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Abstract. Let d and n be positive integers, and E/F be a separable field extension

of degree m =
(
n+d
n

)
. We show that if |F | > 2, then there exists a point P ∈ Pn(E)

which does not lie on any degree d hypersurface defined over F . In other words, the m
Galois conjugates of P impose independent conditions on the m-dimensional F -vector
space of degree d forms in x0, x1, . . . , xn. As an application, we determine the maximal
dimensions of linear systems L1 and L2 of hypersurfaces in Pn over a finite field F , where
every F -member of L1 is reducible and every F -member of L2 is irreducible.

1. Introduction

Consider the vector space V of all degree d homogeneous forms in n+ 1 variables with
coefficients in a field F . An elementary counting argument shows that

dim(V ) =

(
n+ d

n

)
.

Let us denote this number by m. An F -point of P(V ) can be identified with a projective
hypersurface in Pn defined over F . It is well known that if F is an infinite field, l points
of Pn(F ) in general position impose linearly independent conditions on hypersurfaces of
degree d, provided that l ⩽ m; cf. Lemma 2.1. In particular, for points P1, . . . , Pm of Pn

in general position, no hypersurface of degree d passes through all of them.
Suppose F is an arbitrary field (possibly finite) and E/F is a separable field extension

of degree m. Can we choose P ∈ Pn(E) so that the m Galois conjugates of P impose
independent conditions on degree d hypersurfaces in Pn? In other words, is there always
a P ∈ Pn(E) which does not lie on any degree d hypersurface defined over F? Our main
result gives an affirmative answer to this question under a mild restriction on F .

Theorem 1.1. Let d and n be positive integers, and E/F be a separable field extension
of degree m :=

(
n+d
n

)
. Assume that |F | > 2. Then there exists a point P ∈ Pn(E) such

that P does not lie on any hypersurface of degree d defined over F .

Theorem 1.1 can be restated as follows: there exist a0, a1, ..., an ∈ E such that the
m elements ai00 a

i1
1 · · · ainn of E are linearly independent over F . Here i0, i1, . . . , in range

over non-negative integers such that i0 + i1 + . . . + in = d. Note that in the case, where
n = 1, this assertion specializes to the Primitive Element Theorem for the separable field
extension E/F .
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As an application of Theorem 1.1, we determine the maximal dimensions of linear
systems L1 and L2 of hypersurfaces in Pn over a finite field F , where every F -member of
L1 is reducible and every F -member of L2 is irreducible. Our main result in this direction
is Theorem 1.3 below. Before stating it, we recall some terminology.

Let F be a field. An F -linear system L of degree d hypersurfaces in Pn is a linear
subspace of such hypersurfaces defined over F . By the no-name lemma [Sha94, Appendix
3], L has a basis f0, f1, . . . , fr such that each fi is defined over F . Members of L are then
hypersurfaces in Pn of the form c0f0+ . . .+crfr = 0 where c0, . . . , cr are scalars. Members
of L corresponding to c0, . . . , cr ∈ F are called F -members. The dimension of L is r (the
projective dimension).

Given a property P of algebraic hypersurfaces defined over a finite field Fq, it is natural
to ask the following.

Question 1.2. What is the largest dimension of a linear system L of degree d hypersur-
faces in Pn such that every Fq-member of L satisfies P?

In our previous paper [AGR23], we addressed Question 1.2 when P is the property of
being smooth. In the paper [AGY23], the first two authors and Chi Hoi Yip addressed
Question 1.2 when P is the property of being non-blocking1. Parts (a) and (b) of Theo-
rem 1.3 below answer Question 1.2 when P is the property of being reducible, and parts
(c) and (d) when P is the property of being irreducible.

Theorem 1.3. Let d ⩾ 2 and n ⩾ 1 be integers, m :=
(
n+d
n

)
, r :=

(
n+d−1

n

)
, and Fq be a

finite field of order q > 2. Then

(a) there exists an (r − 1)-dimensional Fq-linear system Lred of degree d hypersurfaces
in Pn such that every Fq-member of Lred is reducible over Fq.

(b) Every Fq-linear system L of dimension ⩾ r has an Fq-member which is irreducible
over Fq.

(c) There exists an (m− 1− r)-dimensional Fq-linear system Lirr of degree d hypersur-
faces in Pn such that every Fq-member of Lirr is irreducible over Fq.

(d) Every Fq-linear system L of dimension ⩾ m−r has an Fq-member which is reducible
over Fq.

When the finite field Fq is replaced by its algebraic closure Fq or any other algebraically
closed field, parts (a) and (b) of Theorem 1.3 remain valid, whereas the dimensions in
parts (c) and (d) get reduced by n; see Proposition 8.1. In particular, part (c) fails when
Fq is replaced by an algebraically closed field.

Computer experiments with specific values of n and d suggest that the assertion of
Theorem 1.1 may be true when |F | = 2, even though our proof does not go through
in this case. If the assumption that |F | > 2 can be dropped in Theorem 1.1, then the
assumption that q > 2 can be dropped in Theorem 1.3.

The remainder of this paper is structured as follows. In Section 2, we use a general
position argument to prove Theorem 1.1 under the assumption that F is infinite. In the
case where F is finite, the concept of general position no longer applies. Here we employ

1Here a hypersurface X in Pn defined over Fq is called blocking if X ∩L has an Fq-point for every line
L ⊂ Pn defined over Fq and non-blocking otherwise.
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a point-counting argument. The strategy behind this counting argument is outlined in
Section 3, and is carried out in Sections 4, 5 and 6. In Section 7 we deduce Theorem 1.3
from Theorem 1.1. In Section 8 we prove a variant of Theorem 1.3 with Fq replaced by
an algebraically closed field.
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We are grateful to anonymous referees whose comments and questions helped us improve
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2. Proof of Theorem 1.1 in the case of infinite fields

The following lemma is well known; we include a short proof for the sake of complete-
ness.

Lemma 2.1. Let F be an infinite field, d and n be positive integers, and m =

(
n+ d

n

)
.

Then there exist P1, . . . , Pm ∈ Pn(F ) such that no degree d hypersurface in Pn passes
through P1, . . . , Pm.

Proof. Let V0 = H0(Pn,O(d)) be the m-dimensional vector space space of all degree d
forms in x0, . . . , xn and Vi ⊂ V be the subspace of forms vanishing at P1, . . . , Pi. Clearly
Vi ⊆ Vi−1 for any choice of P1, . . . , Pi. Requiring forms to vanish on each Pi imposes one
linear condition; hence, dim(Vi) ⩾ m − i, again for any choice of P1, . . . , Pi. We claim
that for a suitable choice of P1, . . . , Pm, we have

(2.1) Vi ⊊ Vi−1

for every i = 1, 2, . . . ,m or equivalently, dim(Vi) = m− i. In particular, for this choice of
P1, . . . , Pm, we will have dim(Vm) = 0, and the lemma will follow.

We will choose P1, . . . , Pi so that (2.1) holds, by induction on i ∈ {1, . . . ,m}. Indeed,
assume P1, . . . , Pi−1 have been chosen. Since dim(Vi−1) ⩾ m − i + 1 > 0, there exists a
non-zero element fi ∈ Vi−1. We will now choose Pi ∈ Pn(F ) so that fi(Pi) ̸= 0. A point
Pi with this property exists since F is an infinite field. For this choice of Pi, fi ∈ Vi−1 \Vi,
and (2.1) follows. This completes the proof of the claim and thus of Lemma 2.1. □

Proposition 2.2. Let d and n be positive integers and E/F be a commutative algebra of
degree m =

(
n+d
n

)
over F . View E as an m-dimensional vector space over F . Then there

is a homogeneous polynomial function H on the affine space An+1
F (E) ≃ A(n+1)m

F defined
over F with the following property: For any field extension F ′/F , E ′ = E ⊗F F ′, a point
a = (a0 : . . . : an) ∈ Pn(E ′) lies on a hypersurface of degree d defined over F ′ if and only
if H(a0, a1, . . . , an) = 0.

https://github.com/sasgarli/hypersurfaces-Galois-orbit
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Proof. Let M1, . . . ,Mm be distinct monomials of degree d in x0, . . . , xn. Clearly a = (a0 :
a1 : . . . : an) ∈ Pn(E) lies on a hypersurface of degree d in Pn defined over F if and only
if M1(a), . . . ,Mm(a) are linearly dependent over F .

Suppose {b1, . . . , bn} is an F -basis of E. Write

(2.2) bibj =
n∑

h=1

chijbh,

where the structure constants chij lie in F . Using the basis b1, . . . , bm we can identify E
with Fm as an F -vector space (not necessarily as an algebra). Set

(2.3) ai = yi,1b1 + . . .+ yi,mbm,

where each yi,j ∈ F . Using formulas (2.2), for every s = 1, . . . ,m, we can express Ms(a)
in the form Ms(a) = ps,1b1 + . . . + ps,mbm, where each ps,t is a homogeneous polynomial
of degree d in yi,j with coefficients in F . By abuse of notation, we will denote these
polynomials by ps,t(yi,j).

Now, view yi,j as independent (n+ 1)m variables, as i ranges from 0 to n and j ranges
from 1 to m. Set

H(yi,j) = det


p1,1(yi,j) p1,2(yi,j) · · · p1,m(yi,j)
p2,1(yi,j) p2,2(yi,j) · · · p2,m(yi,j)

...
...

. . .
...

pm,1(yi,j) pm,2(yi,j) · · · pm,m(yi,j)

 .

For any field extension F ′/F , an F ′-point (α′
i,j) ∈ A(n+1)m

F represents a point a′ = (a′0 :
. . . : a′m) ∈ Pn(E ′), where a′i = αi,1b1 + . . . + αi,mbm ∈ E ′ for each i = 0, 1, . . . , n. By our
construction, H(αi,j) = 0 if and only if M1(a

′), . . . ,Mm(a
′) are linearly dependent over

F ′, and the proposition follows. □

Remark 2.3. In the case, where E/F is a separable field extension of degree m, we can
give an alternative description of H as follows. Denote the normal closure of E over F
by Enorm, the Galois group Gal(Enorm/F ) by G, and the Galois group Gal(Enorm/E) by
G0. Note that [G : G0] = [E : F ] = m.

It is easy to see that there exists a homogeneous polynomial

Pd,n ∈ Z[xij | i = 1, . . . ,m and j = 0, 1, . . . , n]

such that m points (xi0 : . . . : xin) of Pn, where i = 1, . . . ,m, all lie on the same
hypersurface of degree d if and only if Pd,n(xij) = 0. Then given a point a = (a0, . . . , an)
in An+1

E , we set H(a) = Pd,n(σ1(a), . . . , σm(a)), where σ1, . . . , σm are representatives of
the m left cosets of G0 in G.

Conclusion of the proof of Theorem 1.1, assuming F is an infinite field. LetH(yi,j) be the

homogeneous polynomial function on AF (E
n) ≃ A(n+1)m

F defined over F whose existence
is asserted by Proposition 2.2. We claim that H is not identically 0.
Once this claim is established, Theorem 1.1 readily follows from Proposition 2.2; since

F is an infinite field, we can specialize each yi,j to some αi,j ∈ F so that H(αi,j) ̸= 0.
To prove the claim, it suffices to show thatH(αi,j) ̸= 0, for some choice of αi,j in a larger

field F ′ containing F . Let us choose F ′ so that F ′ splits E/F , i.e., E ⊗F F ′ isomorphic
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to E ′ := F ′ × . . .×F ′ (m times). In particular, we can take F ′ to be an algebraic closure
of F .

Using Proposition 2.2, we can rephrase the above observation as follows: to prove the
existence of a point a = (a0 : a1 : . . . : an) ∈ Pn(E) with the property that it does not
lie on any hypersurface of degree d defined over F , it suffices to prove the existence of
a point a′ = (a′0 : . . . : a′n) ∈ Pn(E

′
) which does not lie on any hypersurface of degree d

defined over F ′. To finish the proof, observe that the existence of a′ with this property is
equivalent to Lemma 2.1 with F = F ′. □

3. Proof strategy for Theorem 1.1 in the finite field case

From now on, we will assume that F = Fq and E = Fqm are finite fields. This section
outlines a strategy for a proof of Theorem 1.1 in this case. We begin by proving Theo-
rem 1.1 under the assumption that q > d. This assumption greatly simplifies our counting
argument.

Proposition 3.1. Let q be a prime power, d, n ∈ N and m :=
(
n+d
n

)
. Assume q > d.

Then there exists a point P ∈ Pn(Fqm) such that P does not lie on any hypersurface of
degree d defined over Fq.

Note that here q = 2 is allowed, unlike in Theorem 1.1, but only in the (trivial) case,
where d = 1. For the remainder of the paper,

H ⊂ Pn will denote the union of all hypersurfaces of degree d defined over Fq.

Proof of Proposition 3.1. Observe that deg(H) = d(qm−1 + ... + q + 1). Since q > d, we
have

deg(H) ⩽ (q − 1)(qm−1 + · · ·+ q + 1) = qm − 1.

On the other hand, the degree of a space-filling hypersurface in Pn(Fqm) defined over Fq is
at least qm + 1; see, e.g., [MR98, Théorème 2.1]. We conclude that H is not space-filling
in Pn(Fqm), and the proposition follows. □

When d ⩾ q, we will need a more delicate argument to show that H does not contain
every Fqm-point of Pn. We will estimate the number of Fqm-points on H, with the goal
of showing that this number is strictly smaller than the number of Fqm-points in Pn. To
estimate the number of Fqm-points on H, we will subdivide the hypersurfaces X ⊂ Pn of
degree d defined over Fq into two classes:

a) X is geometrically irreducible (that is, irreducible over Fq), or
b) X is geometrically reducible.

When X ⊂ Pn is geometrically irreducible, we will use the inequality

(3.1) |X(Fqm)| ⩽ (qm(n−1) + · · ·+ qm + 1) + (d− 1)(d− 2)qm(n−3/2) + 5d13/3qm(n−2),

due to Cafure and Matera [CM06, Theorem 5.2]. When X is geometrically reducible, we
will use Serre’s estimate [Ser91, Théorème],

(3.2) |X(Fq)| ⩽ dqm(n−1) + qm(n−2) + · · ·+ qm + 1.

Note that both of these are polynomial bounds in q of degree m(n − 1). However, the
one in Case b) is asymptotically weaker, because the leading term qm(n−1) comes with
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coefficient 1 in (3.1) and with coefficient d in (3.2). To get a strong upper bound on the
number of Fqm-points on H, we need to make sure that Case b) does not occur too often.
In other words, if we let t denote the fraction of hypersurfaces in Pn over Fq of fixed degree
d which are not geometrically irreducible, then our first task is to bound t from above.
Note that t depends on q, d and n.

Poonen showed that t → 0, as d → ∞ and q and n remain fixed; see [Poo04, Proposition
2.7]. This is not enough for our purposes. We will refine the inequalities from the proof
of [Poo04, Proposition 2.7] to establish the following upper bound on t.

Proposition 3.2. Let t denote the fraction of hypersurfaces in Pn of degree d over Fq

that are geometrically reducible. Assume that one of the following conditions holds:

• n = 2, d ⩾ 6 and q ⩾ 3; or
• n ⩾ 3, d ⩾ 3 and q ⩾ 3.

Then (d− 1)tq ⩽ 2.

We will prove Proposition 3.2 in Section 5, then use it to complete the proof of The-
orem 1.1 in Section 6. In Section 4 we gather several elementary inequalities involving
binomial coefficients, which will be used in our proofs.

4. Combinatorial bounds

Throughout this section, we let q, d ⩾ 3 and n ⩾ 2 be integers. For each i between 0
and d, set

(4.1) Ni =

(
n+ d

d

)
−
(
n+ i

n

)
−

(
n+ d− i

n

)
.

Lemma 4.1. Assume 2(i+ 1) ⩽ d. Then

(a) Ni+1 −Ni ⩾ d− 2i− 1; and
(b) Ni+1 −N1 ⩾ d− 3.

Proof. (a) Using Pascal’s identity recursively, we rewrite Ni+1 −Ni as

Ni+1 −Ni =

(
n+ d− i− 1

n− 1

)
−
(
n+ i

n− 1

)
=

d−i∑
j=0

(
n− 2 + j

n− 2

)
−

i+1∑
j=0

(
n− 2 + j

n− 2

)

=
d−i∑

j=i+2

(
n− 2 + j

n− 2

)
.

The above sum has (d−i)−(i+1) = d−2i−1 terms. (Note that d−2i−1 = d−2(i+1)+1
is a positive integer by our assumption on i.) Moreover, each term is ⩾ 1, so the sum is
⩾ d− 2i− 1, as desired.

(b) Write Ni+1 −N1 = (Ni+1 −Ni) + (Ni −Ni−1) + . . . + (N2 −N1). Part (a) tells us
that each term in this sum is non-negative, and the last term, N2 −N1, is ⩾ d− 3. Thus

(4.2) Ni+1 −N1 = (Ni+1 −Ni) + (Ni −Ni−1) + . . .+ (N2 −N1) ⩾ N2 −N1 ⩾ d− 3,
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as desired. □

Lemma 4.2. Let u1 :=

⌊d/2⌋∑
i=1

q−Ni, where Ni is as in (4.1). Then

(a) u1 ⩽
29

27
q2−d if n = 2, q ⩾ 3 and d ⩾ 6;

(b) u1 ⩽
3

2
q−

n(n+d−1)
2

+n+1 for all n ⩾ 3, q ⩾ 3, and d ⩾ 3.

Proof. We first estimate N1 from below. Note that we assume n ⩾ 2 throughout.

N1 =

(
n+ d− 1

n− 1

)
−
(
n+ 1

n

)
=

(
n+ d− 1

d

)
−
(
n+ 1

1

)
=

(n+ d− 1)(n+ d− 2) · · · (n+ 1)n

d!
− (n+ 1)

= (n+ d− 1) ·
(
n+ d− 2

d

)
· · ·

(
n+ 1

3

)
· n
2
− (n+ 1)(4.3)

⩾
(n+ d− 1)n

2
− (n+ 1).

Using this estimate in combination with Lemma 4.1(b), we obtain:

u1 ⩽q−N1 ·
⌊d/2⌋∑
i=1

q−(Ni−N1) ⩽ q−N1

1 +

⌊d/2⌋∑
i=2

q−(d−3)


⩽ q−N1

(
1 +

(
d

2
− 1

)
q3−d

)
⩽ q−

(n+d−1)n
2

+(n+1)

(
1 +

(
d

2
− 1

)
q3−d

)
.

An elementary computation shows that for integers d ⩾ 6 and q ⩾ 3, the expression(
1 +

(
d

2
− 1

)
q3−d

)
is at most

29

27
. (This maximal value is attained when q = 3 and

d = 6.) This completes the proof of part (a).

Similarly, when q ⩾ 3 and d ⩾ 3, the maximal value of the expression

(
1 +

(
d

2
− 1

)
q3−d

)
is

3

2
. (This maximal value is attained when q = 3 and d = 3.) This completes the proof

of part (b). □

Lemma 4.3. For each divisor e > 1 of d, set Me :=

(
d+ n

n

)
− e ·

(
d
e
+ n

n

)
. Then

Me ⩾

(
e

2

)(
n

2

)(
d

e

)2

− e+ 1

for any n ⩾ 2, q ⩾ 3, d ⩾ 3. Here e | d, where e > 1.

Proof. Let S = T ∪F , where T and F are disjoint sets of cardinality d and n, respectively.

The binomial coefficient

(
d+ n

n

)
counts the number of n-subsets of S.
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Partition T as T = T1 ∪ T2 ∪ · · · ∪ Te, where |Ti| = d/e for each i, and set Si = Ti ∪ F .

Note that |Si| = d
e
+ n; hence, the binomial coefficient

(
d
e
+ n

n

)
counts the number of

n-subsets of Si. It is also clear that the number of common n-subsets of Si and Sj for
i ̸= j is exactly 1, namely the n-set F . Thus, the total number of n-subsets arising from
S1, S2, . . . , Se is exactly:

e ·
((

d
e
+ n

n

)
− 1

)
+ 1 = e ·

(
d
e
+ n

n

)
− e+ 1.

Next, we construct additional n-subsets of S that are not contained in any Sk. Fix integers
1 ⩽ i < j ⩽ e. Choose elements a ∈ Ti and b ∈ Tj and consider n-subsets of S of the form

{a, b} ∪ E

for some (n−2)-subset E of F . By our construction, {a, b}∪E is not contained in Sk for
any 1 ⩽ k ⩽ e. The number of subsets of the form {a, b}∪E is equal to (d/e) ·(d/e) ·

(
n

n−2

)
once i and j are fixed, because there are d/e ways to choose a in Ti, d/e ways to choose
b in Tj, and

(
n

n−2

)
=

(
n
2

)
ways to choose an (n − 2)-subset E of F . Varying (i, j) among

the
(
e
2

)
choices, we get a total contribution of(

e

2

)(
n

2

)(
d

e

)2

many distinct n-subsets of S that do not arise as n-subsets of Sk for any 1 ⩽ k ⩽ e.
Consequently, (

d+ n

n

)
−

(
e ·

(
d
e
+ n

n

)
− e+ 1

)
⩾

(
e

2

)(
n

2

)(
d

e

)2

,

leading to the lower bound

Me =

(
d+ n

n

)
− e ·

(
d
e
+ n

n

)
≥

(
e

2

)(
n

2

)(
d

e

)2

− e+ 1,

as desired. □

We will also need the following lower bound for the integers Me defined in Lemma 4.3.

Lemma 4.4. If n ⩾ 2 and d, q ⩾ 3, then for each divisor e > 1 of d, we have:

(4.4) Me ⩾
1

4

(
n

2

)
d2 − d+ 1.

Proof. The inequality (4.4) follows from Lemma 4.3, since(
e

2

)(
n

2

)(
d

e

)2

− e+ 1 ⩾

(
1

2
− 1

2e

)(
n

2

)
d2 − d+ 1 ⩾

1

4

(
n

2

)
d2 − d+ 1

since d ⩾ e ⩾ 2. □

Lemma 4.5. Set u2 :=
∑

e|d,e>1

q−Me. If n ⩾ 2, q ⩾ 3, d ⩾ 3, then

u2 ⩽ (d− 1)q−
1
4(

n
2)d2+d−1.
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Proof. First, we note that the number of divisors e of d with e > 1 is at most d − 1.

Thus the sum on the right hand side of u2 :=
∑

e|d,e>1

q−Me has at most d − 1 terms. By

Lemma 4.4, each term q−Me is at most q−
1
4 (

n
2)d2+d−1. □

Finally, we set

(4.5) v1 :=
3

2
q−

(n+d−1)n
2

+(n+1) + (d− 1)q−
1
4(

n
2)d2+d−1

when n ⩾ 3, q ⩾ 3 and d ⩾ 3, and

(4.6) v2 :=
29

27
q2−d + (d− 1)q−

1
4
d2+d−1

when n = 2, q ⩾ 3 and d ⩾ 6. We will now establish upper bounds on v2 and v1 (in this
order).

Lemma 4.6. For n = 2, q ⩾ 3 and d ⩾ 6, we have (d− 1)qv2 ⩽ 2.

Proof. Using (4.6), we write

(d− 1)v2q = Θ(q, d) := (d− 1)

(
29

27
q3−d + (d− 1)q−

1
4
d2+d

)
.

For d ⩾ 6, both exponents in q3−d and q−
1
4
d2+d are negative. This yields Θ(q, d) ⩽ Θ(3, d)

for q ⩾ 3. We now view Θ(3, d) as a function of d, as d ranges over the interval [6,∞). On
this interval Θ(3, d) achieves its maximum at d = 6. Thus, (d − 1)tq ⩽ Θ(3, 6) ≈ 1.125.
In particular, (d− 1)tq ⩽ 2. □

Lemma 4.7. Assume that n ⩾ 3, q ⩾ 3 and d ⩾ 3. Then (d− 1)v1q ⩽ 2.

Proof. We argue as in the proof of Lemma 4.6. For n ⩾ 3, the definition of v1 from (4.5)
implies

v1 ⩽ 1.5q4−
3
2
(d+2) + (d− 1)q−

3
4
d2+d−1.

where we have substituted n = 3 in (4.5). Consequently,

(d− 1)v1q ⩽ Ψ(q, d) := (d− 1)
(
1.5q5−

3
2
(d+2) + (d− 1)q−

3
4
d2+d

)
.

We have Ψ(q, d) ⩽ Ψ(3, d) for q ⩾ 3. Viewing Ψ(3, d) as a function of d and letting d range
over the interval [3,∞), we see that Ψ(3, d) achieves its maximum on this interval when
d = 3. Thus, (d− 1)tq ⩽ Ψ(3, 3) ≈ 0.257. In particular, (d− 1)v1q ⩽ 2, as desired. □

5. Proof of Proposition 3.2

Following Poonen [Poo04, Proof of Proposition 2.7], we will write

(5.1) t = t1 + t2

and estimate t1 and t2 separately. Here

• t1 is the proportion of hypersurfaces of degree d in Pn defined over Fq, which are
reducible over Fq, and
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• t2 is the proportion of hypersurfaces of degree d in Pn defined over Fq, which are
irreducible over Fq but reducible over Fqe for some integer e > 1, dividing d.

Lemma 5.1. (a) Assume n = 2, q ⩾ 3 and d ⩾ 6. Then t1 ⩽
29

27
q2−d.

(b) Assume n ⩾ 3, q ⩾ 3, and d ⩾ 3. Then t1 ⩽
3

2
q−

n(n+d−1)
2

+n+1.

Proof. It is shown in the proof of [Poo04, Proposition 2.7] that

(5.2) t1 ⩽
⌊d/2⌋∑
i=1

q−Ni ,

where Ni =

(
n+ d

d

)
−

(
n+ i

n

)
−

(
n+ d− i

n

)
, as in (4.1). Parts (a) and (b) now

follow from Lemma 4.2(a) and (b), respectively. (Note that the right hand side of the
inequality (5.2) is denoted by u1 in the statement of Lemma 4.2.) □

Next, we prove a lower bound on the proportion t2 of hypersurfaces which are irreducible
but not geometrically irreducible.

Lemma 5.2. Let n ⩾ 2, q ⩾ 3, d ⩾ 3, we have t2 ⩽ (d− 1)q−
1
4(

n
2)d2+d−1.

Proof. It is shown in the proof of [Poo04, Proposition 2.7] that

(5.3) t2 ⩽
∑

e|d,e>1

q−Me

where Me =

(
d+ n

n

)
− e

(
d
e
+ n

n

)
. The desired conclusion now follows from Lemma 4.5.

(Note that the right hand side of the inequality (5.3) is denoted by u2 in the statement
of Lemma 4.5.) □

We are finally ready to finish the proof of Proposition 3.2.

Proof of Proposition 3.2. Writing t = t1 + t2, as in (5.1) and using Lemma 5.1 and
Lemma 5.2, we obtain

t ⩽
3

2
q−

(n+d−1)n
2

+(n+1) + (d− 1)q−
1
4(

n
2)d2+d−1

when n ⩾ 3, q ⩾ 3 and d ⩾ 3, while

t ⩽
29

27
q2−d + (d− 1)q−

1
4
d2+d−1

when n = 2, q ⩾ 3 and d ⩾ 6. Note that the right hand sides of these inequalities are
precisely the quantities v1 and v2 from (4.5) and (4.6). The desired conclusion,

(d− 1)rq ⩽ 2,

now follows from Lemmas 4.7 and 4.6, respectively. □
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6. Conclusion of the proof of Theorem 1.1

The case when F is infinite is examined in Section 2. Thus we will assume that F = Fq

and E = Fqm are finite fields. The case where q > d is handled in Proposition 3.1. Hence,
from now on, we assume that q ⩽ d.

We follow the strategy outlined in Section 3. Recall the notation we used there:

• H denotes the union of all degree d hypersurfaces in Pn defined over Fq, and

• t denotes the fraction of these hypersurfaces which are not geometrically irre-
ducible.

Our goal is to show that there exists an Fqm-point in Pn which does not lie on H. As the

total number of hypersurfaces of degree d defined over Fq is q
m−1 + ...+ q + 1 =

qm − 1

q − 1
,

there are exactly t

(
qm − 1

q − 1

)
hypersurfaces of degree d which are geometrically reducible.

Using the upper bounds (3.1) and (3.2) on the number of points of a hypersurface of degree
d, we obtain the following inequality:

#H(Fqm) ⩽

(
qm − 1

q − 1

)
· ((1− t)((qm(n−1) + · · ·+ qm + 1) + (d− 1)(d− 2)qm(n−3/2)

+ 5d13/3qm(n−2)) + t(dqm(n−1) + qm(n−2) + · · ·+ qm + 1)),

where m :=

(
n+ d

n

)
. After some cancellations, we can bound #H(Fqm) ·

q − 1

qm − 1
from

above by

(1 + (d− 1)t)qm(n−1) + qm(n−2) + ...+ qm + 1(6.1)

+ (d− 1)(d− 2)qm(n−3/2) + 5d13/3qm(n−2).

By Proposition 3.2, we have

(6.2) (d− 1)t ⩽
2

q
,

for all n ⩾ 3, d ⩾ 3 and q ⩾ 3, or n = 2, q ⩾ 3 and d ⩾ 6. Since we already
know that Theorem 1.1 holds when q > d (see Proposition 3.1), we may assume that the
inequality (6.2) holds unless (n, q, d) equals (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 4, 4), (2, 4, 5) and
(2, 5, 5). These exceptional cases will be handled using a computer at the end of the proof;
we ignore them for now. Next, we bound the lower-order terms in the expression (6.1).

Claim. If n ⩾ 2, q ⩾ 3 and d ⩾ 3, then we have

(d− 1)(d− 2)qm(n−3/2) + (qm(n−2) + · · ·+ qm + 1) + 5d13/3qm(n−2) < qm(n−1)−1.

In order to verify this inequality, we first note that

(6.3) qm(n−2) + · · ·+ qm + 1 =
qm(n−1) − 1

qm − 1
<

qm(n−1)

qm − 1
<

qm(n−1)

1000q
,
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since q ⩾ 3 and m ⩾ (d+ 2)(d+ 1)/2 ⩾ 10 because d ⩾ 3. Employing (6.3), we see that
the left-hand side of the inequality in the Claim is less than

(6.4) (d− 1)(d− 2)qm(n−3/2) +
qm(n−1)−1

1000
+ 5d13/3qm(n−2).

Dividing the expression from (6.4) by qm(n−1)−1, we can easily check that

(d− 1)(d− 2)q1−m/2 +
1

1000
+ 5d13/3q1−m < 1,

keeping in mind that q ⩾ 3 and m ⩾ (d + 2)(d + 1)/2, while d ⩾ 3. This completes the
proof of the Claim.

Combining the Claim with the inequality (6.2), the quantity in (6.1) is less than(
1 +

2

q

)
qm(n−1) + qm(n−1)−1 < qm(n−1) + 3qm(n−1)−1.

Thus, we obtain the following upper bound on #H(Fqm):

#H(Fqm) <

(
qm − 1

q − 1

)(
qm(n−1) + 3qm(n−1)−1

)
.

To show that H does not pass through every Fqm-point in Pn, it is enough to show that(
qm − 1

q − 1

)(
qm(n−1) + 3qm(n−1)−1

)
⩽ qmn,

because #Pn(Fqm) = qmn+ · · ·+qm+1. By replacing qm−1 with qm on the left-hand-side,
we claim that the stronger inequality holds:

qm(qm(n−1) + 3qm(n−1)−1) ⩽ qmn+1 − qmn.

After cancelling out qmn−1 from both sides, it remains the show,

q + 3 ⩽ q2 − q.

This last inequality q2 − 2q − 3 ⩾ 0 is valid for all q ⩾ 3. Therefore, we have established
Theorem 1.1 with F = Fq and E = Fqm , for all triples (n, q, d) with n ⩾ 2, q ⩾ 3, d ⩾ 1,
and (n, q, d) ̸= (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 4, 4), (2, 4, 5), (2, 5, 5).
We now complete the proof of Theorem 1.1 by a computer-assisted computation in

these six exceptional cases. For each of the exceptional triples (n, q, d), it suffices to find
a single point P ∈ P2(Fqm) such that P does not lie on any degree d hypersurface defined

over Fq. Here m =

(
n+ d

n

)
.

When (n, q, d) = (2, 3, 3) we write F310 as F3[a]/(a
10 + a4 + a + 1), and check that

P = (a : a8 : 1) does not lie on any cubic plane curve defined over F3.
When (n, q, d) = (2, 3, 4), we write F315 as F3[a]/(a

15 + a2 − 1) and check that P = (a :
a9 : 1) does not lie on any quartic plane curve defined over F3.
When (n, q, d) = (2, 3, 5), we write F321 as F3[a]/(a

21+ a16− 1) and check that P = (a :
a18 : 1) does not lie on any quintic plane curve defined over F3.
When (n, q, d) = (2, 4, 4), we write F415 as F4[a]/(a

15 + a+ 1) and check that P = (a3 :
a8 : 1) does not lie on any quartic plane curve defined over F4.
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When (n, q, d) = (2, 4, 5), we write F421 as F4[a]/(a
21+ a2+1) and check that P = (a6 :

a11 : 1) does not lie on any quintic plane curve defined over F4.
When (n, q, d) = (2, 5, 5), we write F521 as F5[a]/(a

21 + a18 + a14 + 1) and check that
P = (a : a9 : 1) does not lie on any quintic plane curve defined over F5. □
An interested reader can find the computer code for these computations at https:

//github.com/sasgarli/hypersurfaces-Galois-orbit .

7. Proof of Theorem 1.3

We will first construct the linear systems Lred and Lirr in parts (a) and (c), then use them
to prove parts (b) and (d). We will use the notation from the statement of Theorem 1.3
throughout this section: d and n are positive integers,

m :=

(
n+ d

n

)
and r :=

(
n+ d− 1

n

)
.

(a) We take Lred to be the linear system of hypersurfaces of degree d in Pn containing a
fixed hyperplane H. Let us say, H is the hyperplane given by x0 = 0. Then Lred consists
of polynomials of the form x0F (x0, x1, . . . , xn), where F (x0, x1, . . . , xn) is a homogeneous
polynomial of degree d − 1 in x0, x1, . . . , xn. (Note that we are using the assumption
that d ⩾ 2 to conclude that any polynomial of this form is reducible.) The dimension
of Lred is thus equal to the dimension of the linear system of homogeneous polynomials
F (x0, x1, . . . , xn) of degree d− 1. In other words, dim(Lred) = r − 1.

(c) We apply Theorem 1.1 for degree d−1 hypersurfaces in Pn. Note that as we replace
d by d− 1 in Theorem 1.1, m gets replaced by r. We obtain a point P ∈ Pn(Fqr) that is
not contained in any hypersurface of degree d− 1 defined over Fq. Clearly, P is also not
contained in any hypersurface of degree at most d− 1. Let S = {P1, · · · , Pr} be the orbit
of P under Gal(Fqr/Fq), where P1 = P . Consider the vector space VS of degree d forms
defined over Fq, which vanish at the point P (and therefore at each point of S). Since
vanishing at each additional point imposes at most one new linear condition, we obtain
dimVS ⩾ m− r. Pick linearly independent forms f0, f1, ..., fm−1−r ∈ VS and consider the
(m− 1− r)-dimensional linear system Lirr = ⟨f0, f1, ..., fm−1−r⟩ of degree d hypersurfaces.
It remains to show that each Fq-member of Lirr is irreducible over Fq. Indeed, assume

the contrary: we factor f as f = g · h, where g, h ∈ Fq[x0, . . . , xn] are homogeneous
polynomials of degree at most d − 1. Since f(P ) = 0, we have g(P ) = 0 or h(P ) = 0.
This leads to a contradiction, because P does not lie on a hypersurface in Pn of degree at
most d− 1 defined over Fq. Thus, every Fq-member of Lirr is irreducible over Fq.

(b) Suppose L is a linear system of hypersurfaces of degree d in Pn of dimension r.
Then L and Lirr intersect non-trivially in Pm−1. An Fq-member of L corresponding to the
Fq-point of intersection is irreducible over Fq.

(d) Similarly, if L is a linear system of hypersurfaces of degree d in Pn of dimension ⩾
m−r, then L and Lred intersect non-trivially in Pm−1. An Fq-member of L corresponding
to an Fq-point of intersection is reducible over Fq. □

https://github.com/sasgarli/hypersurfaces-Galois-orbit
https://github.com/sasgarli/hypersurfaces-Galois-orbit
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8. A variant of Theorem 1.3 over an algebraically closed field

In this section we prove a variant of Theorem 1.3, where the finite field Fq is replaced
by an algebraically closed field F . As we mentioned in the Introduction, parts (a) and
(b) of Theorem 1.3 remain valid in this setting, whereas the dimensions in parts (c) and
(d) get reduced by n.

Proposition 8.1. Let n, d ⩾ 2 be integers, m =

(
n+ d

n

)
, r =

(
n+ d− 1

n

)
, and F be

an algebraically closed field.

(a) There exists an (r−1)-dimensional F -linear system Mred of degree d hypersurfaces
in Pn such that every F -member of Lred is reducible over F .

(b) Every F -linear system L of dimension ⩾ r has an F -member which is irreducible
over F .

(c) There exists an (m− r−n− 1)-dimensional F -linear system Lirr of degree d hyper-
surfaces in Pn such that every F -member of Lirr is irreducible.

(d) Let L be an F -linear system of degree d hypersurfaces in Pn. If dim(L) ⩾ m−r−n,
then L has a reducible F -member.

Proof. (a) The construction of Lred in the proof of Theorem 1.3(a) goes through over an
arbitrary field.

(b) Let L = ⟨f0, . . . , ft⟩ be an F -linear system of degree d hypersurfaces in Pn, and

fλ(x0, . . . , xn) = λ0f0 + . . .+ λtft

be the member of this system corresponding to λ = (λ0 : . . . : λt) ∈ Pt. Assume that
every F -element of L is reducible, that is, fλ is a reducible polynomial in F [x0, . . . , xn]
for every F -point λ = (λ0 : . . . : λt) ∈ Pt(F ). Our goal is to show that dim(L) ⩽ r − 1.
Let us consider two cases.

Case 1: The generic member of L is irreducible. Here by the generic member we mean
the member coresponding to the generic point of Pt. Equivalently, fλ is irreducible as a
polynomial in x0, . . . , xn over the field F (λ0, . . . , λt).
A description of the polynomials fλ that may occur in this case can be found in

Schinzel’s book [Sch00, Chapter 3, Theorem 37]. It follows from this description that
if char(F ) does not divide d, then the maximal dimension of L is d, and is achieved by
the linear system ⟨xd

1, x
d−1
1 x2, x

d−2
1 x2

2, . . . , x
d
2⟩. On the other hand, if char(F ) divides d,

then the maximal dimension of L is either d (attained in the same way as above) or(
n+ d

p

n

)
− 1. The latter is achieved by the linear system spanned by all monomials of

the form xp i0
0 xp i1

1 · · ·xp in
n with i0 + . . .+ in =

d

p
.

It remains to show that (i) d ⩽ r− 1 and (ii) if p ⩾ 2 divides d, then

(
n+ d

p

n

)
⩽ r. By

Pascal’s identity, for a fixed d,

(
n+ d− 1

n

)
increases with n. In particular, since n ⩾ 2,
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we have
(d+ 1)d

2
=

(
2 + d− 1

2

)
⩽

(
n+ d− 1

n

)
= r.

Since d ⩾ 2, this yields d = (d+1)− 1 ⩽
(d+ 1)d

2
− 1 ⩽ r− 1, proving (i). To prove (ii),

note that d/p ⩽ d− 1. Thus (
n+ d

p

n

)
⩽

(
n+ d− 1

n

)
= r,

as desired.

Case 2: The generic member of L is reducible. Equivalently, fλ is reducible as a
polynomial in x0, . . . , xn over F (λ0, . . . , λt). Using Gauss’ Lemma, and the fact that fλ is
homogeneous of degree 1 in λ0, . . . , λt, we see that

fλ(x0, . . . , xn) = g(x0, ..., xn) · hλ(x0, ..., xn),

where g ∈ F [x0, . . . , xn] is a homogeneous polynomial of degree d1, hλ = λ0h0+ . . .+λtht

for some homogeneous polynomials h0, . . . , ht ∈ F [x0, . . . , xn] of degree d2 ⩾ 1 and d1 +
d2 = d. Here h0, . . . , ht are linearly independent over F . Thus

dim(L) = t ⩽

(
n+ d2

n

)
− 1 ⩽

(
n+ d− 1

n

)
− 1 = r − 1.

This completes the proof of part (b).

To prove (c) and (d), let R be the locus of reducible hypersurfaces inside the parameter
space Pm−1 of all degree d hypersurfaces in Pn. Denote the dimension of R by s. Then
every linear subspace of (projective) dimension ⩾ m− 1− s intersects R in Pm−1; on the
other hand, a linear subspace of (projective) dimension < m − 1 − s in general position
will not meet R in Pm−1. Since F is algebraically closed, a nonempty intersection always
has an F -point. In other words, the following are equivalent:

• every linear system of (projective) dimension t has a reducible F -member, and

• t ⩾ m− 1− s.

It remains to show that

(8.1) s = r + n− 1;

this immediately implies both (c) and (d). To prove (8.1), note that R =

⌊d/2⌋⋃
i=1

Ri, where

Ri consists of reducible hypersurfaces F (x0, . . . , xn) = 0, where F = F1 ·F2 = 0 and F1, F2

are homogeneous polynomials in x0, x1, . . . , xn of degree i and d− i, respectively. In other
words, Ri is the image of the map Pm1−1 × Pm2−1 → Pm−1 given by (F1, F2) → F1 · F2

where m1 =

(
n+ i

n

)
, m2 =

(
n+ d− i

n

)
. It is easy to see that

dim(Ri) =

(
n+ i

n

)
+

(
n+ d− i

n

)
− 2.
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The difference dim(Ri)−dim(Ri+1) is exactly the quantity Ni+1−Ni we considered at the
beginning of Section 4; see (4.1). By Lemma 4.1(a), Ni+1−Ni ⩾ 0 whenever 2(i+1) ⩽ d.
We conclude that dim(Ri) assumes its maximal value when i = 1. In other words,

s = dim(R) = dim(R1) =

(
n+ 1

n

)
+

(
n+ d− 1

n

)
−2 =

(
n+ d− 1

n

)
+n−1 = r+n−1,

as claimed. □

Remark 8.2. Note that the assumption that d ⩾ 2 in Theorem 1.3 and Proposition 8.1
is harmless, since every hypersurface of degree 1 in Pn is irreducible. Moreover, over an
algebraically closed field, every hypersurface of degree d ⩾ 2 in P1 is reducible. Thus the
assumption that n ⩾ 2 in the statement of Proposition 8.1 is harmless as well.
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