any partition of ℓ not
meeting these criteria can be disregarded when counting induced ℓ-cycles on the colorings of a chosen base

graph. Because no partition of ℓ = 5 satisfies these conditions, we can conclude π
(C5)
G (k) = 0 for all G.

Figure 8. An induced 7-cycle in K3 □ Q2

For all other ℓ > 2, induced ℓ-cycles in coloring graphs exist [BFH+16, Corollary 12]. For example,
Figure 8 depicts an induced 7-cycle that arises in K3 □ Q2, an induced subgraph of C3(N3). Of course,
establishing the existence of a cycle in a coloring graph does not count the number of cycles. As illustrated
in the above examples, enumerating the types of minimal Cℓ-generators in a graph becomes increasingly
unwieldy as ℓ gets large.

5. Invariants

One of our main motivations in defining and studying the polynomial π
(H)
G is its use as a refined graph

invariant. We have already observed that the choice of H = N1 recovers the chromatic polynomial, so the
H-polynomial generalizes the chromatic polynomial. While the chromatic polynomial is a known invariant
for many graphs, there are many (common) graphs that share a chromatic polynomial. This is the case
for all trees on n vertices. Even the well-known Tutte polynomial, which also generalizes the chromatic
polynomial, does not distinguish any trees with the same number of vertices.

We begin this section with a proof that the chromatic pairs polynomial π
(P2)
G can indeed distinguish

certain trees on n vertices. However, this refined invariant is not a complete invariant for trees as it cannot
distinguish non-isomorphic trees with the same degree sequence. The remainder of the section explores
structural properties of the chromatic pairs polynomial that can be used to distinguish other graphs, as well

as a brief exploration of other choices of H for which π
(H)
G that can be used as additional invariants.
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5.1. Chromatic Pairs Polynomials as Refined Invariants for Trees. The chromatic polynomial for

any tree T on n vertices is πT (k) = π
(N1)
T (k) = k(k−1)n, which is only determined by the number of vertices

in the tree. In contrast, our closed-form expression for the chromatic pairs polynomial for a tree can be used
as a refined but not complete invariant for trees. Figure 9 gives three 6-vertex trees, which have matching
chromatic polynomials; the first has a distinct degree sequence and a distinct chromatic pairs polynomial and
the second two have matching degree sequences and matching chromatic pairs polynomials. Theorem 5.1
establishes that the chromatic pairs polynomial for trees precisely distinguish trees with different degree
sequences.

T1 = π
(P2)
T1

(k) = 3k7 − 23k6 + 72k5 − 118k4 + 107k3 − 51k2 + 10k

T2 = π
(P2)
T2

(k) = 3k7 − 23k6 + 145
2 k5 − 241

2 k4 + 223
2 k3 − 109

2 k2 + 11k

T3 = π
(P2)
T3

(k) = 3k7 − 23k6 + 145
2 k5 − 241

2 k4 + 223
2 k3 − 109

2 k2 + 11k

Figure 9. Trees distinguished and not distinguished by their chromatic pairs polynomials

Theorem 5.1. For trees T1 and T2, π
(P2)
T1

= π
(P2)
T2

if and only if T1 and T2 have the same degree sequence.

Proof. The reverse implication is an immediate consequence of the closed form expression for the chromatic
pairs polynomial for trees in Eq. (4.4) which depends entirely on the degree sequence of the tree. To see
why the other direction holds, fix tree T on n vertices with max degree ∆, and suppose n1, n2, . . . , n∆ with∑

d∈[∆] nd = n are the number of vertices in T with degrees 1, 2, . . . ,∆, respectively. Note that we can

rewrite the chromatic pairs polynomial as follows:

π
(P2)
T (k) =

(
k

2

) ∑
d∈[∆]

nd(k − 2)d(k − 1)n−d−1

Then we can exactly recover the degree sequence nd for each d = 1, . . . ,∆ in turn as follows:

nd =
d

dk

 π
(P2)

T (k)

(k
2)

−
∑

i∈[d−1] ni(k − 2)i(k − 1)n−i−1

(k − 2)d−1

∣∣∣∣
k=2

.

Therefore, if there is another tree that has this same chromatic pairs polynomial, it must have the same
degree sequence. □

Although a tree’s degree sequence uniquely determines its chromatic pairs polynomial and vice versa,
this is not the case for graphs in general. Indeed, degree sequence does not even determine chromatic pairs
polynomials for pseudotrees, trees with just one additional edge. Figure 10 depicts two pseudotrees with
the same degree sequence but different chromatic pairs polynomials. Additionally, a graph’s chromatic pairs
polynomial does not in general determine its degree sequence. Figure 11 provides two graphs with matching
chromatic pairs polynomials but different degree sequences.

R1 = π
(P2)
R1

(k) = 3k7 − 27k6 + 197
2 k5 − 187k4 + 391

2 k3 − 107k2 + 24k

R2 = π
(P2)
R2

(k) = 3k7 − 27k6 + 197
2 k5 − 373

2 k4 + 387
2 k3 − 209

2 k2 + 23k

Figure 10. Graphs with the same degree sequence and different chromatic pairs polynomials
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G1 = π
(P2)
G1

(k) = 7
2k

8 − 115
2 k7 + 807

2 k6 − 3123
2 k5 + 3582k4 − 4843k3 + 3547k2 − 1074k

G2 = π
(P2)
G2

(k) = 7
2k

8 − 115
2 k7 + 807

2 k6 − 3123
2 k5 + 3582k4 − 4843k3 + 3547k2 − 1074k

Figure 11. Graphs with different degree sequences and matching chromatic pairs polynomials

We observe that the chromatic polynomial distinguishes fewer of our examples than the chromatic pairs
polynomial does. The chromatic polynomial for a pseudotree G on n vertices with a unique cycle of length
ℓ ≤ n is determined by n and ℓ as πG(k) = πCℓ

(k)·(k−1)n−ℓ, so the Figure 10 graphs with different chromatic
pairs polynomials share a chromatic polynomial πR1

(k) = πR2
(k) = k6 − 6k5 + 14k4 − 16k3 + 9k2 − 2k. The

graphs in Figure 11 that are not distinguished by their chromatic pairs polynomial also share a chromatic
polynomial, πG1(k) = πG2(k) = k7 − 12k6 + 60k5 − 159k4 + 234k3 − 180k2 + 56k. We conjecture that
the chromatic pairs polynomials may be a more refined invariant than the chromatic polynomial. See
Conjectures 6.1 and 6.2 in Section 6.

5.2. Coefficients of Chromatic Pairs Polynomials. Motivated by the observations in Section 5.1, we
seek to establish basic structural properties of the chromatic pairs polynomial. These properties can be used
to rule out the possibility of two graphs having the same chromatic pairs polynomial.

Before stating and proving these properties, we note that deletion-contraction is useful for inductive proofs
of structural properties of the chromatic polynomial and restrained chromatic polynomials (including proof

of polynomiality). We have previously remarked that deletion-contraction does not hold in general for π
(H)
G

even though it does for H = N1. For example, deletion-contraction for G = P2, H = P2 fails because
the edge in P2 is not present in either of the graphs for which ρ

G−v,r
(2)
v

is defined, and we observe that

π
(P2)
P2

(k) = 2
(
k
2

)
(k − 2) ̸= π

(P2)
P2−e(k)− π

(P2)
P2/e

(k) = 2
(
k
2

)
k −

(
k
2

)
.

However, we can still use deletion-contraction and other analysis of the individual ρ
r
(2)
v

to infer structural

properties of the overall chromatic pairs polynomial, which we do in Theorems 5.2 and 5.4. Both results
consider coefficients of a chromatic pairs polynomial in the following standard form:

(5.1) π
(P2)
G (k) = an+1k

n+1 − ank
n + · · ·+ (−1)na1k.

We start with two easy observations. First, observe that the chromatic pairs polynomial for any graph
G is indeed a multiple of k because of the

(
k
2

)
term multiplied by restrained chromatic polynomials. Note

that although any graph’s chromatic polynomial is a multiple of k [Rea68, Theorem 9], this is not true for
restrained chromatic polynomials in general. For example, N1 with vertex constraint {1} has chromatic
polynomial k − 1.

Second, applying deletion-contraction to the individual ρ
G−v,r

(2)
v

shows that, like chromatic polynomials,

each ρ
G−v,r

(2)
v

is a polynomial of degree |V (G − v)| = n − 1 with coefficients with alternating signs [Ere15,

Theorem 4.1.2]. Because these are summed together and multiplied by
(
k
2

)
in the chromatic pairs polynomial,

the signs in the overall polynomial also alternate, and we have ai ≥ 0 for i = 1, . . . , n + 1 in Eq. (5.1).
Next we show that these polynomials are higher degree multiples of k if their underlying graphs are

disconnected. Theorem 5.2 asserts that the lowest power of k that appears with a nonzero coefficient is the
number of connected components.

Theorem 5.2. Let G be a graph with t ≥ 1 connected components. Then the coefficients for π
(P2)
G in standard

form (Eq. 5.1) are such that ai > 0 for i ≥ t and ai = 0 for i < t.
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The proof of Theorem 5.2 is given in Appendix B. It first reasons that a constant term must be present
in at least one restrained chromatic polynomial that appears in the definition of the chromatic pairs poly-
nomial. Subsequently by induction on the number of connected components, the proof uses the following
lemma to show how the order of the lowest order nonzero coefficient increases with the number of connected
components. We present the lemma and its simple proof below:

Lemma 5.3. Let G1 and G2 be two graphs, and let G1 + G2 denote their disjoint union. Then,

π
(P2)
G1+G2

(k) = π
(P2)
G1

(k) · πG2
(k) + π

(P2)
G2

(k) · πG1
(k) .

Proof. Every edge in a coloring graph for G1 + G2 must correspond to either a vertex of G1 or a vertex of

G2 changing color. Each of the π
(P2)
G1

(k) edges in Ck(G1) appears πG2(k) times in Ck(G1 + G2), once per

(independent) coloring of the vertices of G2, and each of the π
(P2)
G2

(k) edges in Ck(G2) appears πG1(k) times
in Ck(G1 + G2). □

Having established how the number of connected components of a graph determines its chromatic pairs
polynomial’s low-degree coefficients, we now derive explicit expressions for the coefficients of the first few
high-degree terms. It is well-known that for a graph G with |V (G)| = n and |E(G)| = m, the chromatic
polynomial of G is monic of degree n with −m as the coefficient of kn−1 [Rea68, Theorems 7,8,11]. Whitney
[Whi32] showed that the remaining coefficients have a combinatorial interpretation in terms of broken circuits.
The modern proof of Whitney’s Theorem is in Sagan’s textbook [Sag20, Theorem 3.8.5].

Analogously, by [Ere19, Theorems 4.2.1 and 4.2.2], every restrained chromatic polynomial is a monic
polynomial of degree n, whose coefficients alternate in sign. Moreover, the magnitude of the second coefficient
of a restrained chromatic polynomial is the number of edges in the underlying graph plus the total number

of restraints. For each restrained polynomial ρ
(2)
v in Eq. (4.1), the underlying graph G− v has n−1 vertices,

m− deg(v) edges, and 2 deg(v) restraints. Hence each ρ
(2)
v can be written in the form

(5.2) ρ(2)v (k) = kn−1 − (m− deg(v) + 2 deg(v))kn−2 + b
(v)
n−3k

n−3 − · · ·+ (−1)n−1b
(v)
0 ,

with coefficients b
(v)
j ≥ 0 for j = 0, . . . , n− 3. Substituting this general form of ρ

(2)
v into Eq. (4.1), we obtain

π
(P2)
G (k) =

(
k

2

) ∑
v∈V (G)

(
kn−1 − (m + deg(v))kn−2 + b

(v)
n−3k

n−3 − · · ·+ (−1)n+1b
(v)
0

)

=
n

2
kn+1 − n + nm + 2m

2
kn +

1

2

(n + 2)m +
∑

v∈V (G)

b
(v)
n−3

 kn−1(5.3)

− 1

2

 ∑
v∈V (G)

(
b
(v)
n−3 + b

(v)
n−4

) kn−2 + · · ·+ (−1)n

2

 ∑
v∈V (G)

b
(v)
0

 k .

This general formula for our chromatic pairs polynomial immediately gives expressions for the coefficients
an+1 and an in the chromatic pairs polynomial, which proves the first two results in the following theorem.
Additional results from [Ere19] about restrained chromatic polynomials allow us to derive the next coefficient
in the chromatic pairs polynomial as well. The proof of the an−1 coefficient in Theorem 5.4 below can be
found in Appendix C.

Theorem 5.4. Let G be a graph with |V (G)| = n, |E(G)| = m, degree sequence {di}i∈[n], and ℓ triangles.

Then the coefficients for π
(P2)
G in standard form (Eq. 5.1) are such that

an+1 =
n

2
, an =

n + nm + 2m

2
, and an−1 =

1

2

nm(m + 1)

2
+ 2m2 −m− (n + 3)ℓ +

1

2

∑
i∈[n]

d2i

 .

This theorem shows us that the number of vertices and edges in a graph determine the first two coefficients
of the chromatic pairs polynomial, and these quantities along with the number of triangles and the sum of
the squares of the vertex degrees determine the third coefficient of the chromatic pairs polynomial. We can
compare these results to the first three coefficients in the chromatic polynomial, which are 1, −m, and

(
m
2

)
−ℓ,
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respectively [Whi32]. This implies that graphs that share a chromatic polynomial must share the first two
coefficients of the chromatic pairs polynomial. Additionally, graphs that share a chromatic pairs polynomial
must agree on at least the first three coefficients of their chromatic polynomial. This reinforces the idea
that the chromatic pairs polynomial contains at least as much information as the chromatic polynomial,
motivating Conjecture 6.1, as an−1 includes extra information involving the degree sequence.

Theorem 5.4 connects to the graphs presented in the previous subsection as follows. Trees are triangle-
free, and so the dependence of the first three coefficients on n, m, and degree sequence is consistent with
Theorem 5.1. Moreover, one can readily check that these graph properties are the same for the two pseu-
dotrees in Figure 10, which explains why the two chromatic pairs polynomials have the same k5 coefficient
even though subsequent coefficients diverge. Interestingly, this also explains why the k6 coefficients agree for
the graphs in Figure 11. Although these graphs’ degree sequences {di}i∈[n] are different, the sum of degrees

squared
∑

d2i are the same, as well as number of vertices, edges, and triangles.
Finally, we note that knowledge only of the leading coefficients of chromatic pairs polynomials and chro-

matic polynomials (n/2 and 1, respectively) implies that chromatic pairs polynomials in general cannot be
chromatic polynomials of different graphs. The only exceptions to this are graphs on two vertices, which
have monic chromatic pairs polynomials that happen to coincide with chromatic polynomials of different
graphs as follows:

π
(P2)
P2

(k) = πK3
(k) = k3 − 3k2 + 2k

π
(P2)
N2

(k) = πN1+P2
(k) = k3 − k2.

The fact that leading coefficients of chromatic pairs polynomials differ in general from those of chromatic
polynomials implies that the chromatic pairs polynomial is a new polynomial in the sense that there is
no general mapping from graph G to G′ such that the chromatic pairs polynomial for G is the chromatic
polynomial for G′.

5.3. Graphs with Unique Chromatic Pairs Polynomials. The observation that the chromatic pairs
polynomial for graph G recovers the number of vertices and edges immediately (from the first two coefficients)
shows that chromatic pairs polynomials are unique for null and complete graphs.

Next, we discuss how chromatic pairs polynomial can help us detect whether a given graph is a tree. It
is well-known that a graph G is a tree on n vertices if and only if the chromatic polynomial πG(k) is equal
to k(k − 1)n−1 [Rea68, Theorem 13]. The next result is an analogue for the chromatic pairs polynomial.

Theorem 5.5. A graph G on n vertices with degree sequence d1, d2, ..., dn is a tree if and only if

(5.4) π
(P2)
G (k) =

(
k

2

)∑
v∈G

(k − 2)di(k − 1)n−di−1 .

Proof. If G is a tree, then the chromatic pairs polynomial takes the desired form by Theorem 5.1. Conversely,
suppose graph G satisfies Eq. 5.4. Then its second coefficient reveals |V (G)| − 1 edges, and it has a nonzero
linear term, implying G is connected by Theorem 5.2. Such a graph must be a tree. □

Theorem 5.1 also shows that chromatic pairs polynomials for paths and stars are unique, because they
are the only trees with 2 and n− 1 leaves, respectively. This is despite paths and stars on n vertices sharing
a chromatic polynomial (with all other trees on n vertices).

Like null and complete graphs, cycles are known to be chromatically unique, meaning that for n ≥ 3,
Cn is the only graph with its chromatic polynomial [CW78]. Note that the uniqueness of the chromatic
pairs polynomial for cycle graphs would follow immediately from Conjecture 6.1. However, we will give an
unconditional proof of this result.

Theorem 5.6. A graph G is an n-cycle if and only if π
(P2)
G (k) = π

(P2)
Cn

(k).

Proof summary. Observe that any candidate graph with a matching chromatic pairs polynomial must be
connected by Theorem 5.2, and because its chromatic pairs polynomial must match on the first two coeffi-
cients, it must have n vertices and n edges. In other words, it suffices to show that Cn is the only pseudotree
on n vertices with its chromatic pairs polynomial. As an aside, this reasoning also allows us to quickly con-
firm chromatic uniqueness of cycle graphs, because any pseudotree on n vertices with a cycle of length ℓ has
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chromatic polynomial πG(k) = πCℓ
(k)(k − 1)n−ℓ, which only equals πCn(k) when ℓ = n. In fact, a graph G

on n ≥ 3 vertices is a pseudotree with a cycle length ℓ with 3 ≤ ℓ ≤ n if and only if πG(k) = πCℓ
(k)(k−1)n−ℓ

[ Laz95, Theorem 2].

We consider the formula for π
(P2)
G (k) for pseudotrees in Eq. (4.7) and evaluate its derivative at k = 2.

Appendix D expands on this calculation, which results in:

d

dk
π
(P2)
G (k)

∣∣∣
k=2

=

{
ℓ2 + n1 ℓ even

−ℓ2 ℓ odd
,

where ℓ0 is the number of cycle vertices of degree 2 and n1 is the number of degree one vertices. Note that
this formula distinguishes the pseudotrees in Figure 10, the first of which has two degree-2 cycle vertices and
the latter of which has only one. By contrast, a simple cycle has

d

dk
π
(P2)
Cn

(k) |k=2=

{
n n even

−n n odd
.

If a pseudotree is not a cycle graph, then ℓ2 < ℓ2 + n1 < n, establishing uniqueness of π
(P2)
Cn

. □

5.4. Hypercube Polynomials as Invariants. Despite the uniqueness of certain chromatic pairs polyno-
mials, other chromatic pairs polynomials are not able to distinguish non-isomorphic graphs, such as T2 and
T3 in Figure 9 and G1 and G2 in Figure 11. We next investigate whether a different choice of H could
distinguish more pairs of non-isomorphic graphs. Like other reconfiguration systems, a graph recoloring
problem can be described by a cube complex [GP07], the 1-skeleton of which is the coloring graph Ck(G).
A cube complex is a (non-disjoint) union of hypercubes, so generalizing the chromatic pairs polynomial to
count higher-dimensional hypercubes may provide additional information about the coloring graph.

c00

1 1v0 → ← v1

c01 2 1 c101 2

c11

2 2

Figure 12. A 2-cube induced in C3(P3) by generator ({v0, v1}, {c00, c01, c10, c11}) with col-
ors k0,0 = 1, k0,1 = 2, k1,0 = 1, k1,1 = 2, using the notation of Lemma 5.7

We have already described how to count occurrences of C4 = Q2 in our section on counting small cycles.
Now we focus more narrowly on the presence or absence of higher-dimensional hypercubes in coloring graphs.
Lemma 5.7 establishes necessary conditions for minimal Qs-generators for any s ≥ 0. At a high level, the
lemma states that an induced s-cube in a coloring graph can only arise from exactly s vertices independently
swapping between two colors each. Figure 12 illustrates this phenomenon by annotating an induced 2-cube
in C3(P3) that arises from the choice of the left and right vertices of the base graph for U = {v0, v1},
respectively. The four partial colorings in C = {c00, c01, c10, c11} are enumerated in binary to make it easier
to read off the relevant bits ⌊i/2j⌋ (mod 2) determining the color of vertex j. For example, c01 assigns color
k0,1 = 2 to vertex v0 because ⌊(01)2/20⌋ (mod 2) = 1, and it assigns color k1,0 = 1 to vertex v1 because
⌊(01)2/21⌋ (mod 2) = 0.

Lemma 5.7. For graph G and s ≥ 0, every minimal Qs-generator (U,C) is of the form U = {v0, . . . , vs−1}
and C = {c0, . . . , c2s−1} for some positive integers k0,0 < k0,1, . . . , ks−1,0 < ks−1,1 such that ci(vj) =
kj,⌊ i

2j
⌋ (mod 2) for all i = 0, . . . , 2s − 1, j = 0, . . . , s− 1.

Proof. This is trivially true for H = N1 = Q0, where the chromatic H-polynomial is the chromatic poly-
nomial, generated by (∅, c∅), where c∅ is the unique coloring with empty domain. For any s > 0, suppose
the theorem is true for induced H = Qs−1. Consider H = Qs and note that H can be partitioned into two
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disjoint induced copies of Qs−1. By induction and our observation about monotonicity in H, any minimal

Qs-generator contains a minimal Qs−1-generator ({v0, . . . , vs−2}, {c(0)0 , . . . , c
(0)
2s−1−1}). Fix a partition of the

vertices of Qs such that each part induces Qs−1. By the structure of Qs, each vertex in the first part is

associated with some c
(0)
i that has an edge to a vertex in the other part that we will call c

(1)
i . This edge

cannot be due to any vertex in {v0, . . . , vs−2} taking on a third color, because that would create a triangle
that is not present in Qs, so let vs−1 be the new color-changing vertex. For any i′ = 0, . . . , 2s−1 − 1 that

differs from i by a power of 2 (so it is neighboring in its Qs−1 subgraph) the edge from c
(0)
i′ to c

(1)
i′ must

correspond to the same vs−1 changing color so that c
(1)
i and c

(1)
i′ can be neighbors. The order of the two

colors for vs−1 is irrelevant, so label them ks−1,0 < ks−1,1. This forces the Qs-generator to be of the desired
form, completing our proof. □

This lemma allows us to establish necessary and sufficient conditions for presence of hypercubes in a
coloring graph in Theorem 5.8. Figure 13 illustrates conditions that establish presence of an induced 5-cube
in the 5-coloring graph of one of the graphs from Figure 11. In particular, the left annotation indicates the
s = 5 non-gray vertices that constitute U , and their labeling indicates a 2-coloring c. Given U and c, define
the following restraint on G− U :

(5.5) r(U,c)(v) = {j : 2c(u)− 1 = j or 2c(u) = j for some u ∈ N(v) ∩ U} for any v ∈ V (G)− U .

Then the labels on the right confirm that ρG−U,r(U,c)
(k) > 0 for k = 5, so indeed π

(Q5)
G (5) > 0.

2

2

1

11

5

5

3/4

3/4

1/2

1/21/2

Figure 13. A 2-coloring of a 5-vertex induced subgraph of graph G and the corresponding
25 colorings of G that induce a copy of Q5 in C5(G)

Theorem 5.8. For graph G, π
(Qs)
G (k) > 0 if and only if there exists some U and c such that U ⊆ V with

|U | = s, c : U → [⌊k/2⌋] is a proper coloring of G[U ], and ρG−U,r(U,c)
(k) > 0 for r(U,c) as in Eq. (5.5).

Proof. For the reverse direction, consider a budget of k colors, and suppose c uses at most half of them to
color U ⊆ G(V ). Then the two colorings 2c − 1 and 2c each properly color U , and so does any c′ with
c′(v) = 2c(v) − 1 or c′(v) = 2c(v) for each v. If k colors suffice to color the rest of the graph respecting
the restraint r(U,c), then we can fix any one such coloring of the rest of the graph and induce Q|U | by
independently coloring the vertices of U with any combination of the colors allowed by 2c− 1 and 2c.

Conversely, a positive count for s-cubes in a k-coloring graph implies some minimal Qs-generator (U,C)
such that ρG−U,r(U,C)

(k) > 0. By Lemma 5.7, U = {v0, . . . , vs−1} and C consists of every coloring that
assigns each vi ∈ U to one of two colors ki,0 or ki,1. Among all such colorings, choose the c∗ ∈ C that
uses the smallest color palette P = {j1, . . . , jκ} with j1 < · · · < jκ. Note that κ ≤ ⌊k/2⌋ because C uses
at least 2κ colors and ρG−U,r(U,C)

(k) > 0. Then for σP as in Eq. (3.3), let c be the coloring on U defined

by c(vi) = σP(c∗(vi)) for all vi ∈ U . Then for C ′ the set of all colorings c′ that assign each v ∈ U either
2c(v) − 1 or 2c(v), (U,C ′) must also be a Qs-generator with ρG−U,r(U,C′)(k) = ρG−U,r(U,c)

(k) > 0 because

the colors for the hypercube respect the adjacency within U and the hypercube uses no more colorings than
that induced by our original (U,C). □

If instead we are satisfied with a simple sufficient condition for presence of a particular type of hypercube,
we can restrict our focus to independent sets in a base graph, which we do in the following corollary. In
particular, if the set U being recolored in Qs is independent, then it is properly colored by the constant
coloring c(v) = 1, so if the rest of the graph is ℓ-colorable, then ℓ + 2 colors guarantee a coloring for the
whole graph with color swaps for U yielding Qs.
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Corollary 5.9. If graph G has an independent set U with |U | = s and χ(G− S) = ℓ, then π
(Qs)
G (k) > 0 for

all k ≥ ℓ + 2.

We now consider how this theorem and corollary do and do not serve as invariants for pairs of graphs
studied previously. Our corollary shows that although chromatic pairs polynomials (counting Q1 = P2)
cannot distinguish the trees T2 and T3 in Figure 9, higher-dimensional hypercube polynomials can. To see
why, note that T3 contains an independent set of size four, so C3(T3) contains 4-dimensional hypercubes
corresponding to this independent set swapping between two colors with the rest of the graph fixed as the
third color. For any four vertices of T2 to participate in a 4-dimensional hypercube in C3(T2), they would
have to be independent (not possible in T2), or neighboring vertices would have to have disjoint pairs of
colors (not possible with only k = 3 colors).

However, even the more general Theorem 5.8 cannot help distinguish our examples on seven vertices,
because cubes of each dimension first appear at the same k for each graph. Both this theorem and its
corollary are rather coarse invariants in that they establish presence or absence of certain features in the
coloring graph, not the counts that we have focused on up until this point. We can verify computationally
that although squares appear at k = 4 in the coloring graphs for each of those graphs, the actual square
count as determined by Eq. (4.12) differs. Appendix E fully justifies these claims.

In our final section below, we conjecture more broadly that any pair of non-isomorphic graphs admit some
H for which the corresponding H-polynomials are different. Although hypercubes are natural candidates to
study, our conjecture does not require H to be a hypercube.

6. Closing Conjectures

We have shown that particular instantiations of our (chromatic) H-polynomial serve as refinements of
the chromatic polynomial as a graph invariant, at least for particular classes of graphs. In particular, the
chromatic pairs polynomial refines the chromatic polynomial for trees. We conjecture that the same holds
for all graphs.

Conjecture 6.1. If two graphs G1 and G2 satisfy π
(P2)
G1

(k) = π
(P2)
G2

(k), then πG1
(k) = πG2

(k).

Since
∑

v∈G ρ
r
(2)
v

(k) determines π
(P2)
G (Equation (4.1)), we also pose the following weaker conjecture.

Conjecture 6.2. If two graphs G1 and G2 share the same multiset {ρ
r
(2)
v

(k)}v∈V (G1) = {ρ
r
(2)
v

(k)}v∈V (G2),

then πG1
(k) = πG2

(k).

Conjecture 6.2 is similar to the Polynomial Reconstruction Problem (PRP) [Sch79] which states that πG(k)
can be recovered from the multiset {πG−v(k)}v∈V (G). Conjectures 6.2 and PRP differ in the information
contained in each of the decks, and it is unclear which conjecture is more tractable. Our restrained chromatic
polynomials may contain additional information compared to the (unrestrained) chromatic polynomials on
the same subgraphs because the restraints give some indication about how the corresponding v are connected
to the rest of the graph; it is unclear whether this information is useful for the problem of reconstructing
the chromatic polynomial of the overall graph.

We may further generalize Conjecture 6.1 to ask whether there may be a partial ordering on subgraphs
H defined by H1 ≤ H2 for any H1, H2 such that every pair of graphs distinguished by their H1-polynomials
is also distinguished by their H2-polynomials. Even if there is no universal H that is a complete invariant
for all graphs, it is conceivable that for any given graph G, there may be specific choices of H for which the

polynomials π
(H)
G (k) determine G. In all our examples of non-isomorphic graphs, we observed that every

pair differed on some H-polynomial, which implies that they differed on the family of coloring graphs. We
propose that the family of coloring graphs can function as a complete graph invariant. This prediction is
equivalent to a conjecture stated fully in terms of H-polynomials. If two coloring graphs are isomorphic,
then they will have the same counts for all H. Conversely, if Ck(G1) and Ck(G2) have the same number
of induced copies of H for all H, we first take H = N1 to see that Ck(G1) and Ck(G2) share the same

number of vertices. Then for each k, taking H = Ck(G1), we see that π
(Ck(G1))
G1

(k) = π
(Ck(G1))
G2

(k) = 1, which
implies that Ck(G1) ∼= Ck(G2). We conjecture that either of these equivalent conditions is a complete graph
invariant.
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Conjecture 6.3. For any graph G, the collection {Ck(G)}k≥1 uniquely determines G. Equivalently stated,

graphs G1 and G2 are isomorphic if and only if π
(H)
G1

= π
(H)
G2

for every H.

We also state a stronger conjecture where only finitely many coloring graphs are needed. We suspect that
Conjecture 6.3 may be equivalent to the seemingly stronger Conjecture 6.4. Given that the graph G is finite,
we expect that finitely many colors suffice to accurately capture the structure of G.

Conjecture 6.4. There exists some function f : Graphs → N that maps finite graphs to natural numbers

such that for any graph G, the collection {Ck(G)}f(G)
k=1 uniquely determines G.

Subsequent to a posted preprint of this work, [HSTT24] proved Conjecture 6.4 for f(G) = 5|V (G)|2 + 1.
Therefore, both Conjectures 6.4 and 6.3 have now been proven. Although coloring graphs with sufficiently
large k relative to G can be used to recover G, the more general framing of partial orderings on H-polynomials
still leaves much to be explored.
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Appendix A. 6-Cycle Polynomial

Subsection 4.3.4 describes the 2- and 3-vertex generators needed to instantiate Theorem 3.1 for π
(C6)
G . We

enumerate the associated restraints below in order to provide a closed-form expression in Eq. (A.1).

• s
(6)
uv restrains u’s neighbors with {1, 2, 3} and v’s neighbors with {4, 5, 6};

• s
(5)
uv restrains u’s neighbors with {1, 2, 3} and v’s neighbors with {1, 4, 5};

• s
(4)
uv restrains u’s neighbors with {1, 2, 3} and v’s neighbors with {1, 2, 4};

• s
(3)
uv restrains u’s and v’s neighbors with {1, 2, 3};

• s
(6)
uvw restrains u’s neighbors with {1, 2}, v’s neighbors with {3, 4}, and w’s neighbors with {5, 6};

• s
(5)
uvw restrains u’s neighbors with {1, 2}, v’s neighbors with {1, 3}, and w’s neighbors with {4, 5};

• s
(4a)
uvw restrains u’s and v’s neighbors with {1, 2} and w’s neighbors with {3, 4};

• s
(4b)
uvw restrains u’s neighbors with {1, 2}, v’s neighbors with {1, 3}, and w’s neighbors with {2, 4};

• s
(4c)
uvw restrains u’s neighbors with {1, 2}, v’s neighbors with {1, 3}, and w’s neighbors with {1, 4};

• s
(3a)
uvw restrains u’s neighbors with {1, 2}, v’s neighbors with {1, 3}, and w’s neighbors with {2, 3};

• s
(3b)
uvw restrains u’s and v’s neighbors with {1, 2} and w’s neighbors with {1, 3}; and

• s
(2)
uvw restrains u’s, v’s, and w’s neighbors with {1, 2}.

Then by considering which colorings of u, v, w are possible depending on the edges within those vertices
and appropriately counting symmetries, we have the following closed-form expression:

π
(C6)
G (k) =

∑
uv∈E(G)

(
k

3

)
ρ
s
(3)
uv

(k) +
∑

{u,v}∈(V (G)
2 )

uv ̸∈E(G)

6

(
k

3

)
ρ
s
(3)
uv

(k)(A.1)

+
∑

uv∈E(G)

12

(
k

4

)
· ρ

s
(4)
uv

(k) +
∑

{u,v}∈(V (G)
2 )

uv ̸∈E(G)

72

(
k

4

)
ρ
s
(4)
uv

(k)

+
∑

uv∈E(G)

60

(
k

5

)
· ρ

s
(5)
uv

(k) +
∑

{u,v}∈(V (G)
2 )

uv ̸∈E(G)

180

(
k

5

)
ρ
s
(5)
uv

(k)

+
∑

{u,v}∈(V (G)
2 )

120

(
k

6

)
ρ
s
(6)
uv

(k)

+
∑

{u,v,w}∈(V (G)
3 )

360

(
k

6

)
ρ
s
(6)
uvw

(k)
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+
∑

{u,v,w}∈(V (G)
3 )

uv ̸∈E(G)

[
240

(
k

5

)
ρ
s
(5)
uvw

(k) + 24

(
k

4

)
ρ
s
(4a)
uvw

(k)

]

+
∑

{u,v,w}∈(V (G)
3 )

uv,uw ̸∈E(G)

96

(
k

4

)
ρ
s
(4b)
uvw

(k)

+
∑

{u,v,w}∈(V (G)
3 )

uv,uw,vw ̸∈E(G)

[
96

(
k

4

)
ρ
s
(4c)
uvw

(k) + 26

(
k

3

)
ρ
s
(3a)
uvw

(k) + 48

(
k

3

)
ρ
s
(3b)
uvw

(k) + 4

(
k

2

)
ρ
s
(2)
uvw

(k)

]
.

Appendix B. Proof of Theorem 5.2

Proof of Theorem 5.2. First, we show that ρG,r has alternating nonzero coefficients (including the constant
term) for any connected graph G and any restraint r that imposes restraint {1, 2} on at least one vertex and
imposes no other restraints. We proceed by induction on the number of edges in G. If G is edgeless, then
G = N1 and ρG,r(k) = k− 2. If G has m > 0 edges, then ρG,r(k) = ρG−e,r(k)− ρG/e,re(k), where re denotes
the restraint on G/e that unions the restraints of r on the ends of e for the contracted vertex in G/e. As
G/e is connected, it has a nonzero constant term by induction. Because G − e has one more vertex than
G/e, the signs of the constant terms in the respective expressions will differ; taking the difference ensures
that the resulting polynomial still has alternating nonzero coefficients.

We now reason about the coefficient of the linear term in the chromatic pairs polynomial for a connected
graph G. Select a vertex w ∈ V (G) that is not a cut vertex so that G − w is connected. By our earlier
observation, ρ

G−w,r
(2)
w

(k) has a nonzero constant term, noting that ρ
G−w,r

(2)
w

(k) = 1 if G = N1. Then

our chromatic pairs polynomial π
(P2)
G (k) =

(
k
2

)∑
v∈V (G) ρG−v,r

(2)
v

(k) has no constant term and a nonzero

coefficient for k. Moreover, each of the ρ
G−v,r

(2)
v

have the same degree with alternating nonzero coefficients

of the same sign. Since
(
k
2

)
= k2−k

2 has alternating coefficients, it follows that π
(P2)
G (k) has alternating

nonzero coefficients as well.
Next, suppose the result is true for all graphs with t ≥ 1 connected components, and suppose G on n

vertices has t + 1 connected components, with G = G1 + G2 where G1 has t connected components on n1

vertices and G2 is connected on n2 vertices. By Lemma 5.3, we have

π
(P2)
G1+G2

(k) = π
(P2)
G1

(k) · πG2(k) + π
(P2)
G2

(k) · πG1
(k) ,

and by induction, the lowest degree terms with nonzero coefficients in the four polynomials are for kt, k, k, kt,
respectively. Moreover, the signs of the products of each of these terms is (−1)n−t, so they cannot cancel
each other out.

Hence, the chromatic pairs polynomial of a graph with t connected components has at > 0 and at′ = 0
for each t′ < t. Moreover, the coefficients at for t′ > t are nonzero and alternating in sign. Indeed, the

four polynomials π
(P2)
G1

(k), πG2(k), π
(P2)
G2

(k) and πG1
(k) have nonzero alternating coefficients, and so do the

products π
(P2)
G1

(k) · πG2(k) and π
(P2)
G2

(k) · πG1(k) which have matching degrees. This shows π
(P2)
G1+G2

(k) has
nonzero alternating coefficients, too. □

Appendix C. Proof of Theorem 5.4

Proof of Theorem 5.4. The proof of the first two coefficients an+1 and an was given before the theorem
statement. In order to calculate the third highest coefficient an−1 of the chromatic pairs polynomial, we
will use [Ere19, Theorem 4.2.3], which gives an expression for the third highest coefficient for a restrained
chromatic polynomial. For a graph G with n vertices, m edges, and restraints r, the restrained chromatic
polynomial is a polynomial of the form ρG,r(k) = kn − bn−1k

n+1 + bn−2k
n−2 − · · · (−1)n+1b0. Then the

coefficient bn−2 can be written as

(C.1) bn−2 =

(
m

2

)
− Tri(G) +

∑
i<j

|r(vi)||r(vj)|+ m
∑

v∈V (G)

|r(vi)| −
∑

vivj∈E(G)

|r(vi) ∩ r(vj)| ,
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where Tri counts the number of triangles in G.
We now apply this formula to each instance of ρ

r
(2)
v

in Eq. (4.1). Instantiating (C.1) with the graph G−v

with restraints {1,2} on all neighbors of v yields

b
(v)
n−3 =

(
m− deg(v)

2

)
− Tri(G− v) + 4

(
deg(v)

2

)
+ 2 deg(v)(m− deg(v))− 2 Triv(G)

=

(
m

2

)
+ deg(v)

2m− 3

2
+

1

2
deg(v)2 − Tri(G− v)− 2 Triv(G) ,

where Triv(G) counts the number of triangles in G that include vertex v. We have also rewritten this

coefficient as b
(v)
n−3 as the graph G− v has n− 1 vertices. As in the chromatic pairs polynomial formula, we

now sum b
(v)
n−3 over all vertices v. To simplify the terms involving the triangle counts, we note that

n∑
i=1

Trivi(G) = 3 Tri(G) ,

since each triangle gets counted 3 times on the left hand side. Moreover,
n∑

i=1

Tri(G− vi) = (n− 3) Tri(G) ,

since each triangle get counted exactly n − 3 times on the left hand side (one for each vertex v not part of
the triangle). Letting di = deg(vi), we have

n∑
i=1

b
(vi)
n−3 =

n∑
i=1

[(
m

2

)
+ di

2m− 3

2
+

1

2
d2i − Tri(G− v)− 2 Triv(G)

]

=− (n + 3) Tri(G) + n

(
m

2

)
+ m(2m− 3) +

1

2

n∑
i=1

d2i ,

where we have used the handshake lemma 2m =
∑

i∈[n] di. To finish our computation of the third highest

coefficient in the chromatic pairs polynomial π
(P2)
G (k), we need to compute the coefficient of kn−1 in the

expansion
(
k
2

)
·
∑

v∈V (G) ρv(k). From (5.3), we need to add nm + 2m to our result and divide by 2. Thus,

the coefficient of kn−1 in π
(P2)
G (k) is

1

2

(
nm + 2m− (n + 3) Tri(G) +

nm(m− 1)

2
+ 2m2 − 3m +

1

2

n∑
i=1

d2i

)
,

which can be simplified to

1

2

(
nm(m + 1)

2
+ 2m2 −m− (n + 3) Tri(G) +

1

2

n∑
i=1

d2i

)
.

□

Appendix D. The Derivative of the Chromatic Pairs Polynomials for Pseudotrees

For pseudotree G, we want to calculate the derivative d
dkπ

(P2)
G (k) evaluated at k = 2. As a preliminary, we

calculate πCℓ
(k) and d

dkπCℓ
(k) at k = 2. Since πCℓ

(k) = (k − 1)ℓ + (−1)ℓ(k − 1), we get πCℓ
(2) = 1 + (−1)ℓ

which reflects the fact that Cℓ is 2-colorable if and only if ℓ is even. Next,

d

dk
πCℓ

(k) = ℓ(k − 1)ℓ−1 + (−1)ℓ ⇒ d

dk
πCℓ

(k)
∣∣∣
k=2

= ℓ + (−1)ℓ

For the derivative of π
(P2)
Cℓ

, we have

d

dk
π
(P2)
Cℓ

(k) =
ℓ

2
(k − 1)ℓ−2 [2(k − 1)(k − 2) + (ℓ− 1)k(k − 4)] + 2ℓ(ℓ− 1)(k − 1)ℓ−2 + (−1)ℓℓ(2k − 3)

⇒ d

dk
π
(P2)
Cℓ

(k)
∣∣∣
k=2

= (−1)ℓ · ℓ
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Moreover, π
(P2)
Cℓ

(2) = 0. Next, we calculate d
dkπ

(P2)
G (k) for a pseudotree G. We have

d

dk
π
(P2)
G (k) = (D.1) + (D.2) + (D.3) + (D.4) + (D.5) ,

where the individual terms are as follows:

1

ℓ
· d

dk
π
(P2)
Cℓ

(k) ·
ℓ∑

i=1

(k − 2)di−2(k − 1)n−ℓ−(di−2) ,(D.1)

π
(P2)
Cℓ

(k)

ℓ

ℓ∑
i=1

(di − 2)(k − 2)di−3(k − 1)n−ℓ−(di−2) + (n− ℓ− (di − 2))(k − 2)di−2(k − 1)n−ℓ−di+1 ,(D.2)

(
k

2

)
· 1

k
· d

dk
πCℓ

(k) ·
n∑

k=ℓ+1

(k − 2)di(k − 1)n−ℓ−di ,(D.3)

(
k

2

)
· πCℓ

(k)

k
·

n∑
k=ℓ+1

di(k − 2)di−1(k − 1)n−ℓ−di + (n− ℓ− di)(k − 2)di(k − 1)n−ℓ−di−1(D.4)

1

2
πCℓ

(k)

n∑
i=ℓ+1

(k − 2)di(k − 1)n−ℓ−di .(D.5)

Next, we evaluate d
dkπ

(P2)
G (k) at k = 2 and analyze the effect on the terms (D.1)-(D.5). First, any term

with a positive power of k − 2 factor will vanish. Hence, (D.3) = (D.5) = 0. Moreover, (D.2) = 0 due to

π
(P2)
Cℓ

(2) = 0. It remains to examine (D.1) and (D.4).

Let ℓ2 denote the number of cycle vertices with degree 2 (that is, cycle vertices whose only neighbors are
on the cycle) and n1 denote the number of vertices of degree 1, which are necessarily non-cycle vertices.
When k = 2, the only surviving terms in (D.1) are the ℓ2 summands with di = 2. Similarly, the only
surviving terms in (D.4) are the n1 summands with di = 1. Thus,

d

dk
π
(P2)
G (k)

∣∣∣
k=2

=
1

ℓ

d

dk
π
(P2)
Cℓ

(k)
∣∣∣
k=2
· ℓ2 +

1

2
πCℓ

(2) · n1

Using d
dkπ

(P2)
Cℓ

(k)
∣∣∣
k=2

= (−1)ℓ · ℓ and πCℓ
(2) = 1 + (−1)ℓ, we reach our desired conclusion:

d

dk
π
(P2)
G (2) = (−1)ℓ · ℓ2 +

1

2
(1 + (−1)ℓ) · n1 =

{
ℓ2 + n1 ℓ even

−ℓ2 ℓ odd
.

Appendix E. Determining How Many Colors are Needed For Hypercubes

Here we use Theorem 5.8 to show that for the two graphs in Figure 11 (reproduced here in Figure 14),
assessing the number of colors needed for hypercubes of dimension 0 through n to appear in the respective
coloring graphs cannot help distinguish the graphs.

G1 =

B A

BA

C

A

C

G2 =

C B

CB

A

AA

Figure 14. Two 7-vertex graphs each partitioned into three independent sets

Claim E.1. Q0 first appears in k-coloring graphs at k = 3 of G1 and G2.

More precisely, π
(Q0)
G1

(2) = π
(Q0)
G2

(2) = 0, and π
(Q0)
G1

(3) > 0, π
(Q0)
G2

(3) > 0.

Each graph has a triangle, so 2-colorings do not exist, yet the independent set partitions labeled in
Figure 14 illustrate a 3-coloring of each graph, giving rise to Q0 in the 3-coloring graphs.
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Claim E.2. Q1, Q2, Q3 first appear in k-coloring graphs of G1 and G2 at k = 4.

More precisely, π
(Q1)
G1

(3) = π
(Q1)
G2

(3) = 0, and π
(Q3)
G1

(4) > 0, π
(Q3)
G2

(4) > 0.

Next we note that the 3-coloring graphs of each graph are edgeless (i.e., they contain no copies of Q1)
because every vertex in each graph participates in a triangle, so any 3-coloring of the triangle leaves no
available second color for any vertex. However, each graph has an independent set of size 3 (the A vertices)
and the rest of the graph is 2-colorable; so Q3 first appears in the 4-coloring graph for G1 and G2 by
Corollary 5.9.

Claim E.3. Q4 and Q5 first appear in k-coloring graphs of G1 and G2 at k = 5.

More precisely, π
(Q4)
G1

(4) = π
(Q4)
G2

(4) = 0, and π
(Q5)
G1

(5) > 0, π
(Q5)
G2

(5) > 0.

Any Q4 that arises in the 4-coloring graphs must correspond to 4 vertices changing color in Q4, and no
two of these vertices can be in the same triangle, because two vertices changing color in a triangle require 5
colors. Hence any color-changing vertex v cannot have more than 3 neighbors, because this would leave at
most 7 − 1 − 4 = 2 additional candidate vertices to change color in Q4. The subgraph of G1 consisting of
the five vertices of degree ≤ 3 contains no independent set of size 4, and G2 only has three vertices of degree
≤ 3, so neither 4-coloring graph contains Q4.

On the other hand, we show that both 5-coloring graphs contain Q5. Using the independent partitions of
G into A, B, C, we let the vertices in A take colors 1 and 2, vertices in B take colors 3 and 4, and vertices

in C take color 5. This shows π
(Q5)
G1

(5) > 0 and π
(Q5)
G2

(5) > 0.

Claim E.4. Q6 and Q7 first appear in k-coloring graphs of G1 and G2 at k = 6.

More precisely, π
(Q6)
G1

(5) = π
(Q6)
G2

(5) = 0, and π
(Q7)
G1

(6) > 0, π
(Q7)
G2

(6) > 0.

In order for Q6 to arise in a 5-coloring graph, all but one of the vertices in the base graph must change
color in Q6. With only five colors, no choice of six vertices can include an entire triangle. Hence, the omitted
vertex must participate in every triangle, and neither graph has such a vertex.

Both 6-coloring graphs contain Q7 by assigning colors 1 and 2 to vertices in A, colors 3 and 4 to vertices
in B, and colors 5 and 6 to vertices in C.

Claim E.5. Qd never appears in any k-coloring graph of G1 or G2 for d > 7.

Indeed, Qd would require d color-changing vertices which is not possible in either base graph for d > 7.
As noted in Subsection 5.4, although both the chromatic pairs polynomial and this coarse invariant fail to

distinguish the graphs, the counts of their 2-cubes (4-cycles) differ. Their distinct C4-polynomials are given
below for completeness:

Claim E.6. G1 and G2 have distinct Q2-polynomials. Specifically,

π
(C4)
G1

(k) =
21

4
k9 − 225

2
k8 +

2103

2
k7 − 22321

4
k6 +

36637

2
k5 − 151647

4
k4 +

192091

4
k3 − 67543

2
k2 + 9978k

π
(C4)
G2

(k) =
21

4
k9 − 225

2
k8 +

2103

2
k7 − 22323

4
k6 +

36649

2
k5 − 151757

4
k4 +

192331

4
k3 − 67667

2
k2 + 10002k

Noting that Q2 = C4, these polynomials were constructed by applying Eq. (4.12) to the two graphs.
Interestingly, these polynomials agree on their first nonzero value of k: C4(G1) and C4(G2) each have 288
squares. They first differ at k = 5: C5(G1) has 24540 squares and C5(G2) has 24360.
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