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Abstract. We examine the maximum dimension of a linear system of plane cubic curves whose Fq-members

are all geometrically irreducible. Computational evidence suggests that such a system has a maximum

(projective) dimension of 3. As a step towards the conjecture, we prove that there exists a 3-dimensional
linear system L with at most one geometrically reducible Fq-member.

1. Introduction

Let P describe a property of a degree d algebraic hypersurface in Pn. In algebraic geometry and adja-
cent fields, we are often interested in measuring the likelihood of the property P for a “randomly chosen”
hypersurface. When working over an infinite field, we can use Zariski dense open sets to show that property
P holds generically. However, the situation over finite fields is more subtle since open sets in the relevant
parameter space may not have any Fq-points (despite being Zariski dense over Fq).

There are alternative methods to quantify how widespread a property P holds for hypersurfaces over finite
fields. One method is to count the proportion of degree d hypersurfaces over Fq satisfying P, and consider
the asymptotic proportion (either as d → ∞ or q → ∞). As another natural metric, we can ask for the
maximum size of a linear family P can carry. More precisely, we can pose the following question for each
finite field Fq, and positive integers d and n.

Question 1. What is the maximum value of t ∈ N for which there exist {Fi = 0} for i = 0, 1, ..., t such that
X[a0:···:at] = {a0F0 + ·+ atFt = 0} satisfies the property P for all choices [a0 : a1 : . . . : at] ∈ Pt(Fq)?

The question can be rephrased in the language of linear systems: what is the largest (projective) dimension
of a linear system L ∼= Pt of degree d hypersurfaces in Pn such that each Fq-member of L satisfies P? An
answer to Question 1 measures the extent to which the property P linearly propagates in the parameter
space of all degree d hypersurfaces in Pn. Larger values of t indicate higher levels of prevalence for P.

Question 1 has been addressed in recent works for several specific choices of P. For instance, P may cor-
respond to the property of being smooth [AGR23], irreducible over Fq [AGR24], reducible over Fq [AGR24],
or nonblocking with respect to Fq-lines [AGY23]. To illustrate some of these results, we specialize to the
setting of cubic plane curves, that is, d = 3 and n = 2. Below are two concrete examples from the recent
literature where Question 1 has a known answer.

Theorem 2 ([AGR23]). Let Fq be a finite field with characteristic p ̸= 3. Then there is a 2-dimensional
linear system Lsmo = ⟨F0, F1, F2⟩ ∼= P2 of cubic plane curves such that every Fq-member of Lsmo is smooth.
Moreover, no such 3-dimensional system exists.

Theorem 3 ([AGR24]). Let Fq be a finite field. Then there is a 3-dimensional linear system Lirr =
⟨F0, F1, F2, F3⟩ ∼= P3 of cubic plane curves such that every Fq-member of Lirr is irreducible over Fq. Moreover,
no such 4-dimensional system exists.

Let us compare the two properties in Theorems 2 and 3. The smoothness condition refers to geometric
smoothness, while irreducibility over Fq does not necessarily imply geometric irreducibility (i.e., irreducibility

over Fq). This distinction naturally raises the goal of establishing a version of Theorem 3 where the conclusion

is strengthened from irreducibility over Fq to irreducibility over Fq. The purpose of the present paper is to
address this objective.
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To summarize, we address Question 1 when P stands for “is geometrically irreducible” (that is, irreducible
over Fq) for cubic plane curves: d = 3 and n = 2. In this special case, every linear system L of (projective)
dimension 4 has an Fq-member that is a reducible plane cubic over Fq by Theorem 3; see [AGR24, Theorem
1.3(d)] for further details. Hence, the answer to Question 1 in this setting is at most 3. We predict that the
answer is exactly 3.

Conjecture 4. There exists a linear system L = ⟨F0, F1, F2, F3⟩ ∼= P3 of cubic plane curves where each
Fq-member of L is geometrically irreducible.

As mentioned earlier, Conjecture 4 strengthens Theorem 3. As partial progress, we establish the following.

Theorem 5. There exists a linear system L = ⟨F0, F1, F2, F3⟩ of cubic plane curves where each Fq-member
of L is irreducible over Fq and there is at most one geometrically reducible Fq-member of L.

To further motivate the problem and explain its arithmetic origin, we explain why the analogue of Con-
jecture 4 fails when the base field Fq is replaced by an algebraically closed field K. Since a cubic form
in three variables is described by 10 coefficients, the parameter space of cubic plane curves is P9(K). Let
L = ⟨F0, F1, F2, F3⟩ be a linear system where each Fi ∈ K[x, y, z] is a homogeneous polynomial of degree 3.

The set of reducible cubic curves forms a 7-dimensional subvariety Y of P9(K). This can be seen as
follows: any reducible cubic polynomial can be factored as

(1.1) (a0x+ a1y + a2z)(b0x
2 + b1y

2 + b2z
2 + b3xy + b4yz + b5zx).

The variety Y is the image of the natural map P2×P5 → P9 induced by the multiplication from (1.1). Since
dim(Y ) + dim(L) = 7 + 3 = 10, the intersection C := Y ∩ L has dimension at least 1 in P9. Because K is
algebraically closed, we have C(K) ̸= ∅, meaning that L has at least one reducible K-member. In particular,
Conjecture 4 does not hold over K.

For example, if we take K = Fq, then any 3-dimensional linear system L = ⟨F0, F1, F2, F3⟩ ∼= P3 contains

a reducible Fq-member. The subtlety of Conjecture 4 lies in the fact that, when L is defined over Fq, the
variety C, which is generically a curve, may lack Fq-points. In fact, Conjecture 4 is equivalent to the following
statement: there exists an Fq-linear subspace L ∼= P3 in the parameter space P9 such that Y ∩ L has no
Fq-points, where Y is the locus of reducible cubics. Viewed through this lens, the difficulty of Conjecture 4
is tied to finding a specific “pointless” curve inside a large-dimensional projective space. Furthermore, the
above analysis also shows that the proportion of geometricaly irreducible cubic plane curves defined over
Fq tends to 1 as q → ∞ (since the number of geometrically reducible plane cubics defined over Fq is O(q7),
while we have O(q9) plane cubics defined over Fq).

While we focus on the case of cubic plane curves in the present paper, the same question applies to
hypersurfaces of degree d in Pn for any d and n.

Problem 6. Determine the maximum (projective) dimension of a linear system L of degree d hypersurfaces
in Pn such that each Fq-member is geometrically irreducible.

By [AGR24, Theorem 1.3(d)], every linear system of dimension
(
n+d−1
n−1

)
has an Fq-member that is reducible

over Fq. Hence, the answer to Problem 6 is at most
(
n+d−1
n−1

)
− 1. On the other hand, by [AGR23, Theorem

2], when p = char(Fq) ∤ gcd(d, n+ 1), there exists an n-dimensional linear system whose Fq-members are all
smooth, hence geometrically irreducible. Hence, the answer to Problem 6 is at least n. We expect the true
answer to Problem 6 to be closer to the upper bound

(
n+d−1
n−1

)
− 1. After all, we expect most geometrically

reducible hypersurfaces defined over Fq to be reducible over Fq.
We also have a related open problem with the condition “geometrically irreducible” relaxed to “not

containing a linear component over Fq.”

Problem 7. Determine the maximum (projective) dimension of a linear system L of degree d hypersurfaces
in Pn such that each Fq-member has no linear factor.

By definition, the answer to Problem 6 is less than or equal to the answer to Problem 7. It is reasonable
to expect that the two answers agree, at least for all sufficiently large q (as a function of n and d). The
heuristic is that most reducible hypersurfaces (over Fq) have a linear factor. Note that Conjecture 4 concerns
the case n = 2 and d = 3 for which Problems 6 and 7 coincide.
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While these open problems are new, we note that the study of reducible members in a linear system of
algebraic hypersurfaces is rich in literature. One case that has been investigated thoroughly is the number of
reducible (or totally reducible) hypersurfaces in a pencil of hypersurfaces [Lor93,Vis93,PY08]. The setting
between the cited work and the present work differs in a few places. We only consider Fq-members while the

previous work is about controlling reducibility over Fq-members. On the other hand, we do not restrict our
attention to pencils and allow large-dimensional linear systems.

Structure of the paper. We provide two proofs for Theorem 5. In Section 2, we provide a non-
constructive proof in the spirit of the work done in [AGR24], while in Section 3 we provide an explicit
construction of a 3-dimensional linear system as desired for the conclusion of Theorem 5. We believe both
proofs (which are quite different in their approach) could be useful for pursuing Conjecture 4. Appendix A
provides numerical evidence (computed using SageMath) that supports Conjecture 4 for all q ≤ 11.

Acknowledgments. We thank Dino Lorenzini and the referee for valuable comments on the paper.

2. A non-constructive proof

In this section, we discuss the construction in our previous paper [AGR24] joint with Reichstein in the
special case of plane cubic curves; this allows us to provide a first (non-constructive) proof of our Theorem 5.

We begin by recalling the motivation behind the main result of [AGR24] specialized to our context.
Recall that the parameter space of plane conics corresponds to the projective space P5, as each conic can be
represented by the equation

b0x
2 + b1y

2 + b2z
2 + b3xy + b4yz + b5zx = 0

for some coefficients b0, . . . , b5. Imposing the additional condition that the conic passes through a specific
point Q1 = [x1 : y1 : z1] introduces one linear constraint on the coefficients b0, . . . , b5. As a result, the space
of conics passing through Q1 forms a projective subspace of dimension 4, namely P4. Each time we require
the conic to pass through a new point Q, we add another linear constraint on the coefficients. However, it
is not guaranteed that these constraints will be linearly independent. We say that the points Q1, . . . , Qs

(with s < 6) are in general position with respect to conics if the Fq-vector space dimension of the space of
conics passing through Q1, . . . , Qs is exactly 6− s. Over the algebraic closure, the set of such s-tuples forms
a Zariski-dense open subset. In particular, when s = 6, if the six points are chosen from P2(Fq) in general
position, then no conic passes through all of them. The main contribution of [AGR24] is to show that points
in general position can be modeled as Galois orbits in a suitable sense. In the specific case of conics, it is
possible to construct a set of six points in general position as the Galois orbit of a single point of degree 6,
that is, a point with coordinates in Fq6 .

More precisely, [AGR24, Theorem 1.1] asserts the existence of a point P ∈ P2(Fq6) such that P is not
contained in any degree 2 curve C over Fq [AGR24, Theorem 1.1]. Equivalently, no conic defined over Fq

contains the Galois orbit S = {P, P σ, . . . , P σ5}. Here, Pσ denotes the image of the point P under the

Frobenius map [x : y : z] 7→ [xq : yq : zq]. For simplicity, let us write Pi = Pσi

so that S = {P0, ..., P5}.
Next, we follow [AGR24, Theorem 1.3(c)] to construct a linear system of cubics L ∼= P3 where each Fq-

member of L is irreducible over Fq. We will show that the same linear system L has at most one geometrically
reducible Fq-members, establishing a proof of Theorem 5. To construct L, recall that the dimension of the
Fq-vector space of cubic forms in 3 variables is 10. Imposing the condition that a cubic passes through a
specific point imposes at most 1 linear condition on the coefficients. Since S = {P0, ..., P5} has 6 points and
S is defined over Fq (despite the fact that each Pi is not individually defined over Fq), the Fq-vector subspace
of all cubics passing through S has dimension at least 10 − 6 = 4. Let F0, F1, F2, F3 denote four linearly
independent cubic forms in Fq[x, y, z] each passing through all points of S. Let L = ⟨F0, F1, F2, F3⟩ ∼= P3

denote the 3-dimensional linear system of cubic curves passing through S.
Let C be a reducible cubic curve (over Fq) which is an Fq-member of L. There are two ways in which a

reducible cubic C = L ∪Q can pass through the set S:

(a) Let Lij be the line joining Pi and Pj and Q can vary in P1-worth of conics passing through the
remaining 4 points.

(b) Let Qi be the conic passing through 5 points in the set S \ {Pi}. Then L can vary in P1-worth of
lines passing through the remaining point Pi.
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However, if C is defined over Fq, it must be the case that C is a union of three Fq3-lines, Galois conjugated
by Gal(Fq3/Fq); note that C is assumed to be geometrically reducible, while on the other hand, by [AGR24,
Theorem 1.3(c)], C is irreducible over Fq since the entire Fq-linear space L consists of Fq-irreducible plane

cubics. It is straightforward to see that exactly one one of these curves, namely P0P3 ∪ P1P4 ∪ P2P5, is
defined over Fq. Hence, all Fq-members of L are irreducible over Fq and exactly one Fq-member of L fails
to be geometrically irreducible. This completes the proof of Theorem 5.

3. An explicit construction

The first proof of Theorem 5 relies on the existence of a point P ∈ P2(Fq6) which does not lie on any
conic defined over Fq. The proof of this assertion in [AGR24, Theorem 1.1] was obtained by an intricate
counting argument and hence is nonconstructive by its nature. In this section, we offer an alternative proof
of Theorem 5 which has the advantage of providing an explicit construction. This latter method offers a
new perspective on the problem and suggests future avenues for addressing higher-degree systems (as in
Problems 6 and 7) through explicit methods.

We start with a lemma on reducible cubic curves containing only the monomials x2y, y2z, z2x, xyz.

Lemma 8. Suppose ax2y + by2z + cz2x+ dxyz = 0 is a geometrically reducible cubic curve. Then abc = 0.

Proof. The reducible cubic has a linear factor L. Without loss of generality, L = x+βy+γz for some scalars
β, γ. If a = 0, then we are done. Hence, we may assume a = 1 after scaling. We have:

(3.1) x2y + by2z + cz2x+ dxyz = LQ

for some quadratic factor Q. We match the coefficients on both sides of (3.1) to prove that b = 0. We
proceed in five steps:

(1) The cubic has no x3 term, so Q has no x2 term. The term x2y can only be constructed from
multiplying x from L with a term in xy from Q; thus, the coefficient of xy in Q must be 1.

(2) If β ̸= 0, then Q has no y2 term; in that case, LQ has the term (βy) · xy which leads to the term
xy2 in the cubic that cannot be canceled, a contradiction. Therefore, β = 0.

(3) The cubic has no xy2 term and β = 0, so Q has no y2 term. The cubic has no x2z term and Q has
no x2 term, so Q has no xz term.

(4) So, Q = xy + δ1yz + δ2z
2 and L = x+ γz. From (3.1), we see γδ1 = 0. If γ = 0, then x divides the

cubic, implying that b = 0, as desired.
(5) If γ ̸= 0, then we have δ1 = 0. In this case, (3.1) reads:

(x+ γz)(xy + δ2z
2) = x2y + by2z + cz2x+ dxyz.

We obtain b = 0, as desired.

Thus, any geometrically reducible cubic of the form ax2y + by2z + cz2x+ dxyz = 0 satisfies abc = 0. □

We will now present the second proof of our main theorem.

Proof of Theorem 5. Consider the linear system L1 = ⟨x2y, y2z, z2x, xyz⟩. By the Normal Basis Theorem,

there exists an element α ∈ Fq3 such that α, αq, αq2 forms a basis of Fq3 as an Fq-vector space. We construct
a new linear system from L1 where x, y, and z are replaced by appropriate linear forms. Let

F = (αx+ αqy + αq2z)2(αqx+ αq2y + αz),

G = (αqx+ αq2y + αz)2(αq2x+ αy + αqz),

H = (αq2x+ αy + αqz)2(αx+ αqy + αq2z),

T = (αx+ αqy + αq2z)(αqx+ αq2y + αz)(αq2x+ αy + αqz).

Consider the linear system L2 = ⟨F,G,H, T ⟩. The Frobenius map t 7→ tq sends F 7→ G 7→ H 7→ F
and fixes T . Thus, the linear system L2 is defined over Fq, meaning that we can find new generators
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R0, R1, R2, R3 ∈ Fq[x, y, z] with deg(Ri) = 3 such that L2 = ⟨R0, R1, R2, R3⟩. We claim that each Fq-
member of L2 is geometrically irreducible except the member T ∈ L2 which is a union of three lines
conjugated by Gal(Fq3/Fq). Indeed, we have a new coordinate system induced by the linear transformation:

x′ = αx+ αqy + αq2z

y′ = αqx+ αq2y + αz

z′ = αq2x+ αy + αqz

Applying Lemma 8 in the new coordinate system, we see that any geometrically reducible Fq-member of L2

given by

aF + bG+ cH + dT = 0,

satisfies abc = 0. After applying the Frobenius map t 7→ tq twice and using the fact that T is defined over
Fq, we get two additional equations:

aG+ bH + cF + dT = 0,

aH + bF + cG+ dT = 0

Since abc = 0, at least one of a, b, c is zero. The three equations above and the linear independence of
F,G,H, T imply a = b = c = 0. Hence, the only geometrically reducible Fq-member of L2 is {T = 0}. Note
that {T = 0} is irreducible over Fq. Thus, the linear system L2 satisfies the desired properties. □

Appendix A: computational evidence for the conjecture

We verified Conjecture 4 for all q ≤ 11 using SageMath [Sage21]. It suffices to randomly generate a cubic
linear system L = ⟨F0, F1, F2, F3⟩ until all Fq-members of L are geometrically irreducible. The following
algorithm formalizes this procedure.

Algorithm 1: Verifying Conjecture 4 for q ≤ 11

1 Input: Prime power q, the base field Fq.

2 Output: A cubic linear system L = ⟨F0, F1, F2, F3⟩ such that all Fq-members are geometrically
irreducible.

3 Repeat until all Fq-members of L are geometrically irreducible:

4 Randomly generate coefficients c0, . . . , c9 ∈ Fq to define a cubic form

F = c0x
3 + c1y

3 + c2z
3 + c3x

2y + c4xy
2 + c5y

2z + c6yz
2 + c7z

2x+ c8zx
2 + c9xyz.

Construct four independent forms F0, F1, F2, F3 as above.
5 Define L = ⟨F0, F1, F2, F3⟩.
6 For each Fq-member of L parametrized by a⃗ = (a0, a1, a2, a3) with ai ∈ Fq, set:

Fa⃗ = a0F0 + a1F1 + a2F2 + a3F3 where a0, a1, a2, a3 ∈ Fq :

If {Fa⃗ = 0} is geometrically reducible, discard L and return to Step 4.
7 Return L.

The following table lists the successful linear systems for q ∈ {2, 3, 4, 5, 7, 8, 9, 11}.

q = 2

F0 = x2y + x2z + y2z F2 = xy2 + y3 + xyz + xz2

F1 = x3 + yz2 F3 = x2y + xy2 + xz2 + z3

q = 3

F0 = y3 + x2z + y2z + yz2 + z3 F2 = x3 − x2y − xy2 + xz2 − yz2

F1 = x3 − xy2 + y2z − xz2 + yz2 − z3 F3 = −x3 − x2y + y3 + x2z − xz2
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q = 4

F0 = x2y + y3 + x2z + xyz + yz2 F2 = x3 + xy2 + y2z + xz2 + yz2

F1 = x2y + xyz + y2z + z3 F3 = x3 + yz2

q = 5

F0 = 2x2y + xy2 + y3 + xz2 + yz2 F2 = 2x3 + x2y + xy2 + y3 − 2x2z − xyz − y2z + xz2 + 2yz2

F1 = x2y + 2xy2 − 2y3 − 2x2z + 2y2z − 2xz2 − yz2 F3 = −2x2y − 2xy2 − x2z − 2xyz + y2z − xz2 + 2z3

q = 7

F0 = −x3 − 3xy2 + y3 + 3y2z + xz2 − 2yz2 + 3z3 F2 = x3 − 2x2y + y3 − x2z − 3xyz − 2y2z + xz2 − 3z3

F1 = 3x3 − 3x2y − 3xy2 − 3y3 + xyz − 2y2z − 2z3 F3 = −3x3 − 2x2y + 2xy2 + 2y3 − 2x2z − 2y2z − xz2 + 3z3

q = 8

F0 = x2y + y2z + xz2 + yz2 F2 = x3 + x2y + y2z + xz2 + z3

F1 = x2y + xy2 + xz2 + z3 F3 = x2y + y3 + x2z + xyz + xz2 + yz2 + z3

q = 9

F0 = −x3 + x2y + y3 + x2z + xyz − y2z + xz2 − yz2 F2 = x2y + xy2 + x2z + xz2 + yz2 + z3

F1 = xy2 − x2z − xyz − y2z − z3 F3 = xy2 − y3 − x2z + y2z − yz2

q = 11

F0 = −3x3 − 5xy2 + 2x2z + 4y2z − 2xz2 − 4z3 F2 = 5x3 + 3x2y + y3 − 2x2z − 5xyz − y2z − 5xz2 − 3yz2 − 4z3

F1 = x3 + xy2 + 2y3 + 3x2z + 4xyz − y2z − 3xz2 + 2yz2 − z3 F3 = 2x3 − 3x2y + 4xy2 + 2y3 − 5x2z + y2z − 2xz2 − yz2 + z3

Interestingly, the linear system we found for F8 has coefficients in F2 = {0, 1}, which means that the table entry
corresponding to q = 8 also supports Conjecture 4 for q = 2, 4, 8. An intriguing question arises: for how large values
of k can we find a linear system over Fq whose Fqk -members (not just Fq-members) are geometrically irreducible?
Such a result would provide an even stronger conclusion than Conjecture 4.
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