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Abstract. Two possibly unfair n-sided dice, both labelled 1, 2, . . . , n, are rolled, and the sum
is recorded. How should the dice’s sides be weighted so that the resulting sum is closest to the
uniform distribution on 2, 3, . . . , 2n? We answer this question by explicitly identifying the optimal
pair of dice. This resolves a question raised by Gasarch and Kruskal in 1999 in a surprising way.
We present additional results for the case of more than two possibly unfair n-sided dice and for the
hypothetical case where the weights on each die are permitted to be negative, but must still sum
to one.

1. Introduction

If you roll two six-sided dice, the probability distribution for their sums is triangle shaped:

This, of course, assumes that there is an equal chance of obtaining each of the six sides. If you
could change the probability of rolling each of the six sides for each of the two dice, could you
obtain a uniform distribution for each sum? That is, could you replace the triangular distribution
above with a rectangular distribution?

This question was posed by John Kelly in 1950 [Kel50], and subsequently it was proven via a
number of methods that no matter how the two dice are weighted, a uniform distribution cannot be
obtained; see, for example, [KMW+51], [Hon78], or [Hof95]. In particular, a recent book by Bollobás
[Bol06] (see Problem 11) contains two solutions: one uses an elementary argument involving the
arithmetic mean-geometric mean (AM-GM) inequality, and the other solution employs generating
functions. Further, this was extended by Chen-Rao-Shreve [CRS97] to show that even if you have
m dice, each with n sides, the dice cannot be weighted so that a uniform distribution is attained
for the dice sums. More recently, Morrison [Mor18], following the main results from Gasarch
and Kruskal [GK99], systematically constructed when m weighted dice — each with a potentially
different numbers of sides, unlike in [CRS97] and this paper — lead to the dice sums being uniformly
distributed.

Given the result from Chen-Rao-Shreve [CRS97] that a uniform distribution cannot be attained,
Gasarch and Kruskal pose an interesting question at the end of their article [GK99] that we will
focus on in this paper: what weightings for each of two n-sided dice will minimize D, the sum of
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the squared difference between the probability for each dice sum and the uniform distribution? We
note that this minimum D must be positive, since D = 0 corresponds to the unattainable uniform
distribution.

Gasarch and Kruskal state that by programming in Matlab, they find that “[f]or all n, Matlab
produced symmetric dice that were identical to each other,” where the term “symmetric dice”
means that the probability of rolling a 1 and rolling an n is the same, the probability of rolling
a 2 and rolling an n − 1 is the same, etc., and the term “identical to each other” means that the
probability of rolling any specific side is the same for both dice. For example, for two six-sided
dice, they find that Matlab minimized D when the probability of rolling a 1 or a 6 on either die is
0.243883, the probability of rolling a 2 or a 5 is 0.137480, and the probability of rolling a 3 or a 4 is
0.118637. They are, however, careful to state that “Matlab does not guarantee that the results are
the true optimum, so the question of whether or not optimal dice must be identical and symmetric
is interesting and open, even in the cases where we obtained numerical results.”

In this paper, we show that Gasarch and Kruskal were right to carefully point out that their Matlab
evidence was not the end of the story. In fact, their Matlab results do not accurately reflect the
true minimum of D when n > 2! Specifically, we will prove the following theorem.

Theorem 1. The two n-sided dice with side probabilities
(
1
2 , 0, 0, · · · , 0, 0,

1
2

)
and(

2
3n−2 ,

3
3n−2 ,

3
3n−2 , · · · ,

3
3n−2 ,

3
3n−2 ,

2
3n−2

)
are, up to swapping, the unique pair that minimize

D, the sum-of-squares difference from the uniform distribution. This minimized value of
D is 1

2(2n−1)(3n−2) , which corresponds to the following probabilities for each of the dice sums:(
2

2(3n−2) ,
3

2(3n−2) ,
3

2(3n−2) , · · · ,
3

2(3n−2) ,
3

2(3n−2) ,
4

2(3n−2) ,
3

2(3n−2) ,
3

2(3n−2) , · · · ,
3

2(3n−2) ,
3

2(3n−2) ,
2

2(3n−2)

)
.

According to Theorem 1, the actual minimum of D corresponds to symmetric dice, but if n > 2,
they are not identical to each other. For example, when n = 3, the closest to uniform distribution
is obtained when one of the two dice has a half and half chance of rolling a 1 or a 3 and the other
die has a 2

7 chance of rolling a 1, a 3
7 chance of rolling a 2, and a 2

7 chance of rolling a 3.

Another potential way to obtain a uniform distribution is to allow for the possibility of negative
weights to be assigned to some dice sides. That is, we still require that the weights assigned to the
sides of each die add up to one, but we allow these side weights to take negative values. When does
this allow us to attain a uniform distribution? The answer is given by the following theorem that
we will prove in this paper:

Theorem 2. If we have m dice where m ≥ 2 and we allow negative weights to be assigned to sides
of dice, then weightings can be found to attain a uniform distribution (i.e., D = 0) if and only if
n, the number of dice sides on each of the m dice, is an odd number.

In Section 2, we introduce notation needed for our proofs. We establish Theorem 1 and Theorem 2
in Section 3 and Section 4, respectively. In the spirit of Gasarch and Kruskal, in Section 5, which
concludes this paper, we present two open conjectures supported by what appears to be strong
numerical evidence. The easily modified Python program used to gather this numerical evidence is
available in an online appendix at https://tinyurl.com/294ycnha.

2. Notation

In the sections that follow, we will use the following notation:

• m is the number of dice rolled.
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• n is the number of sides on each of the m dice. The sides are labelled 1, 2, ..., n. In general,
we will use the letter i to index the sides. That is, i = 1, 2, ..., n.

• pi is the probability (or weight) corresponding to the first die landing on side i. Similarly, qi
is the probability (or weight) corresponding to the second die landing on side i. In Section 5,
we will also use ri for the result of a third die. In Section 4 and the next bullet point, we
will discuss m dice, so we will use the notation pi1 , qi2 , ..., zim to denote the probability of

landing on each side of the first die, the second die,..., the mth die.

• cj is the probability that the sum of the m dice equals j. So, for example, for two standard
dice (i.e., m = 2, n = 6, and pi = qi =

1
6 for i = 1, 2, ..., 6), we have c3 = 2

36 , since there
are two ways to roll a 3 (rolling 1 then 2 or rolling 2 then 1). In general, we will use the
letter j to index the possible dice sums. That is, if m = 2, we have j = 2, 3, ..., 2n, and
for a general m, we have j = m,m + 1, ...,mn. Given this, for m dice, cj is defined by
cj =

∑
i1+i2+···+im=j pi1 × qi2 · · · × zim where j = m,m+ 1, ...,mn.

• For two dice, D, the sum of the squared difference between the probability for each dice

sum and the uniform distribution, is given by D =
∑2n

j=2

(
cj − 1

2n−1

)2
. For m dice, D =∑mn

j=m

(
cj − 1

m(n−1)+1

)2
. Note that for two dice, the uniform distribution corresponds

to cj = 1
2n−1 for j = 2, 3, ..., 2n, while for m dice, it corresponds to cj = 1

m(n−1)+1 for

j = m,m+ 1, ...,mn.

3. Identifying the optimal dice

In this section, we will prove Theorem 1, which establishes the probabilities for each side of two
n-sided dice that are needed to minimize D, and therefore obtain the most uniform distribution for
the sum of the dice. We first rewrite Theorem 1 using the notation from the last section:

Theorem 1. D is minimized if and only if either

(1) pi = 0, except p1 = pn = 1
2 , and qi =

3
3n−2 , except q1 = qn = 2

3n−2 , or

(2) we swap the roles of all the pi and the qi above, which, by symmetry, yields the same D
value.

This minimum possible value for D is 1
2(2n−1)(3n−2) , which corresponds to cj = 3

2(3n−2) , except

c2 = c2n = 1
(3n−2) and cn+1 =

2
(3n−2) .

We next motivate our approach. Recall that cj is the probability of the dice summing to j, given
that pi is the probability of rolling an i with the first n-sided die and qi is the probability of rolling
an i with the second n-sided die, so i = 1, 2, ..., n and j = 2, 3, ..., 2n. Since the cj are probabilities,

we know that
∑2n

j=2 cj = 1. Therefore, we can re-express D, the quantity that we are trying to
minimize that measures the non-uniformity of the dice sum distribution, by

D =

2n∑
j=2

(
cj −

1

2n− 1

)2

=

2n∑
j=2

c2j − 2

2n∑
j=2

cj
2n− 1

+

2n∑
j=2

(
1

2n− 1

)2

=

2n∑
j=2

c2j −
1

2n− 1
.

Therefore, in order to minimize D, it suffices to minimize
∑2n

j=2 c
2
j .

We make a key observation for understanding why the uniform distribution c2 = c3 = · · · = c2n is
unattainable using an argument that follows both the method in the first solution in Bollobás [Bol06]
and the approach of Moser and Wahab in [KMW+51]. This observation centers on examining the
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relationship between c2, cn+1 and c2n. Note that all three of these probabilities depend on p1, q1, pn,
and qn. The key inequality relating c2, cn+1 and c2n is AM-GM, the arithmetic mean-geometric
mean inequality:

Lemma 3. cn+1 ≥ 2
√
c2c2n and equality holds if and only if piqn+1−i = 0 for 2 ≤ i ≤ n − 1 and

p1qn = pnq1.

Proof. We have, by the definition of cn+1 and AM-GM, that

cn+1 =
n∑

i=1

piqn+1−i ≥ p1qn + pnq1 ≥ 2
√
p1q1pnqn = 2

√
c2c2n.

In order for cn+1 = 2
√
c2c2n, every inequality sign must be an equality. Recalling conditions for

equality in AM-GM, we must have piqn+1−i = 0 for 2 ≤ i ≤ n − 1 for the first equality and
p1qn = pnq1 for the second equality. □

One now sees why it is impossible for all of the ci’s to have the same value: requiring that c2 =
cn+1 = c2n > 0 would, from Lemma 3, imply that 1 ≥ 2! Lemma 3 also suggests a reasonable path
forward. Rather than try to immediately solve for the pi and qi that minimize

∑2n
j=2 c

2
j , we should

use the fact that the cj are probabilities, in conjunction with Lemma 3, to directly find the cj that

minimize
∑2n

j=2 c
2
j and then use our optimal cj values to obtain the pi and qi values.

To gain a better understanding of the next step, we recall the Cauchy-Schwarz inequality in Rk:

|x1y1 + x2y2 + · · ·+ xkyk| ≤
√

x21 + x22 + · · ·+ x2k ·
√
y21 + y22 + · · ·+ y2k,

where x1, · · · , xk, y1, · · · , yk are any real numbers. Recall that equality in this expression holds
if and only if the vectors (x1, · · · , xk) and (y1, · · · , yk) are scalar multiples of each other. One
immediate consequence of Cauchy-Schwarz is that for any real x1, · · · , xk:

x21 + · · ·+ x2k ≥ (x1 + · · ·+ xk)
2

k
,

which is obtained by setting y1 = y2 = · · · = yk = 1 and squaring both sides of the Cauchy-Schwarz
inequality.

To this end, we separate out the quantities c2, cn+1 and c2n (as we have information on how they
relate), and we let Ω represent the remaining indices; that is, Ω = {2, 3, · · · , 2n} \ {2, n+1, 2n}. If
we let s = c2 + cn+1 + c2n, then, by the Cauchy-Schwarz inequality, we have that

2n∑
j=2

c2j = c22 + c22n + c2n+1 +
∑
j∈Ω

c2j

≥ c22 + c22n + c2n+1 +
1

2n− 4

∑
j∈Ω

cj

2

= c22 + c22n + c2n+1 +
1

2n− 4
(1− s)2.

Therefore, to minimize
∑2n

j=2 c
2
j , it is reasonable to try to find c2, c3, · · · , c2n so that ci = cj whenever

i, j ∈ Ω. If we can also bound c22+c22n+c2n+1 below by an expression in s = c2+cn+1+c2n, then we

have bounded
∑2n

j=2 c
2
j below by an expression in s. To that end, we note that for any x, y, z ≥ 0,

the Cauchy-Schwarz inequality yields x2 + y2 + z2 ≥ 1
3(x + y + z)2. For our purpose of finding

optimal dice, we use the additional stipulation z ≥ 2
√
xy to obtain a stronger inequality in the

following lemma:
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Lemma 4. Let x, y, z ≥ 0, with x+ y + z = k and z ≥ 2
√
xy. Then x2 + y2 + z2 ≥ 3

8(x+ y + z)2,

with equality if and only if x = y = k
4 and z = k

2 .

Proof. We have z2 − 4xy ≥ 0 by hypothesis. Some algebra shows that the following identity holds:

8(x2 + y2 + z2)− 3(x+ y + z)2 = 2(z2 − 4xy) + (z − x− y)2 + (z − 2x)2 + (z − 2y)2 ≥ 0.

The desired inequality x2+y2+z2 ≥ 3
8(x+y+z)2 immediately follows. Moreover, equality requires

that z = 2x and z = 2y, which then forces z2 = 4xy and z = x + y. Since x + y + z = k, we
conclude that the equality holds if and only if x = y = k

4 and z = k
2 . □

In our situation, since we know that cn+1 ≥ 2
√
c2c2n, then setting x = c2, y = c2n and z = cn+1

gives us the inequality c22 + c2n+1 + c22n ≥ 3
8s

2 with equality if and only if c2 = c2n and cn+1 = 2c2.

From Lemma 3, this means that in order for the equality c22 + c2n+1 + c22n = 3
8s

2 to hold, we must
have piqn+1−i = 0 whenever 2 ≤ i ≤ n− 1, and p1qn = pnq1.

Putting this all together, we now have that

2n∑
j=2

c2j ≥ c22 + c22n + c2n+1 +
1

2n− 4
(1− s)2

≥ 3

8
s2 +

1

2n− 4
(1− s)2,

with equality if and only if ci = cj whenever i, j ∈ Ω, piqn+1−i = 0 whenever 2 ≤ i ≤ n − 1, and
p1qn = pnq1.

The path forward is now clear: We find s ∈ [0, 1] that minimizes f(s) = 3
8s

2 + 1
2n−4(1 − s)2. If

we could guarantee that
∑2n

j=2 c
2
j = 3

8s
2 + 1

2n−4(1 − s)2, then from our conditions on equality in
the previous paragraph, we could then explicitly solve for each cj . If we can find pi’s and qi’s that
produce these cj , then we have obtained our desired minimum.

Observe that the graph of f(s) = 3
8s

2 + 1
2n−4(1− s)2 is an upward-facing parabola whose vertex is

at the value of s where f ′(s) = 3
4s−

1
n−2(1− s) = 0. That value is s = 4

3n−2 , which gives us

2n∑
j=2

c2j ≥
3

8

16

(3n− 2)2
+

1

2n− 4

(3n− 6)2

(3n− 2)2
=

3

2(3n− 2)
.

For equality to hold, c2 = c2n = s
4 = 1

3n−2 , cn+1 =
s
2 = 2

3n−2 and if j ∈ Ω, then (2n− 4)cj = 1− s.

meaning that cj =
1

2n−4(1− s) = 1
2n−4(1−

4
3n−2) =

3
2(3n−2) . We note that

∑2n
j=2 cj = 1 with these

values, so our cj values for j = 2, 3, ..., 2n are the unique values that minimize D.

Recapping, we have that

D =

2n∑
j=2

(
cj −

1

2n− 1

)2

=

2n∑
j=2

c2j −
1

2n− 1
≥ 3

2(3n− 2)
− 1

2n− 1
=

1

2(2n− 1)(3n− 2)
,

where equality – and therefore minimizing D – can be achieved with the optimal choices of c2 =
c2n = 1

(3n−2) , cn+1 =
2

(3n−2) , and cj =
3

2(3n−2) for j ∈ Ω.

To finish the proof of Theorem 1, we need to find the values of the pi and qi that will realize the
values of cj just obtained above.

Claim: To attain the optimal values of cj above, we either have that p1 = pn = 1/2, q1 = qn =
2/(3n − 2), and, for each i = 2, . . . , n − 1, pi = 0 and qi = 3/(3n − 2), or we swap the roles of
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the pi and qi, so q1 = qn = 1/2, p1 = pn = 2/(3n − 2), and, for each i = 2, . . . , n − 1, qi = 0 and
pi = 3/(3n− 2).

Proof of claim. Recall that since cn+1 = 2
√
c2c2n, we must have that piqn+1−i = 0 for 2 ≤ i ≤ n−1.

In particular, it follows that p2qn−1 = 0. We will assume that p2 = 0, instead of qn−1 = 0, and
use this assumption to show that pk must be 0 for all k ∈ {2, · · · , n − 1}. This observation will
then determine the values of each qi. If we assume that qn−1 = 0, instead of assuming p2 = 0, a
symmetric argument leads to the same results but with the values of the pi and the qi swapped.

Since c2 = p1q1 and c2n = pnqn, we get:

p1q1 + pnqn = c2 + c2n = cn+1 = p1qn + pnq1,

which can be rearranged as

p1q1 + pnqn − p1qn − pnq1 = (p1 − pn)(q1 − qn) = 0,

meaning either p1 = pn or q1 = qn. However, p1q1 = pnqn (since c2 = c2n), so each of these
equalities forces the other to hold, meaning

p1 = pn and q1 = qn.

Next, using that p2 = 0, we look at c3 = p1q2 + p2q1 = p1q2. Since c3 = 3
2c2 = 3

2p1q1, we obtain:
3
2p1q1 = p1q2. which implies that q2 =

3
2q1.

Recall that we must have that piqn+1−i = 0 for 2 ≤ i ≤ n− 1. In particular, setting i = n− 1, we
have that pn−1q2 = 0 and so, since q2 > 0, we have that pn−1 = 0.

Recapping, we have that p1 = pn and q1 = qn, which we will use at the end of our proof, and
we have that p2 = pn−1 = 0 and q2 = 3

2q1 > 0, which will form the initial step for the following
induction argument:

Induction step: For i ∈ {1, 2, ..., n − 3}, if we have that pn−1 = pn−2 = ... =
pn−i = 0, then qn−i =

3
2q1 and pn−i−1 = 0.

Proof of the induction step: Combining c2n−i =
3
2c2 = 3

2p1q1 and the definition of
c2n−i, we have:

3

2
p1q1 = c2n−i = pnqn−i + pn−1qn−i+1 + ...+ pn−iqn.

Given that pn−1 = pn−2 = ... = pn−i = 0, the above equality implies that 3
2p1q1 =

pnqn−i = p1qn−i, which means qn−i =
3
2q1.

On the other hand, combining cn−i+1 = 3
2c2 = 3

2p1q1 and the definition of cn−i+1,
we have:

3

2
p1q1 = cn−i+1 = p1qn−i + p2qn−i−1 + ...+ pn−i−1q2 + pn−iq1.

Since qn−i =
3
2q1, we see that p1qn−i term above is already 3

2p1q1, which means the
other terms, being non-negative, must each be zero. In particular, pn−i−1q2 = 0,
which forces pn−i−1 = 0 since q2 > 0. □

With the induction step established, we can run it using i = 1, then i = 2, i = 3, and so on, until
we stop at i = n− 3. This establishes that pi = 0 and qi =

3
2q1 for i = 2, 3, ..., n− 1.

Since we now know that p1 = pn and all other pi = 0, we have from
∑n

i=0 pi = 1 that p1 = pn = 1
2 .

Similarly, since we now know that q1 = qn and all other qi =
3
2q1, we have from

∑n
i=0 qi = 1 that

q1 = qn = 2
3n−2 and all other qi =

3
3n−2 , which establishes our claim. □
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And with our claim established, this completes the proof of Theorem 1. □

Remark 5. Our argument shows that the minimum value ofD, which measures the distance from the
uniform distribution on the set {2, . . . , 2n}, approaches 0 as n → ∞. In other words, even though
the uniform distribution is impossible to achieve using the sum of two dice, the best approximation
using the optimal dice converges to the desired uniform distribution at a rate of O

(
1
n2

)
(since

D = 1
2(2n−1)(3n−2)) as n, the number of sides, tends to infinity.

Remark 6. Also regarding convergence, note that if X and Y are independent random variables
where X attains the values 0 and 1 with equal probability (of 1/2) and Y is uniformly distributed
on the interval [0, 1], then the distribution of X + Y is uniform on [0, 2]. This means, from our
discrete dice perspective, if we let Xn and Yn be random variables corresponding to rolling each of
the two optimal dice given in Theorem 1, except that we normalize the die faces to be 1/n, 2/n, ..., 1,
then as n → ∞, Xn and Yn converge in distribution to X and Y . This fits with the flavor of our
results and helps further indicate why the optimal dice were unlikely to be symmetric (that is, to
have pi = qi for all i = 1, 2, ..., n).

4. An odd result: generating the proof of Theorem 2

In this section, we will prove Theorem 2, which shows that for m ≥ 2 dice, allowing negative values
for the pi, qi, ..., zi makes a uniform distribution for dice sums attainable if and only if n is odd.
More precisely, using the notation introduced in Section 2, we can rewrite Theorem 2 as:

Theorem 2. For m dice, allow pi, qi, ..., zi, where i = 1, 2, ..., n, to be any real (possibly negative)
numbers, still subject to the restriction that

∑n
i=1 pi =

∑n
i=1 qi = ... =

∑n
i=1 zi = 1. Each cj

is still defined by cj =
∑

i1+i2+···+im=j pi1 × qi2 × · · · × zim for j = m,m + 1, ...,mn. If and

only if n is odd, pi, qi, ..., zi can be chosen so that cj = 1
m(n−1)+1 for all j, and therefore D =∑mn

j=m

(
cj − 1

m(n−1)+1

)2
= 0. In other words, if n is odd, then a uniform distribution for the cj is

possible. If n is even, then a uniform distribution for the cj is not possible.

Proof. If a set of m dice with n sides has uniform totals, then the generating function of the totals is
1

m(n−1)+1(x
m+ ...+xmn) = xm

m(n−1)+1T (x), where T (x) = 1+x+ · · ·+xm(n−1). Note that T (x) has

roots at the non-trivial (m(n−1)+1)st roots of unity; in particular, it has a single root −1 or none
according to whether m(n−1)+1 is even or odd. Now, the generating function of each die is of the
form p1x+ p2x

2+ · · ·+ pnx
n = x(p1+ p2x+ · · ·+ pnx

n−1) for some pi; the second factor must have
a real root if n is even. Thus, if n is even, and m > 1, the product of the dice generating functions
cannot equal T (x). If n is odd, then any partition of m(n− 1)/2 real quadratic factors of T (x) into
m sets of size n−1

2 yields m generating functions of degree n − 1 with product T (x). Multiplying
each of these polynomials by x, and normalizing the polynomials’ coefficients appropriately, we
obtain m generating functions whose coefficients give us the desired probabilities. □

5. Numerical results create two new open questions for multiple dice

The numerical experiments conducted by Gasarch and Kruskal [GK99] for m = 2 dice inspired us
to resolve the open questions they posed. Similarly, our numerical experiments have led to two new
open questions for multiple dice that we hope others will explore. Our numerical experiments for
m dice were conducted in Python. The Jupyter notebook containing the Python code for the case
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of three n-sided dice is available in an online appendix, which is located at https://tinyurl.com/
294ycnha.1

First open question: For two dice, Gasarch and Kruskal suggested that the n-sided dice that
minimized D had to be symmetric, meaning for the first die that p1 = pn, p2 = pn−1, p3 = pn−2,
etc., and, similarly, for the second die that q1 = qn, q2 = qn−1, q3 = qn−2, etc. This paper proves
that conjecture to be true when m = 2 dice, but it is an open question as to whether or not
this holds for m > 2 dice. Our numerical experiments always produce symmetric dice results for
minimizing D, but that is not a proof, of course!

Second open question: In fact, our experimental results go farther than this, indicating a specific
symmetric pattern, which is that the quantity D is minimized when the probabilities on one die
(say, the first die, so we are specifying the pi) are given by

pi =

{
m

(n−2)(2m−1)+2m if i = 1 or n
2m−1

(n−2)(2m−1)+2m if i = 2, 3, ..., n− 1,

while, for the other m− 1 dice, we have

qi = ri = ... =

{
1
2 if i = 1 or n
0 if i = 2, 3, ..., n− 1.

For example, in our online appendix, we see that the results for m = 3 and n = 5 (three five-sided
dice) fit this pattern. That is,

(p1, p2, p3, p4, p5) =

(
3

21
,
5

21
,
5

21
,
5

21
,
3

21

)
(q1, q2, q3, q4, q5) =

(
1

2
, 0, 0, 0,

1

2

)
(r1, r2, r3, r4, r5) =

(
1

2
, 0, 0, 0,

1

2

)
.

The above symmetric pattern agrees with the results of every other example we ran as well, using
a variety of values for n and m, but the proof (or refutation) of this pattern when m > 2 remains
an open question.
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