
COLORING GRAPHS AS COMPLETE GRAPH INVARIANTS

SHAMIL ASGARLI, SARA KREHBIEL, AND HOWARD W. LEVINSON

Abstract. We investigate the extent to which the k-coloring graph Ck(G) uniquely determines the base

graph G and the number of colors k. The vertices of Ck(G) are the proper k-colorings of G, and edges connect

colorings that differ on exactly one vertex. There are nonisomorphic graphs G1 and G2 with isomorphic
coloring graphs, so Ck(G) is not a complete invariant in general. However, for color palettes with surplus

colors (when the number of colors k is greater than the chromatic number), we prove that the coloring graph

is a complete invariant. Specifically, provided that k1 > χ(G1), we show that Ck1
(G1) ∼= Ck2

(G2) implies
G1

∼= G2 and k1 = k2. Thus, there is a natural bijection between pairs (G, k) with k > χ(G) and their

coloring graphs Ck(G). Furthermore, no coloring graph of the form Cχ(G)(G) is isomorphic to a coloring

graph with surplus colors. Our constructive proof provides a method to decide whether a coloring graph is
generated with surplus colors, although the resulting algorithms are inefficient.

1. Introduction

A graph G = (V,E) is a fundamental structure that captures pairwise relationships between objects. Two
graphs are isomorphic if an adjacency-preserving bijection exists between their vertex sets. Determining
isomorphism is computationally challenging, motivating the study of graph invariants, properties preserved
under isomorphism. Graph colorings provide a rich source of various graph invariants. A proper k-coloring
is a function c : V → {1, . . . , k} such that c(u) ̸= c(v) whenever uv ∈ E. The minimum number k required
for such a coloring is the chromatic number, denoted χ(G). Beyond the threshold for which a proper coloring
exists, we can also count the number of proper k-colorings as a function of k and obtain the chromatic
polynomial πG(k). Rather than counting the proper k-colorings in isolation, we can investigate how two
k-colorings are related using the k-coloring graph, denoted Ck(G). The vertices of Ck(G) represent proper
k-colorings of G, and two vertices are adjacent if the corresponding colorings differ in the color assigned to
exactly one vertex v ∈ V . This construction places Ck(G) within the broader context of a reconfiguration
graph, where edges represent a minimal transition between valid states.

A natural question arises: to what extent does Ck(G) encode the structure of the base graph G? Specifi-
cally, under what conditions can Ck(G) serve as a complete graph invariant, uniquely determining G (up to
isomorphism) and potentially the palette size k? If k < χ(G), then Ck(G) is the null graph N0 (the graph
with no vertices), providing no information. If k = χ(G), the structure can vary; for instance, consider a
uniquely k-colorable graph which has a unique partition into k = χ(G) independent sets. Every uniquely
k-colorable graph G yields Ck(G) ∼= Nk!, representing the k! permutations of the unique coloring pattern
as isolated vertices (where Nr denotes the graph with r vertices and 0 edges). This paper investigates the
critical role of the palette size k, particularly when it exceeds the chromatic number χ(G) (that is, when there
are surplus colors), in determining whether Ck(G) uniquely identifies G. To measure complete invariance of
Ck(G), in joint work [AKLR24] with Russell, we posed the following problem:

Does there exist a function f : Graphs→ N such that G can be uniquely reconstructed from Cf(G)(G)?

Hogan, Scott, Tamitegama, and Tan [HSTT24] answered this question affirmatively by showing that the
function f(G) = 5|V (G)|2+1 satisfies the requirement. We refine their result by proving that f(G) = χ(G)+1
suffices. Our main theorem asserts an even stronger conclusion: coloring graphs with surplus colors are
distinguishable from all other coloring graphs, including those of the form Cχ(G)(G).

Theorem 1.1. If an abstract graph C satisfies C ∼= Ck(G) for some graph G with k > χ(G), then for any
graph G′ and positive integer k′ with C ∼= Ck′(G′), we have G ∼= G′ and k = k′.

2020 Mathematics Subject Classification. Primary: 05C15; Secondary: 05C60, 05C85.
Key words and phrases. coloring graphs, reconfiguration systems, graph invariants.

1

We emphasize that Theorem 1.1 is logically equivalent to the combination of two separate results:

(a) If Ck1(G1) ∼= Ck2(G2) with k1 > χ(G1) and k2 > χ(G2), then G1
∼= G2 and k1 = k2.

(b) No two graphs G and G′ can satisfy Ck(G) ∼= Cχ′(G′) with k > χ(G) and χ′ = χ(G′).

Part (b) turns out to be much more difficult than (a). We prove (a) in Theorem 4.4 using a reconstruction
procedure outlined in Algorithm 1. Proving (b) (in Theorem 4.28) requires two additional algorithms and
several other novel ideas. We also exhibit that k = χ(G) is not sufficient for Ck(G) to be a complete invariant
by proving the following result.
Theorem 1.2. For every χ1, χ2 ≥ 3, there exist graphs G1, G2 with χ(G1) = χ1 and χ(G2) = χ2 such that
Cχ1

(G1) ∼= Cχ2
(G2).

The result is obtained by constructing a family of n-townhouse graphs for n ≥ 1. The graph THn has
chromatic number 3, and C3(THn) is a disjoint union of six path graphs, each on n+ 2 vertices.

TH2 TH3 TH4

Further modifications to these townhouse graphs for arbitrary χ1, χ2 ≥ 3 yield distinct graphs G1, G2

with chromatic numbers χ1 and χ2, respectively, such that Cχ1
(G1) ∼= Cχ2

(G2).
The strategy behind proving Theorem 1.1 involves identifying and analyzing specific structures within

coloring graphs. We call a coloring graph Cχ(G)(G) a χ-coloring graph. If the number of colors k exceeds
χ(G), then Ck(G) is called a surplus coloring graph. The main goal of this paper is to provide a structural
characterization of these latter graphs. We identify a structure called an abstract link vertex whose presence
can be algorithmically checked in an arbitrary coloring graph (without knowing G or even k). Crucially, we
show that an arbitrary coloring graph C contains an abstract link vertex if and only if C is generated by
a unique pair (G, k) with k > χ(G). Link vertices refine the notion of rainbow colorings from [HSTT24],
allowing us to establish coloring graphs as a complete invariant for k as small as χ(G)+1 rather than requiring
k to be a quadratic function of |V (G)|. Our first algorithm, inspired by the square-counting technique in
[HSTT24], reconstructs a base graph’s adjacency matrix from any coloring graph with an abstract link
vertex. The second algorithm extracts vertex partition information at a link vertex. The third algorithm
then organizes an entire equivalence class of link vertices into a new structure called a labeled link graph.
Collectively, these algorithms impose specific constraints on any base graph that yields the coloring graph.
This leads us to conclude that a coloring graph containing a link vertex is generated by at most one pair
(G, k) with k > χ(G), and by no pair (G′, k′) where k′ ≤ χ(G′).

Remark 1.3. We note that Theorem 4.4 (a weaker version of Theorem 1.1) was independently discovered
by Berthe, Brosse, Hearn, van den Heuvel, Hoppenot, and Pierron, as presented in their arXiv preprint
[BBH+25], posted on April 28, 2025. We posted the first version of our paper (arXiv:2504.20978) on April
29, 2025. We were unaware of their results as this manuscript was being finalized. The approach for
reconstructing the base graph is similar, but the two papers also diverge in other aspects. Specifically,
our Theorem 1.1 is stronger in its conclusion. Namely, [BBH+25, Theorem 1.2] proves part (a), while our
methods establish both part (a) and part (b), with the proof of part (b) being substantially more involved
and forming the bulk of this paper. Moreover, Theorem 1.2 and its proof are novel to this work. On the other
hand, Berthe et al. establish the insufficiency of k = χ(G) by constructing an arbitrarily large collection F
of nonisomorphic graphs all with chromatic number χ and no frozen vertices such that Cχ(G1) ∼= Cχ(G2)
for all G1, G2 ∈ F provided that χ ≥ 6 [BBH+25, Theorem 1.4]. Their paper also contains further results
concerning reconfiguration graphs of Kempe-colorings and independent sets.

Structure of the paper. Section 2 reviews fundamental definitions and introduces our notation. We
prove Theorem 1.2 in Section 3. The proof of our main result, Theorem 1.1, is developed in Section 4, which is
organized into four subsections with a series of supporting lemmas. In Section 4.1, we introduce Algorithm 1
and prove Theorem 4.4 (part (a) of Theorem 1.1). Section 4.2 and Section 4.3 introduce Algorithm 2 and
Algorithm 3, respectively. The final Section 4.4 proves Theorem 4.28 (part (b) of Theorem 1.1).

2

2. Definitions and Notation

Given a graph G and k ≥ χ(G), the k-coloring graph of G, denoted Ck(G), is defined as follows. The
vertices of Ck(G) represent proper k-colorings of G. Two vertices in Ck(G) (representing two distinct k-
colorings) are adjacent if the two colorings differ on exactly one vertex v ∈ V (G). Formally, we have a
bijection Φ: V (Ck(G)) → {proper k-colorings of G} defined by Φ(α) = αG such that αβ ∈ E(Ck(G)) if
and only if αG(v) ̸= βG(v) for exactly one v ∈ V (G). That is, we use α to denote a vertex in Ck(G) and
αG : V (G)→ [k] for the corresponding coloring of G. For simplicity, we typically omit the symbol Φ and use
the shorthand α 7→ αG for this mapping.

While Ck(G) is fundamentally an abstract graph, we can use the underlying bijection between V (Ck(G))
and the k-colorings of G to produce an edge-labeled coloring graph. Each edge is labeled to show the
unique vertex v ∈ V (G) where the two corresponding colorings differ and the specific colors assigned to
v by each coloring. For example, an edge αβ ∈ E(Ck(G)) might have the label cvc′, which signifies that
αG(v) = c, βG(v) = c′, and αG(u) = βG(u) for all u ∈ V (G)\{v}. We emphasize that we have access to
neither edge labelings nor the α 7→ αG mapping when given an abstract coloring graph C ∼= Ck(G).

Figure 1 depicts the relationship between 3-colorings of P3 by labeling the vertices and edges of C ∼= C3(P3).
The red vertices in C, which use the minimum number of colors and are termed abstract link vertices, play a
central role in our paper. In general, when a graph G has d connected components, the coloring graph Ck(G)
with k > χ(G) admits a natural action of Sdk , the d-fold product of the symmetric group Sk on k symbols.
We will show that the orbit-equivalent link vertices in the coloring graph are connected via an identifiable
sequence of hypercubes. For C3(P3), the six link vertices form a single equivalence class. A labeled link graph
organizes a link vertex equivalence class into a new graph whose edges are hypercubes in Ck(G). These
graphs, formalized in Section 4, help establish P3 as the unique base graph yielding C as a coloring graph.

u v w

1 2 3

3 2 3 121

3 2 1

3 1 3

2 1 3 213

2 1 2

1 3 1

2 3 1 1 3 2

2 3 2

1v
2

3w
2

2u
3

1v3 2u
1

1w
2

2v3

2u
3

3w
2

2u
1

1w
2

3u
1

3w
1 3u
1

3w
1

323 121

131

232212

313

3V21

2V
1 3

2V
2
1

1V13

3V
2 2

1V
1
2

Figure 1. Three organizations of the 3-colorings of P3, with link colorings highlighted
red. Top left is coloring graph C3(P3) with vertex labels indicating the underlying bijection
Φ: V (C3(P3)) → {proper 3-colorings of P3}; top right depicts the corresponding edge la-
belings; bottom center presents the labeled link graph organizing the 2-colorings consistent
with bipartition V1 = {v}, V2 = {u,w} of V (P3).

3

We use standard notation for common graphs (see [Wes01]): Kn, Cn, and Pn are the complete, cycle,
path graphs on n vertices; Kr,s is the complete bipartite graph with two parts of cardinality r and s; Nr is
the graph with r vertices and 0 edges. The house graph is obtained by adding a chord to a 5-cycle.

Next, we describe notation related to integer and set partitions. Let N denote the set of positive integers.
For k ∈ N, let [k] be the set {1, 2, . . . , k}. A partition λ = (λ1, . . . , λt) of n ∈ N, denoted λ ⊢ n, means that
λi ∈ N for all i and λ1 + · · ·+ λt = n. For example, (3, 1, 7, 1, 6) ⊢ 18.

For two disjoint subsets A and B of a set X, their union A ∪ B is denoted by A ⊎ B to emphasize
disjointness. A set partition of X is a tuple (X1, . . . , Xt) of pairwise disjoint subsets whose union is X, so
X = X1 ⊎X2 ⊎ · · · ⊎Xt. By convention, each part Xi is nonempty. It is sometimes convenient to initially
define parts that may be empty; such empty parts are then disregarded in the final partition. For instance,
a proper k-coloring α : V (G) → [k] of a graph G induces a partition P = (P1, P2, . . . , Pk) of V (G) where
each part Pc = α−1(c) consists of vertices colored c ∈ [k]. If the coloring α uses fewer than k colors, some
parts Pc in this partition are empty. The number of nonempty parts in a set partition P is its length, ℓ(P).

3. Coloring Graphs at the Chromatic Level May Have Multiple Base Graphs

Our main result, established in Section 4, is twofold: first, surplus coloring graphs uniquely determine their
base graphs; second, surplus coloring graphs are structurally distinct from χ-coloring graphs. In contrast,
two nonisomorphic graphs can produce the same χ-coloring graphs. For instance, all uniquely k-colorable
graphs share the same k-coloring graph, namely the graph Nk! consisting of k! isolated vertices. This
observation leads to a natural question: can Cχ(G1)(G1) be isomorphic to Cχ(G2)(G2) when χ(G1) ̸= χ(G2)?
In this section, we affirmatively answer this question by proving Theorem 1.2. We begin by constructing a
3-chromatic graph with a prescribed number of vertices in its 3-coloring graph.

Lemma 3.1. Let r ≥ 1. There exists a graph G with χ(G) = 3 such that C3(G) has exactly 6r vertices.

Proof. For the cases r = 1 and r = 2, the graphs K3 and K1,3 + e (the paw graph) provide the required
examples, as can be verified by evaluating their chromatic polynomials at k = 3. Assume r ≥ 3. Consider the
townhouse graph THn for n ≥ 1, which consists of a sequence of n 5-node house graphs in which consecutive
houses share a wall and have an additional edge connecting the tops of their gables. By definition, TH1 is
the house graph. Below, we illustrate townhouse graphs for n = 2, 3, 4.

TH2 TH3 TH4

We claim that C3(THn) contains precisely 6(n + 2) vertices. By letting n = r − 2, this completes the
proof of the lemma. When constructing THn from THn−1, three new vertices u, v, w are added, with v and
w serving as the roof vertices as pictured below.

. . .

. . .

. . .

w

v

u

THn−1

We compute the number of 3-colorings of THn. First, there are 3 choices for the color of vertex v and
2 choices for the color of vertex w. Once these colors are assigned, the colors of all the roof vertices (three
per roof) are determined automatically. Hence, the number of 3-colorings of THn equals 6 · tn, where tn
represents the number of 3-colorings of the path graph Pn+1 with specific constraints described below.

Without loss of generality, suppose v is colored 1 and w is colored 3. The floor vertices of the houses
form a path graph Pn+1, consisting of un+1−un− · · ·−u2−u1 where u = u1. The value tn is the number of

4

3-colorings of Pn+1 such that the color of ui differs from i (mod 3) for every 1 ≤ i ≤ n+ 1. We use the set
{1, 2, 3} as representatives modulo 3 to correspond to the color labels.

We claim that tn = n + 2. To prove this formula by induction on n, it suffices to show that t1 = 3 and
that tn = tn−1 + 1 for all n ≥ 2.

Base case. For n = 1, we count the colorings c of P2 = u2−u1 such that c(u1) ̸= 1 and c(u2) ̸= 2. If
c(u2) = 3, then c(u1) = 2 is the only valid choice. If c(u2) = 1, then c(u1) can be either 2 or 3. Thus, there
are 3 valid colorings, giving t1 = 3.

Recursive formula. By definition, tn−1 is the number of valid colorings of Pn = un+1−un− · · ·−u2.
We extend these colorings to Pn+1 while ensuring that c(u1) ̸= 1. The tn−1 valid colorings of Pn split into
two groups:

• Type A: c(u2) = 3. In this case, c(u1) = 2 is the only possible extension, providing a unique valid
coloring of Pn+1.

• Type B: c(u2) = 1. The constraints force a specific coloring pattern on u3, . . . , un+1, determined by
c(ui) = (i− 1) (mod 3). However, for u1, we have two possible extensions: c(u1) = 2 or c(u1) = 3.

Thus, there is one additional valid coloring of Type B, giving tn = tn−1 +1. By induction, tn = n+2 for
all n ≥ 1. Consequently, THn has a total of 6(n+ 2) distinct 3-colorings for each n ≥ 1. □

The proof of Lemma 3.1 can be adapted to fully describe the 3-coloring graph of townhouse graphs. For
n ≥ 1, the graph C3(THn) is isomorphic to 6Pn+2, a disjoint union of 6 path graphs, each on n+ 2 vertices.

Corollary 3.2. For each r ≥ 1, there exists a connected graph G with χ(G) = 3 such that C3(G) = N6r.

Proof. The cases r = 1 and r = 2 are addressed by considering the graphs K3 and F2 (the friendship graph),
which consists of two copies of K3 joined at a common vertex.

Assume r ≥ 3 and set n = r− 2 ≥ 1. We modify the townhouse graph THn from the proof of Lemma 3.1
by attaching new basement vertices to each house to ensure that every vertex belongs to a triangle. This
construction yields a new graph THn, illustrated below for n = 3.

TH3

The addition of the basement vertices does not affect the number of 3-colorings as their colors are de-
termined automatically. Consequently, C3(THn) still contains 6(n+ 2) = 6r vertices. Furthermore, because
every vertex participates in a triangle, C3(THn) has no edges, completing the proof. □

Corollary 3.3. For each r ≥ 1 and k ≥ 3, there exists a connected graph with χ(G) = k such that
Ck(G) = Nk!·r.

Proof. We proceed by induction on k. The base case k = 3 follows from Corollary 3.2. For the inductive step,
assume there exists a graph G with χ(G) = k such that Ck(G) consists of k! · r isolated vertices. Consider a
new graph G′ formed by adding a new vertex v and connecting v to all vertices of G. Then χ(G′) = k + 1
and Ck+1(G

′) consists of (k + 1) · (k! · r) = (k + 1)! · r isolated vertices. □

We are now ready to prove one of the theorems from the introduction.

Proof of Theorem 1.2. The case χ1 = χ2 = k, mentioned at the beginning of this section, is straightforward.
Taking G1 = Kk and G2 = Kk+1 − e, we obtain Ck(G1) ∼= Ck(G2) ∼= Nk!. Thus, we assume χ2 > χ1 ≥ 3.

Let r =
χ2!

χ1!
∈ N. By Corollary 3.3, there exists a graph G1 such that χ(G1) = χ1 and Cχ1

(G1) consists of

χ1! · r = χ2! isolated vertices. Let G2 = Kχ2 which satisfies χ(G2) = χ2, and Cχ2(G2) also consists of χ2!
isolated vertices. As χ(G1) ̸= χ(G2), the graphs G1 and G2 are nonisomorphic, but Cχ1(G1) ∼= Cχ2(G2). □

5

We discuss another consequence of Corollary 3.3. While Cχ(G)(G) does not generally allow for the unique
reconstruction of the base graph G, it is worth considering what information about the base graph can still
be derived from its χ-coloring graph. The next observation, which strengthens Theorem 1.2, shows that
χ-coloring graph cannot even detect connectivity of its base graph.
Theorem 3.4. For χ2 ≥ χ1 ≥ 3, there exists a disconnected χ1-chromatic graph G1 and a connected
χ2-chromatic graph G2 such that Cχ1(G1) ∼= Cχ2(G2).

Proof. By Corollary 3.3 applied with k = χ1 and r = χ2!, there exists a graph H with χ(H) = χ1 such
that Cχ1

(H) = Nχ1!·χ2!. Consider the disjoint union graph G1 = H ⊎H, which is disconnected, and satisfies
χ(G1) = χ1 and Cχ1

(G1) = Nχ1!2χ2!2 . By Corollary 3.3 applied with k = χ2 and r = χ2! · χ1!
2, there exists

a connected graph G2 with χ(G) = χ2 such that Cχ2
(G2) = Nk!·r = Nχ2!·(χ2!·χ1!2) = Nχ1!2χ2!2 . □

These results show that, in general, a graph cannot be uniquely reconstructed from its χ-coloring graph;
however, exceptions exist. Our next result demonstrates that the 3-coloring graph of the 5-cycle is unique
among all χ-coloring graphs.
Theorem 3.5. If G is a graph satisfying Cχ(G)(G) ∼= C3(C5), then G ∼= C5.

Proof. Observe that C := C3(C5) is the disjoint union of two copies of C15. For any graph H, the number
|V (Ck(H))| is divisible by k!. Since |V (Cχ(G)(G))| = |V (C)| = 30 is not divisible by k! for k ≥ 4, it follows
that χ(G) ≤ 3. Moreover, since |V (C)| = 30 is not a power of 2, we have χ(G) > 2. Thus, χ(G) = 3.

First, we show that |V (G)| ≥ 5. As G is not bipartite, G contains an odd cycle. If G contained a triangle,
then C would have at least 3! = 6 connected components; indeed, a 3-coloring of a triangle is locked and
cannot change within a connected component of C. However, C has only two components. Thus, G contains
an ℓ-cycle where ℓ ≥ 5, so |V (G)| ≥ 5.

Consider one of the 15-cycles in C associated with recoloring vertices v1, . . . , vr. Let λi ≥ 2 be the number
of times vertex vi changes color in this cycle, so that (λ1, . . . , λr) forms an integer partition of 15. We claim
that λi ≥ 3 for every i. If λj = 2 for some j, then vertex vj is recolored (in this 15-cycle) between only
two colors, say 1 ↔ 2. Permuting these two colors with the third available color generates two additional
15-cycles in C: one corresponding to vj switching between 1↔ 3, and the other corresponding to vj switching
between 2↔ 3. Together with the original 15-cycle, this would force |V (C)| ≥ 3 · 15 = 45, a contradiction.

Combining λi ≥ 3 for all i and λ1 + · · · + λr = 15, we get r ≤ 5. We claim that r = 5. If r ≤ 4, then
|V (G)| ≥ 5 implies that there is a vertex u ∈ V (G) whose color is fixed in the 15-cycle, say color 1. Changing
its color to 2 or 3 results in two additional 15-cycles, implying |V (C)| ≥ 45, a contradiction.

Thus, r = 5, which combined with λi ≥ 3 for all i, forces λi = 3 for 1 ≤ i ≤ 5. We claim that |V (G)| = 5.
Indeed, any vertex w ∈ V (G) \ {v1, . . . , v5} would have a fixed color in the 15-cycle, say color 1. Changing
its color to 2 or 3 results in two additional 15-cycles, implying |V (C)| ≥ 45, a contradiction. Therefore,
|V (G)| = 5 and since G contains an ℓ-cycle with ℓ ≥ 5, we have G ∼= C5. □

Later, Theorem 4.28 will show that C3(C5) ̸∼= Ck(G) for any graph G with k > χ(G). Combining this fact
with Theorem 3.5, we conclude that C5 is the only graph having a coloring graph isomorphic to C3(C5).

4. Any Coloring Graph With Surplus Colors Has a Unique Base Graph

In this section, we establish a strong reconstruction result: if Ck(G) ∼= Ck′(G′) where k > χ(G) and
k′ ≥ χ(G′), then G′ ∼= G and k′ = k. As shown in the previous section, the conclusion relies critically on
k > χ(G), a condition that indicates surplus colors in at least one of the two graphs. The two main theorems
in this section are Theorems 4.4 and 4.28. Both rely on the notion of a link k-coloring of a graph G with
k > χ(G), a k-coloring in which each connected component of G uses the minimum necessary number of
colors. We show that link k-colorings correspond to abstract link vertices of a graph C. Theorem 4.4 shows
that for any C, there is at most one pair (G, k) with k > χ(G) such that C ∼= Ck(G). The proof strategy
involves extracting information from link colorings and their corresponding abstract link vertices. The
argument is constructive: Algorithm 1 reconstructs this unique graph by outputting its adjacency matrix.

Showing that Ck(G) ∼= Cχ′(G′) is impossible when k > χ(G) and χ′ = χ(G′) (Theorem 4.28) requires
several new techniques. The presence of abstract link vertices in C ∼= Ck(G) ∼= Cχ′(G′) imposes specific
constraints on how G can relate to a potential G′. The first step is to count the induced squares incident
to each abstract link vertex in C. These tallies provide adjacency information about the base graph vertices

6

that are changing color, and shows that any such G′ must contain the connected components of G as vertex-
disjoint induced subgraphs. Next, Algorithm 2 shows that at each abstract link vertex, this subgraph of G in
G′ must be colored according to the partition of the coloring in the surplus coloring case. Algorithm 3 then
extracts from C an auxiliary structure, termed labeled link graph, in a base-graph agnostic manner. Combined
with structural properties of 3-, 4-, and 6-cycles in coloring graphs, these algorithms explain how different
abstract link vertices in C are interconnected. We establish that equivalent abstract link vertices (those
in the same orbit under a certain group action) are connected by a predictable sequence of hypercubes,
which correspond to edges in the labeled link graph. Finally, a counting argument leads to a numerical
inconsistency. Interpreting the shared graph C as Cχ′(G′) requires it to contain strictly more abstract link
vertices than are present when interpreting it as Ck(G), contradicting the possibility that Ck(G) ∼= Cχ′(G′).
A flowchart at the end of the paper (Figure 12) illustrates the progression of results within this section.

4.1. Reconstructing the base graph via link vertices. This subsection proves Theorem 4.4: if an
abstract coloring graph C is isomorphic to Ck(G) for some graph G and an integer k > χ(G), then this pair
(G, k) is unique and algorithmically recoverable from C. The core idea is to identify abstract link vertices
(Definition 4.2) within the graph C. Algorithm 1 uses the structure around these special vertices both to
identify them and to reconstruct the unique G and k. This algorithm relies solely on the structure of C
as an abstract graph. We first define the corresponding concept in the base graph, the link k-coloring
(Definition 4.1), which corresponds to colorings where the image size within each connected component is
minimal (equal to the component’s chromatic number). Lemma 4.3 confirms that these concrete colorings
map precisely to the abstract link vertices when C ∼= Ck(G) for k > χ(G). We begin with the formal definition
of a link k-coloring.

Definition 4.1. Given a graph G with connected components H1, . . . ,Hd and an integer k > χ(G), a
link k-coloring of G is a k-coloring αG : V (G)→ [k] such that the image of V (Hi) under αG has size χ(Hi)
for all i ∈ [d].

Equivalently, a link k-coloring maximizes the number of common free colors for all vertices within each
connected component.

We use Algorithm 1 to find vertices in an abstract graph C that correspond to link k-colorings. The
algorithm analyzes the structure of C to identify a set of candidate vertices. When C ∼= Ck(G) with k > χ(G),
this process succeeds and allows us to reconstruct the unique pair (G, k). The vertices successfully identified
by this algorithm are called abstract link vertices, formally defined in Definition 4.2.

Algorithm 1 (Reconstruction and Link Vertex Identification). Given a graph C, identify a subset of vertices
A ⊆ V (C), a graph G, and an integer k as follows:

(1) Let A be the set of vertices α ∈ V (C) where the neighborhood of α is a disjoint union of cliques. For
each α ∈ A, let r be the number of cliques in its neighborhood, and label them arbitrarily v1, . . . , vr.

(2) Let n be the maximum number of cliques in the neighborhood of any vertex in A. Remove from A
any vertex that does not attain this maximum (i.e., if r < n).

(3) For each α ∈ A, let t1, . . . , tn be the sizes of the n cliques in its neighborhood. Let mα be the number
of pairs 1 ≤ i < j ≤ n with strictly fewer than titj squares spanning the ith and jth clique in the
neighborhood of α. Let m be the maximum value of mα over all α ∈ A. Remove from A any vertex
α for which mα < m.

(4) For each α ∈ A, let Mα ∈ {0, 1}n×n be the matrix such that Mij = 1 if and only if there are strictly
fewer than titj squares spanning the ith and jth clique in the neighborhood of α.

(5) For each α ∈ A and connected component Hℓ induced byMα, let fℓ be the maximum number of ways
to select one vertex from each clique in the neighborhood of α that corresponds to a vertex in Hℓ

such that there is no square spanning the vertices corresponding to vi, vj for any i, j with Mi,j = 1.
For each of these fℓ sets of |V (Hℓ)| neighbors of α, label these edges with a distinct c ∈ [fℓ].

(6) Let f be the maximum value of
∑
ℓ fℓ over all α ∈ A. Remove from A any α for which

∑
ℓ fℓ < f .

(7) Let G be the graph with connected components H1, . . . ,Hd, as determined by an arbitrary adjacency

matrix Mα from Step 4. Calculate k = 1
d ·

(
f +

∑
ℓ∈[d] χ(Hℓ)

)
, where f is the maximum value from

Step 6.
(8) If C ̸∼= Ck(G), abort. Otherwise, return vertex set A, graph G, and integer k.

7

Definition 4.2. Given a graph C, an abstract link vertex of C is any vertex α belonging to the subset
A ⊆ V (C) returned by Algorithm 1. In other words, an abstract link vertex is one that survives Step 6,
provided the algorithm successfully identifies a graph G and an integer k such that C ∼= Ck(G).

Lemma 4.3. For a graph G and k > χ(G), there is a natural bijection between the link k-colorings of G
and the abstract link vertices of Ck(G).

Proof. We show that the natural bijection Φ: V (Ck(G))→ {k-colorings of G} restricts to a bijection between
the abstract link vertices of Ck(G) and the link k-colorings of G whenever k > χ(G). It suffices to prove that
the image of the abstract link vertices under Φ contains only link k-colorings and that every link k-coloring
is achieved by some abstract link vertex. Recall that using the α 7→ αG notation from Section 2, the symbol
α represents an element of V (Ck(G)) and αG = Φ(α) is the corresponding k-coloring of base graph G.

Let αG be a link k-coloring of G. Suppose G has d connected components H1, . . . ,Hd. We show that
α = Φ−1(αG) remains in set A after all steps of Algorithm 1. The neighborhood of α in Ck(G) consists of
the disjoint union of n = |V (G)| cliques, because k > χ(G) implies that each vertex of G has at least one
available color in a link k-coloring. Moreover, all vertices in V (C) satisfy the condition in Step 1 for any
coloring graph C. Indeed, the edges of any clique in a coloring graph correspond to a single vertex changing
color, and any coloring has a finite number of vertices with free colors, yielding a neighborhood of cliques.
In particular, no vertex of C can have a neighborhood with more than n cliques, so α survives Step 2.

Next, consider Step 3. For every edge vivj ∈ E(G), the corresponding cliques in the neighborhood of
α have fewer than titj squares. This is because vi and vj have at least one common free color in a link
k-coloring, and a square corresponding to assigning this same color to both vertices is necessarily missing
since vivj ∈ E(G). Conversely, for any vivj ̸∈ E(G), the corresponding cliques have exactly titj squares, as
any combination of free colors for vi and vj produces a valid k-coloring. Hence, mα = |E(G)| for this α.
Additionally, no β ∈ V (C) can have mβ > |E(G)|, because this would require some i, j with fewer than titj
squares but vivj ̸∈ E(G), a contradiction. Therefore, α achieves the maximum m and survives Step 3.

Now consider Step 6. By definition of link k-coloring, for each ℓ ∈ [d], every vertex in V (Hℓ) shares exactly
k − χ(Hℓ) common free colors in αG. Each of these common free colors is associated with nℓ = |V (Hℓ)|
neighbors of α which pairwise have spanning squares if and only if the pair of corresponding vertices in
G are non-adjacent. Thus, for each component Hℓ, the value of fℓ calculated in Step 5 is exactly fℓ =
k − χ(Hℓ). Moreover, for any β ∈ V (Ck(G)), a missing square between any two neighbors of β implies that
the corresponding two vertices of G take on the same color moving from β to the respective neighbors. Thus,
maximality of the definition of link k-colorings ensures that α survives Step 6 and is included in the set A
returned by the algorithm.

Conversely, we show that any abstract link vertex α in Ck(G) corresponds to some link k-coloring αG of
G. For α to be in the final set A:

• Surviving Step 2 means that every vertex vi ∈ V (G) has at least one free color in αG.
• Surviving Step 3 implies mα = |E(G)|. Hence, for every edge vivj ∈ E(G), the vertices vi and vj
share at least one common free color in αG.

• Surviving Step 6 requires
∑
ℓ fℓ to be maximal. This corresponds precisely to colorings where each

component Hℓ uses exactly χ(Hℓ) colors, maximizing the number of common free colors within that
component. By Definition 4.1, we deduce that αG is a link k-coloring.

Therefore, Φ restricted to the set of abstract link vertices is a bijection onto the set of link k-colorings. □

Figure 2 presents three non-link colorings that are rejected at different steps of Algorithm 1 and one link
coloring that survives. The labels within braces next to a given vertex indicate its free available colors.

In the proof of Lemma 4.3, we saw that the vertices γ that survive Step 2 correspond to k-colorings in
which each base graph vertex has a free color. Similarly, the vertices β that survive Step 3 represent those
colorings in which every pair of adjacent base graph vertices share a common free color. All such colorings
yield the same adjacency matrix in Step 4. This shared adjacency matrix is central to Theorem 4.4, which
guarantees the uniqueness of the graph G and the value of k produced by the algorithm.
Theorem 4.4. For any graph G and k > χ(G), there is no graph G′ and k′ > χ(G′) with G ̸∼= G′ or k ̸= k′

such that Ck(G) ∼= Ck′(G′). Moreover, Algorithm 1 produces the unique (up to graph isomorphism) G and k.

8

Proof. Suppose that Ck(G) ∼= Ck′(G′) for graphs G and G′ where k > χ(G) and k′ > χ(G′). We show that
G ∼= G′ and k = k′. The isomorphism C ∼= Ck(G) ∼= Ck′(G′) means that Algorithm 1, run on C, identifies the
same set A of abstract link vertices, regardless of whether we consider C as Ck(G) or Ck′(G′). By Lemma 4.3,
this set A is in bijection with the link k-colorings of G, and also in bijection with the link k′-colorings of G′.

Algorithm 1 (Step 2) identifies n as the maximum number of cliques in the neighborhood of any abstract
link vertex. This number n corresponds to |V (G)| when interpreting C as Ck(G) and to |V (G′)| when
interpreting C as Ck′(G′). Therefore, |V (G)| = |V (G′)| = n. Algorithm 1 (Steps 3 and 4) derives an
adjacency matrix Mα based on the pattern of missing squares between neighborhood cliques of abstract
link vertices. Since this pattern is solely determined by the structure of C, it yields the same Mα (up to
permutation), regardless of whether C is interpreted as Ck(G) or Ck′(G′). As Mα represents the adjacency
matrix of the base graph in both interpretations (because k > χ(G) and k′ > χ(G′)), it follows that G ∼= G′.

Furthermore, the algorithm calculates the maximum value f =
∑
ℓ fℓ in Step 6. Using the formula from

Step 7, we have k = 1
d

(
f +

∑
ℓ∈[d] χ(Hℓ)

)
and k′ = 1

d′

(
f +

∑
ℓ∈[d′] χ(H

′
ℓ)
)
. Since G ∼= G′, the connected

components of the two graphs are isomorphic. After relabeling the component indices, we have d = d′ and
Hℓ
∼= H ′

ℓ for each ℓ ∈ [d]. As f is also derived uniquely from C, it follows that k = k′. □

δG

1

2

34

2

1

{3, 4}

{4}

{1}

{3}

{2, 4}

γG

1

2

34

2

{3, 4}

{4}

{1}{1}

{3}

βG

1

2

34

2

{3, 4, 5}

{4, 5}

{1, 5}{1, 5}

{3, 5}
αG

1

2

31

2

{3, 4, 5}

{4, 5}

{4, 5}{4, 5}

{3, 4, 5}

Figure 2. The vertex δ ∈ V (C4(G)) corresponding to coloring δG does not survive Step 2
of Algorithm 1 because the vertex colored 3 has no free color (free colors are indicated by
colors within braces); γ ∈ V (C4(C5)) survives Step 2 but not Step 3 of Algorithm 1 because
each vertex in γG has a free color but not all adjacent vertices share a common free color;
β ∈ V (C5(C5)), survives Step 3 but not Step 6 because every pair of adjacent vertices in βG
has a common free color but there is only one common free color for all vertices; αG is a
link 5-coloring of C5 such that α ∈ V (C5(C5)) survives Algorithm 1 because colors 4 and 5
are free for each vertex and no other coloring can have more than 5 − χ(C5) = 2 common
free colors.

Remark 4.5. The adjacency matrix of G can be reconstructed not only from abstract link vertices in
V (Ck(G)), but also from certain other vertices that we can completely characterize. Specifically, for any
coloring in which every pair of adjacent vertices in G shares a common free color, the corresponding vertex
in Ck(G) will also yield the correct adjacency matrix. We refer to such colorings as weak link k-colorings of
G. Unlike link k-colorings, weak link k-colorings do not require that all vertices within a given connected
component share a common free color; they only require that each pair of adjacent vertices in G shares a
common free color (which may differ between pairs). For example, the coloring βG in Figure 2 is a weak

9

link 5-coloring, but not a link 5-coloring. The concept of link k-colorings, along with Algorithm 1, provides
a systematic framework for identifying vertices from which the graph G can be uniquely reconstructed. In
contrast, it remains unclear how the vertices corresponding to weak link k-colorings can be reliably identified
using only the structure of the coloring graph.

In the following subsections, we will extract more information from the coloring graph. We remark that
the definition of abstract link vertices applies to any abstract graph C, including those of the form Cχ(G′)(G

′).
This is true even though the concept of “link χ(G′)-colorings” is not defined analogously to link k-coloring
where k > χ(G). However, it is not yet clear whether Algorithm 1 can successfully run to completion on
a graph Cχ(G′)(G

′) without aborting. For example, consider the 5-vertex graph G′ formed by connecting a
vertex of K2 to a vertex of K3 by a single edge. Its 3-coloring graph, C = C3(G′), has 24 vertices: C is the
disjoint union of six paths of length 3 (that is, on four vertices). The degree-2 vertices in C survive Step 6 of
Algorithm 1, yielding the parameters n = 2,m = 1, f = 1 for a potential base graph. The resulting matrix
M in Step 4 corresponds to G = P2, and Step 7 then calculates k = f + χ(P2) = 1 + 2 = 3. However, the
algorithm aborts in Step 8 because the input graph C is not isomorphic to C3(P2) ∼= C6.

The proof that Cχ(G′)(G
′) can never survive Algorithm 1 will follow from Theorem 4.28; for now, we

observe that the properties of abstract link vertices already place structural constraints on G′. These
constraints relate to the number and adjacency of vertices in G′ that have free colors available at the
corresponding coloring. In the previous example, consider an interior vertex α of one of the copies of P4 in C.
Let β1, β2 be the two neighbors of α. The edges αβ1 and αβ2 in C are neither part of a common clique nor
part of an induced square. This necessarily represents a coloring in G′ in which only two vertices, say u and
v, have free colors, and all other vertices have their colors locked (that is, cannot be recolored). Furthermore,
the lack of squares indicates that u and v must be adjacent in G′. In other words, if Ck(G′) is isomorphic
to the disjoint union of six copies of P4, then G

′ contains P2 as a subgraph. This is related to the fact that
the adjacency matrix produced by Step 4 corresponds to P2. Lemma 4.6 generalizes this observation.

Lemma 4.6. If C ∼= Ck(G) ∼= Cχ′(G′) where k > χ(G) and χ′ = χ(G′), then G′ contains G as a subgraph.
Moreover, if G consists of connected components H1, . . . ,Hd, then G

′ contains the connected components of
G as vertex-disjoint induced subgraphs. That is, there exists an injection ϕ : V (G) → V (G′) such that for
any i ∈ [d] and u, v ∈ Hi, we have uv ∈ E(G) if and only if ϕ(u)ϕ(v) ∈ E(G′).

Proof. By Theorem 4.4, we know that Algorithm 1 run on C produces a unique (up to permutation) adjacency
matrix Mα associated with any abstract link vertex. The isomorphism C ∼= Cχ(G′)(G

′) induces a mapping
α 7→ αG′ so that each abstract link vertex α ∈ V (C) corresponds to a χ′-coloring αG′ of G′. The neighborhood
structure around α in C, specifically the cliques and the pattern of missing induced squares analyzed in Step 3
and Step 4 of Algorithm 1, implies that the corresponding χ′-coloring αG′ in G′ has exactly n = |V (G)|
vertices with at least one free color. Furthermore, a pair of these vertices corresponding to missing induced
squares in C must be adjacent in G′. Since Mα is the adjacency matrix of G by Theorem 4.4, it follows that
G is a subgraph of G′. We now make the inclusion G ↪→ G′ explicit.

Label the n vertices in G as v1, . . . , vn, corresponding to the n cliques in the neighborhood of α in C.
Via the isomorphism C ∼= Cχ′(G′), each clique associated with vj in the Ck(G) interpretation corresponds to
changing the color of a unique vertex ϕ(vj) in G

′. This mapping ϕ is well-defined because each clique in the
neighborhood of a vertex in Cχ′(G′) corresponds to the set of colorings obtained by changing the color of a
single vertex in G′. In addition, the resulting map ϕ : V (G)→ V (G′) is an injection.

As G′ contains G as a subgraph, ϕ(u)ϕ(v) ∈ E(G′) for every edge uv ∈ E(G). To show that each
component ϕ(Hi) is an induced subgraph of G′, suppose for a contradiction that there exists an edge
ϕ(u)ϕ(v) ∈ E(G′) with uv /∈ E(G) for some u, v ∈ V (Hi). As uv /∈ E(G), by Theorem 4.4, every spanning
square is present between the cliques in C associated with base graph vertices u and v. Since u and v are
in the same connected component Hi of G, there exists a path u = w1, w2, . . . , wr−1, wr = v within Hi such
that wjwj+1 ∈ E(G) for each j ∈ [r − 1]. Thus, for each adjacent pair (wj , wj+1) on this path, there is
at least one missing spanning square between their corresponding cliques in C. The structure of missing
squares along the path (when interpreting C via G) implies that the vertices w1, . . . , wr must share at least
one common free color in the link k-coloring in G, αG, associated with α. Interpreting C via G′, the same
structural properties hold: squares are missing between cliques for ϕ(wj) and ϕ(wj+1), while all squares
are present between cliques for ϕ(w1) = ϕ(u) and ϕ(wr) = ϕ(v). By the required structure of the missing

10

spanning squares, there must be a common free color for all vertices ϕ(w1), . . . , ϕ(wr). In particular, this
implies that ϕ(u) and ϕ(v) have a common free color. Since all spanning squares exist between the cliques
for ϕ(u) and ϕ(v), any combination of assigning a free color fu to ϕ(u) and a free color fv to ϕ(v) results in
a valid coloring. Since they share a common free color, we can set fu = fv, resulting in a proper coloring of
G′ where ϕ(u) and ϕ(v) have the same color. This contradicts the assumption that ϕ(u)ϕ(v) ∈ E(G′). □

Under the same hypothesis of Lemma 4.6, we will show that G′ has strictly more vertices than G. We
first recall the following folklore lemma [Wes01, Exercise 5.2.7].

Lemma 4.7. Given a proper k-coloring of a graph H with χ(H) = k, for each 1 ≤ i ≤ k, there exists a
vertex v with color i such that v is adjacent to vertices of the other k − 1 colors.

Proof. Fix any color i, and let Xi be the set of vertices colored i. Suppose, for contradiction, that every
v ∈ Xi is missing at least one color in its neighborhood N(v). That is, for each v ∈ Xi, there is some color
j ̸= i not present in N(v). We recolor v with j while still maintaining a proper coloring. By repeating this
process for every v ∈ Xi, we eliminate color i entirely, resulting in a proper (k − 1)-coloring of H. This
contradicts the assumption that χ(H) = k. Thus, there is at least one vertex vi ∈ Xi whose neighborhood
includes all k − 1 other colors. □

Lemma 4.8. If C ∼= Ck(G) ∼= Cχ′(G′) where k > χ(G) and χ′ = χ(G′), then |V (G′)| ≥ |V (G)|+ χ′.

Proof. Under the interpretation of C as Ck(G), let α ∈ V (C) be an abstract link vertex, and let αG be the
corresponding link k-coloring of G. The neighborhood of α consists of n = |V (G)| distinct cliques associated
with vertices in G changing their current color at αG to a free color. Under the interpretation of C as Cχ′(G′),
the same vertex α represents a proper χ′-coloring αG′ of G′. The same n cliques around α must arise from
n distinct vertices in G′ that can be recolored from their current color at αG′ . By Lemma 4.7, there are at
least χ′ vertices of G′ that are locked in the coloring αG′ , that is, vertices in G′ that cannot be recolored.
Consequently, |V (G′)| ≥ |V (G)|+ χ′. □

Since χ′ > 0, Lemma 4.8 has the following immediate consequence.

Corollary 4.9. Given a graph G and k > χ(G), there is no graph G′ with |V (G)| = |V (G′)| such that
Ck(G) ∼= Cχ(G′)(G

′).

This corollary demonstrates that coloring graphs with surplus colors are complete graph invariants, when
restricted to base graphs of the same order. Our main result Theorem 4.28 strengthens Corollary 4.9 by
removing the hypothesis |V (G)| = |V (G′)|. When G and G′ have different orders, proving that Ck(G) ̸∼=
Cχ(G′)(G

′) is highly non-trivial. The remainder of the paper is devoted to resolving this task by examining
the structure of coloring graphs with surplus colors and identifying features absent in χ-coloring graphs.

The following subsections introduce techniques that go beyond the scope of Algorithm 1 to explore further
structural properties that must hold if Ck(G) ∼= Cχ(G′)(G

′) with k > χ(G). Ultimately, these properties will
lead to a contradiction, proving that such an isomorphism is impossible.

4.2. Link vertices are associated with unique coloring partitions of a base (sub)graph. We now
introduce Algorithm 2. Given C ∼= Ck(G) with k > χ(G) and an abstract link vertex α of C, this algorithm
labels certain edges incident to α in C. This labeling corresponds to a unique component-wise partition that
reflects the underlying coloring αG of G. The resulting labeling is a key ingredient in Lemma 4.12. This
important lemma establishes that if Ck(G) ∼= Cχ(G′)(G

′), then the underlying coloring αG′ ofG′ corresponding
to α has the same component-wise partition identified from G, when restricted to the induced copies of the
components of G (see Lemma 4.6).

Definition 4.10. Given a k-coloring αG : V (G) → {1, 2, . . . , k} of graph G, the αG-partition of V (G) is
{α−1

G (1), . . . , α−1
G (k)}. If G has d connected components H1, . . . ,Hd, the component-wise partition for αG is

P (αG) = (P 1, . . . , P d) where P i = {α−1
G (1) ∩ V (Hi), . . . , α

−1
G (k) ∩ V (Hi)} for each i ∈ [d]. The component-

wise integer partition for αG is the tuple λ(αG) = (λ1, . . . , λd) where λij = |P ij | for all i ∈ [d], j ∈ [ℓ(P i)].

The component-wise partitions define equivalence classes of k-colorings of a graph G with connected
components H1, . . . ,Hd. We describe this equivalence in terms of group actions. Let Sdk = Sk × · · · × Sk
denote the d-fold product of the symmetric group Sk on k symbols. For σ = (σ1, . . . , σd) ∈ Sdk and a

11

k-coloring αG of G, define σ · αG to be a k-coloring by assigning the colors (σ · αG)(v) := σi(αG(v)) for
v ∈ V (Hi). This defines a group action of Sdk on the set of k-colorings of G. We say two k-colorings αG
and βG are equivalent if they belong to the same orbit under this Sdk action (that is, βG = σ · αG for some
σ ∈ Sdk). Each orbit is associated with a unique component-wise partition P . Any k-coloring αG consistent
with P can serve as a representative for its equivalence class. However, non-equivalent k-colorings (belonging
to different orbits) may have the same component-wise integer partition. Figure 3 presents such an example.

αG

1

2

31

v1

v2

v3v4

βG

3

2

31

v1

v2

v3v4

Figure 3. Non-equivalent link 4-colorings αG and βG of the paw graph G have
distinct component-wise partitions, P (αG) = ({{v1, v4}, {v2}, {v3}}) and P (βG) =
({{v1, v3}, {v2}, {v4}}). However, while non-equivalent, these colorings have the same
component-wise integer partition, λ(αG) = λ(βG) = (211).

The following algorithm extends the color labels to edges of certain hypercubes incident to a given abstract
link vertex α of a graph C. Subsequent lemmas establish the uniqueness of this labeling (up to color
permutations). Specifically, Lemma 4.11 shows that when C ∼= Ck(G) for k > χ(G), Algorithm 2 correctly
identifies the unique component-wise partition P (αG) associated with the link k-coloring αG.

Algorithm 2 (Partition Extraction). Given a graph C and abstract link vertex α ∈ V (C), identify a list of
partitions P for αG as follows:

(1) Run Algorithm 1 to obtain G with connected components H1, . . . ,Hd and k > χ(G) such that
C ∼= Ck(G), or abort if reconstruction fails.

(2) For every i ∈ [d] and free color c ∈ [fi] for fi as in Step 5 of Algorithm 1, let Vi,c ⊆ V (C) be the set
of |V (Hi)| neighbors of α corresponding to vertices in Hi being recolored to color c from α.

(3) For every partition P i ⊢ Vi,c with ℓ(P i) = χ(Hi), determine whether to retain P i as follows.
(4) For each j ∈ [χ(Hi)], check whether the neighbors of α corresponding to P ij extend to a hypercube

in C, and reject P i and go back to Step 3 if any does not.
(5) For αij antipodal to α on the hypercube associated with P ij , first check whether αij is an abstract link

vertex according to Algorithm 1. If not, reject P i and return to Step 3. Otherwise, check whether
all neighbors of αij in the hypercube correspond to a common free color at αij . If not, reject P

i and

return to Step 3. Otherwise, retain P i, assign color fi + j as the color of each v ∈ P ij at αG, and
proceed to find a partition for the next connected component.

(6) Return the successfully identified component-wise partition P = (P 1, . . . , P d).

The following lemma states that Algorithm 2 correctly identifies the unique component-wise partition
for a link k-coloring when run on the surplus coloring graph C ∼= Ck(G) with k > χ(G). The result holds
regardless of how the base graph vertices v1, . . . , v|V (G)| are initially labeled in Algorithm 1 (provided the
labeling is consistent with the adjacency matrix). Figure 4 below explains how Algorithm 2 unfolds for the
4-coloring graph of the paw graph from Figure 3. Note that Algorithm 1 could have interchanged the v3 and
v4 labels due to the automorphism of G.

Lemma 4.11. Let C ∼= Ck(G) for k > χ(G). Let α ∈ V (C) be an abstract link vertex corresponding to a link
k-coloring αG of G. Then Algorithm 2, run with input C and vertex α, returns the unique component-wise
partition for αG. In particular, for each connected component Hi of G where i ∈ [d], exactly one candidate
partition P i will satisfy the conditions in Steps 4 and 5.

12

Proof. Let P (αG) = (P 1, . . . , P d) be the component-wise partition for link k-coloring αG. Fix i ∈ [d], j ∈
[χ(Hi)] and any color c among the fi = k − χ(Hi) common free colors for vertices in Hi from coloring αG.
Let (αij)G be the link k-coloring obtained from αG by recoloring every vertex in P ij to color c, which has

the same component-wise partition P (αG). By Lemma 4.3, the vertex αij = Φ−1((αij)G) in C must be an

abstract link vertex. Moreover, α = Φ−1(αG) and α
i
j are antipodal vertices of a |P ij |-dimensional hypercube

in C. This is because the underlying link k-coloring (αij)G differs from αG by a partial transposition taking

αG’s jth part of the ith connected component and recoloring it c. Furthermore, the neighbors of αij within

this hypercube correspond to changing the vertices in P ij from color c back to their original common color
in αG. Thus, this choice of P = P (αG) satisfies all the checks in Algorithm 2.

Now, consider a different candidate partition P̃ = (P̃ 1, . . . , P̃ d) for αG. If P̃ i ̸= P i for some i ∈ [d],

then at least one part P̃ ij ∈ P̃ i contains two vertices v and w with αG(v) ̸= αG(w). When Algorithm 2

considers the part P̃ ij , there are two possibilities. First, neighbors of α corresponding to changing vertices

in P̃ ij may not survive Step 4. Otherwise, these vertices will extend to a hypercube whose antipodal vertex
α̃ corresponds to a coloring α̃G where v and w have color c. Upon running Algorithm 1 at α̃, the path of
recolorings returning to α involves changing v back to αG(v) and w back to αG(w). Since these colors are
different, the neighbors of α̃ on the return path do not correspond to a single common free color, failing
Step 5. Therefore, P (αG) is the unique component-wise partition for αG returned by the algorithm. □

α

v1

v2

v3

v4

Steps 1 and 2

αγ

β

v1

v2

v3

v4

({{v1, v3}, {v2}, {v4}})

α

v1

v2

v3

v4

({{v1, v4}, {v2}, {v3}})

Figure 4. Algorithm 2 for the link k-coloring αG = 1231 in C4(G) from Figure 3. First,
Step 1 associates all incident edges at α ∈ V (C4(G)) with vertex labels from the base graph
consistent with the reconstructed graph G. Step 2 identifies all of the green highlighted
vertices in C4(G) as changing to a common free color (in this case color 4), as indicated by
the sequence of missing squares between them. We then start testing partitions of length
3. The partition ({{v2, v3}, {v1}, {v4}}) fails Step 4 as there is no hypercube extended from
the green vertices labeled v2 and v3. The partition ({{v1, v3}, {v2}, {v4}}) survives this step
but fails Step 5 as the vertex γ corresponding to γG = 1234 in the second picture is not an
abstract link vertex. Moreover, while β with βG = 4241 is an abstract link vertex, it fails
Step 5 as its return trip to α = 1231 does not use a common free color (in this case color
3). The correct partition ({{v1, v4}, {v2}, {v3}}) survives every step in Algorithm 2 as the
colored vertices in the third picture are all abstract link vertices that have a common free
color returning to α.

When applied to an abstract link vertex α in a coloring graph Ck(G) with k > χ(G), Algorithm 2 assigns a
specific proper coloring αG : V (G)→ [k]. Moreover, by providing free color labels and identifying the correct
partition, Algorithm 2 consistently assigns a proper coloring to all hypercube-adjacent abstract link vertices
αij . However, this consistency is only guaranteed within this local neighborhood. Running the algorithm on
an abstract link vertex β that is not hypercube-adjacent to α may produce a labeling that is inconsistent
with the labeling assigned to α and its hypercube neighborhood. To remedy this limitation, Algorithm 3 in
Section 4.3 enhances Algorithm 2 through a more sophisticated labeling process that maintains consistency
across equivalent abstract link vertices.

13

Assuming the hypothetical isomorphism C ∼= Ck(G) ∼= Cχ(G′)(G
′), we make the following observation. The

labels for common free colors identified by Step 5 in Algorithm 1 that reconstructs G also correspond to
common free colors for the relevant vertices in G′. In remainder of the paper, we will often refer to a specific
hypothesis.

Hypothesis 1. Suppose C ∼= Ck(G) ∼= Cχ′(G′) where k > χ(G) and χ′ = χ(G′). This pair of isomorphisms,
C ∼= Ck(G) and Ck(G) ∼= Cχ′(G′), will be fixed, as will the underlying colorings of G and G′ corresponding to
each vertex in C. Assume H1, . . . ,Hd are the connected components of G. If α ∈ V (C) is an abstract link
vertex, then αG and αG′ will be the corresponding link k-coloring of G and χ′-coloring of G′, respectively.
By Lemma 4.6, G′ contains subgraphs H ′

1, . . . ,H
′
d such that H ′

i
∼= Hi for each i ∈ [d]. We also recall the

embedding ϕ : V (G)→ V (G′) from Lemma 4.6.

Next, we show that Algorithm 2 successfully extracts the unique vertex partition P i for each induced
component H ′

i in G
′ at the same abstract link vertex of C.

Lemma 4.12. Assume Hypothesis 1. For each i ∈ [d], αG′ restricted to V (H ′
i) uses exactly χ(Hi) colors.

Furthermore, there exists an injection ψi : [k] → [χ′] such that αG′ (ϕ(v)) = ψi(αG(v)) for each v ∈ V (Hi).
That is, the partition of V (H ′

i) induced by αG′ is equivalent (via ϕ and ψi) to the partition P i of V (Hi)
induced by αG.

Proof. Lemma 4.11 ensures that Algoritm 2, run on C and α, correctly identifies the unique component-
wise P (αG) = (P 1, . . . , P d) associated with the link k-coloring αG. Since the algorithm relies only on the
structure of C, it must identify the same partitions when interpreting C as Cχ′(G′). We will confirm that the
identified partition P i corresponds to a valid proper coloring of V (H ′

i) represented by the coloring αG′ .
By Lemma 4.6, each H ′

i is an induced subgraph of G′. Therefore, the adjacency relations within H ′
i are

consistent with Hi, and the partition P i defines independent sets within H ′
i. There is only one potential

issue: the edges between V (H ′
i) and V (G′) \ V (H ′

i) might conflict with the coloring pattern dictated by P i.
However, the structural analysis performed by Algorithm 2 works equally well for the G′ interpretation.

Suppose α, α′ are antipodal abstract link vertices on a hypercube associated with changing an independent
part T ∈ P i from color c to color c. This structure in C implies that the corresponding χ′-colorings αG′ and
αG′ differ exactly on the vertices of ϕ(T), where αG′(ϕ(v)) = c and αG′(ϕ(v)) = c for all v ∈ T . The same
analysis holds for all such hypercube transitions identified by Algorithm 2. Crucially, Algorithm 2 analyzes
each component Hi (and thus H ′

i) independently based on its internal structure and common free colors.
It ensures the partition Pi reflects the coloring within H ′

i. It does not, however, determine relationships
between the color sets used for different components H ′

i and H
′
j .

Therefore, for each induced subgraph H ′
i of G′, the identified partition P i accurately reflects the color

classes within V (H ′
i) under the coloring αG′ . This is formalized by defining, for each component Hi, a map

ψi : [k]→ [χ′] that translates the colors used by αG on Hi to those used by αG′ on H ′
i. Concretely, ψi maps

the color αG(v) to the color αG′(ϕ(v)) for each v ∈ V (Hi). The choice of ψi is not unique, because it only
needs to be prescribed on the set of χ(Hi) colors used by the link k-coloring αG. By the preceding discussion,
ψi is injective and the relation αG′ (ϕ(v)) = ψi(αG(v)) holds for each v ∈ Hi by definition. □

Lemma 4.12 guarantees that the internal coloring structure of each subgraph H ′
i in G′ matches the

corresponding Hi in G (up to color permutation) at any abstract link vertex α. However, it does not
constrain the relationship between the actual sets of colors used. For instance, the set of χ(Hi) colors used
in H ′

i might partially or fully overlap with the set of χ(Hj) colors used in H ′
j . By analyzing Cχ′(G′) at an

abstract link vertex, Algorithm 2 determines the partition within each H ′
i consistently. However, we cannot

guarantee that the color labels we have chosen for individual H ′
i patch together in a consistent way to yield a

proper coloring αG′ of G′. The subtlety arises because there may be additional edges in G′, including edges
between u ∈ V (H ′

i) and v ∈ V (H ′
j). See Figure 5 for an example of this phenomenon.

Another key subtlety arises when applying Lemma 4.12 in the Cχ′(G′) context. The graph G′ may contain
multiple copies of the subgraph G (or its components Hi). Merely identifying a partition corresponding to
H ′
i at an abstract link vertex α does not guarantee we are looking at the same copy of Hi within G

′ when
we move to a different abstract link vertex β (see Figure 6). However, the algorithm introduced in the next
subsection helps resolve this issue by analyzing how different link vertices with the same vertex partition are
connected within C. This will effectively fix the specific subgraph of G′ under consideration, which allows

14

reasoning about the interaction between this fixed subgraph and the rest of G′. We achieve our goal by
introducing a new structure, termed labeled link graph. The vertices in this new graph are link vertices in a
given equivalence class, with an edge between each pair of equivalent link vertices that are antipodal vertices
of a hypercube in the underlying coloring graph. As demonstrated in the following subsection, analyzing the
labeled link graph associated with a link vertex α in C removes the ambiguity about which G subgraph of
G′ is being considered.

G, k = 2

αG

1 1v1 v2

G′, k′ = 4

α′
G′

1 3v1 v2

3 1

4 2

Figure 5. A 2-coloring αG of G consisting of two isolated vertices, where k > χ and a
3-coloring α′

G′ of G′ where k′ = χ′. In both αG and α′
G′ , only v1 and v2 have exactly one

free color, and they can be recolored independently. The neighborhood structure around
abstract link vertex α ∈ Ck(G) and α′ ∈ Cχ′(G′) are identical. Applying Lemma 4.12,
we identify the trivial partitions {v1} for H1

∼= H ′
1 and {v2} for H2

∼= H ′
2. This reflects

α′
G′(v1) = 1 and α′

G′(v2) = 3 in G′. However, this local analysis does not reveal the edge
v1v2 in G′, so we cannot infer whether v1 and v2 can take the same color. We note that G
and G′ will not have equivalent coloring graphs; this example merely illustrates a subtlety
between locally identical vertices in Ck(G) and Cχ′(G′).

αG′

2

1

2 3

1

1

{3}

{3}

βG′

3

1

2 3

1

1

{2}

{2}

Figure 6. A 6-vertex graph G′ and two colorings αG′ and βG′ which are adjacent in
Cχ(G′)(G

′). When run on any vertex in C3(G′), Algorithm 1 will reconstruct the graph
G = P2 and k = 3 > χ(G), as exactly two adjacent vertices in G′ have a common free
color and all other vertices are locked. However, the corresponding subgraph G = P2 in G′

changes depending on the underlying proper χ′-coloring of G′.

15

4.3. Equivalent link vertices and labeled link graphs. Building on Algorithm 2, we now extend the
labeling process for a coloring graph with surplus colors. For C ∼= Ck(G) where k > χ(G), we aim for a
consistent labeling of the hypercube structures connecting equivalent link vertices. We first establish a series
of lemmas demonstrating how equivalent link k-colorings are connected within C.

Let αG be a link k-coloring of graph G with connected components H1, . . . ,Hd where k > χ(G). Let
i ∈ [d], and let σ be a transposition in the symmetric group Sk swapping two colors in [k].

Lemma 4.13. Define the coloring σi(αG) by applying the transposition σ only in Hi by setting σi(αG) =
σ(αG(v)) for v ∈ V (Hi) and σi(αG) = αG(v) for v /∈ V (Hi). Then the corresponding vertices α and σi(α)
of Ck(G) are in the same connected component.

Proof. Suppose without loss of generality that G is connected (so d = 1) and σ = (12). The argument
extends to disconnected graphs because σ does not affect vertices outside Hi.

Case 1. Neither 1 nor 2 is in the image of αG.
In this case, αG = (12)αG, so the corresponding vertices are identical and thus trivially connected.
Case 2. Exactly one of 1 or 2 is in the image of αG.
Then α and (12)α are antipodal vertices on a cube of dimension max{|α−1

G (1)|, |α−1
G (2)|}, because the

vertices colored 1 in αG (or 2, if none are 1 in αG) form the dimensions of a hypercube representing their
colors independently changing from 1 to 2 (or 2 to 1, if none are 1 in αG) moving from α to (12)α.

Case 3. Both 1 and 2 are in the image of αG.
Since k > χ(G), there must be at least one color not used by αG. Without loss of generality, assume

that color 3 is not in the image of αG. By the same reasoning from Case 2, the sequence of link colorings
(α, (13)α, (12)(13)α, (23)(12)(13)α) are pairwise antipodal vertices connected via hypercubes, and hence α
and (23)(12)(13)α = (12)α are connected. □

Let V1 = α−1
G (1) and V2 = α−1

G (2). In Case 3 of Lemma 4.13, the path of connectivity is established
by traversing hypercubes. We describe this transformation explicitly by labeling the path of hypercubes
connecting α and (12)α as follows:

(4.1) α
1V13←−→ (13)α

2V21←−→ (12)(13)α
3V12←−→ (23)(12)(13)α = (12)α

where the notation c1V c2 indicates that every vertex in part V changes its color from c1 to c2.
We refer to the equivalence relation introduced after Definition 4.10. Lemma 4.13 extends to show

connectivity between any two equivalent link k-colorings in Ck(G). This follows because any element in
the group Sdk = Sk × · · · × Sk (acting on the set of link k-colorings) can be generated by a sequence of
transpositions within components, and Lemma 4.13 handles connectivity for each transposition.

Corollary 4.14. If αG and βG are equivalent link k-colorings of G with k > χ(G), then the corresponding
vertices in Ck(G) are in the same connected component.

The proof of Lemma 4.13 also reveals how equivalent colorings differing on partial transpositions are
connected via hypercubes of a certain dimension. Every nontrivial transposition of α is connected to α by
either one hypercube (Case 2), or a chain of three hypercubes (Case 3). Furthermore, in Case 3 (where αG
uses 1 and 2, and we assume 3 is free), there exists a second path of three hypercubes connecting α to (12)α:

(4.2) α
2V23←−→ (23)α

1V12←−→ (12)(23)α
3V21←−→ (13)(12)(23)α = (12)α .

The two paths (4.1) and (4.2) are internally disjoint; their union creates a 6-cycle of cubes. Figure 1 illustrates
how C3(P3) is a 6-cycle of cubes of alternating dimensions 1 and 2. This holds more generally for C3(Kn1,n2),
noting that P3

∼= K1,2, as formalized by the following corollary and illustrated in Figure 7.

Corollary 4.15. Let αG be any link k-coloring of G with components H1, . . . ,Hd and k > χ(G). Suppose
αG has component-wise integer partition vector λ(αG) = (λ1, . . . , λd) where λi ⊢ χ(Hi). Then for each i ∈ [d]
and any two indices 1 ≤ j1 < j2 ≤ χ(Hi), the coloring graph Ck(G) contains C3(Kλi

j1
,λi

j2
) as a subgraph.

Figure 7 shows an example of a 6-cycle of cubes, where for a base graph G the parts defined by V1 =
{v4, v5, v6} and V2 = {v1, v3} cycle through colors 1,3, and 4. As |V1| = 3 and |V2| = 2 the resulting subgraph
in C4(G) is isomorphic to C3(K3,2). The six abstract link vertices are named links because they serve as
common vertices shared by a family of cycles within C3(K|V1|,|V2|). Each cycle in this family is composed

16

of three paths of length |V1| and three paths of length |V2|, with each path traversing one of the six cubes,
for a total length of 3(|V1|+ |V2|). This entire structure C3(K|V1|,|V2|), visualized as a 6-cycle of cubes, is an
induced subgraph of Ck(G). Moreover, every 6-cycle of cubes is also “induced” from a hypercube perspective.
This means the six link vertices are only adjacent to each other (via hypercubes) as dictated by the 6-cycle
structure, with each vertex connecting to exactly two others.

Figure 7. The 6-cycle of cubes defined by abstract link vertex α, free color 4, and parts
V1 = {v4, v5, v6} and V2 = {v1, v3}. The 6 red vertices are the 6 abstract link vertices
that participate in the 6-cycle. All black vertices are the parts V1 or V2 independently
changing colors to reach the next abstract link vertex. In our notation, this 6-cycle of cubes

is described as α
1V14←−→ α1

3V21←−→ β
4V13←−→ γ

1V24←−→ δ
3V11←−→ α2

4V23←−→ α.

The results in this subsection so far pertain to structures in coloring graphs with surplus colors. Algo-
rithm 3 describes a procedure to identify hypercubes associated with some abstract link vertex α to propagate
consistent cube labels, even without assuming surplus colors. The algorithm begins with an abstract link
vertex α and the color and vertex labels for its base graph as provided by Algorithms 1 and 2. By iteratively
rerunning Algorithm 2 and analyzing 6-cycles of cubes, Algorithm 3 ensures that color and vertex labels are
consistent across neighboring link vertices. This process continues until the entire labeled link graph associ-
ated with α is generated and labeled. In Lemma 4.19, we prove that labeling decisions made by Algorithm 3
are uniquely determined for surplus coloring graphs (up to the choice of a bijection α 7→ αG).

Recall that the group Sdk acts on the set of proper k-colorings of G. If αG is a link k-coloring, then σ ·αG
is also a link k-coloring. Hence, the action descends to the set of link k-colorings. Given a link k-coloring
αG in G, we denote by [αG] the equivalence class of αG (that is, the orbit of αG under this group action).
Suppose C is an abstract coloring graph arising from a graph G with surplus colors; that is, C ∼= Ck(G) where
k > χ(G). Using Lemma 4.3, there is a bijection between abstract link vertices α in C and link k-colorings
αG in G. We define [α] as the set of vertices in C that represents the colorings in [αG] under this bijection.

Definition 4.16. Suppose we are given C ∼= Ck(G) along with the map α 7→ αG. Assume k > χ(G)
and we have an abstract link vertex α corresponding to link k-coloring αG with component-wise partition
P (αG) = (P 1, . . . , P d). Define L[α] as an edge-labeled graph where:

(1) Vertices of L[α]: abstract link vertices β in [α], that is, βG is equivalent to αG.
17

(2) Edges of L[α]: β and γ are adjacent if βG and γG differ in the color of exactly one part P ij .

(3) Edge labels: If βG and γG differ on the part P ij with βG(P
i
j) = c1 and γG(P

i
j) = c2, we label the

edge βγ by:

β
c1P

i
j c2←−−−→ γ.

We refer to L[α] as a labeled link graph of Ck(G) corresponding to an equivalence class [α].

The object L[α] is not intrinsic to the base graph G. There is a subtle dependence on the choice of the
bijection α 7→ αG that concretely realizes a vertex α in V (C) as a function αG : V (G)→ [k].

Lemma 4.17. The graph L[α], disregarding its edge labels, is isomorphic to Ck
(⊔

i∈[d]Kχ(Hi)

)
.

A general fact [BFH+16, Lemma 1] states that the coloring graph of the disjoint union, Ck
(⊔

i∈[d]Gi

)
, is

isomorphic to a Cartesian product of individual coloring graphs, □i∈[d]Ck(Gi).

Proof. A link k-coloring αG (and any βG ∈ [αG]) uses a specific set of χ(Hi) distinct colors for each connected
component Hi of G. These χ(Hi) colors define the parts P i1, . . . , P

i
χ(Hi)

of the component-wise partition P i

for Hi. In L[α], an edge corresponds to changing the color assigned to one such part, say P ij , to a new color,
while the colors of all other parts P st (for (s, t) ̸= (i, j)) remain unchanged.

Consider the graph Kχ(Hi). Its vertices can be identified with the abstract “slots” for the χ(Hi) colors
used in component Hi. A k-coloring of Kχ(Hi) assigns one of k colors to each of these χ(Hi) slots such that
all slots receive distinct colors. An edge in Ck(Kχ(Hi)) connects two such colorings if they differ in the color
assigned to exactly one slot.

This is precisely the structure of transitions within each component Hi as reflected in L[α]: changing the

color of a part P ij (a “slot”) to a new color (from the k available, distinct from colors of other parts P im in Hi)
corresponds to an edge in Ck(Kχ(Hi)). Since these changes can be made independently for each component
Hi of G to move between colorings in [αG], the overall structure of L[α] (unlabeled) is the Cartesian product
of these individual coloring graphs, □i∈[d]Ck(Kχ(Hi)). This is isomorphic to the k-coloring graph of the

disjoint union of these complete graphs, Ck
(⊔

i∈[d]Kχ(Hi)

)
. □

This structure implies that all of the 6-cycle of cubes that connect equivalent link k-colorings in Ck(G)
become 6-cycles in the labeled link graph. Identifying (and ultimately labeling) these 6-cycles is a key step in
constructing the labeled link graph. The following lemma states that if two consecutive edges in the 6-cycle
are specified, then there is a unique continuation of the path that completes this 6-cycle. This uniqueness
holds as long as the two edges are not also part of a 3- or 4-cycle. This condition is satisfied if the labeling of

these edges is of the form α1

c3P
i
j1
c1

←−−−→ α
c2P

i
j2
c3

←−−−→ α2, where, from α, two different parts in the same connected
component are sent to the same free common color c3.

Lemma 4.18. Suppose α1, α2 ∈ [α] are two vertices satisfying the following adjacency condition in L[α]:

α1

c3P
i
j1
c1

←−−−→ α
c2P

i
j2
c3

←−−−→ α2.

Then there is a unique shortest path from α1 to α2 in L[α] that avoids α, which has length 4 given by:

α1

c2P
i
j2
c1

←−−−→ β
c3P

i
j1
c2

←−−−→ γ
c1P

i
j2
c3

←−−−→ δ
c2P

i
j1
c1

←−−−→ α2

for some vertices β, γ, δ.

Proof. Let t denote the length of the shortest α-avoiding path from α1 to α2. We claim that t = 4. Suppose,
to the contrary, that t ≤ 3. If t = 3, then together with α, we have an induced 5-cycle in L[α]. This is a

contradiction, because C5 is not an induced subgraph of any coloring graph [BFH+16, Corollary 12]. We
may now assume t ≤ 2. Since α1 and α2 are not adjacent, t ̸= 1. Consequently, t = 2 and there exists a
vertex ζ ̸= α between α1 and α2 in L[α]:

α1
?←→ ζ

?←→ α2.
18

Now, (α1)G and (α2)G differ exactly on the two parts P ij1 and P ij2 . By inspection, no such ζ can exist, as it

would require for both P ij1 and P ij2 to be colored c3, which would be a contradiction as we could have fewer
parts than the chromatic number. Thus, t = 4. The following α-avoiding path of length 4 from α1 to α2

certainly exists:

(4.3) α1

c2P
i
j2
c1

←−−−→ β
c3P

i
j1
c2

←−−−→ γ
c1P

i
j2
c3

←−−−→ δ
c2P

i
j1
c1

←−−−→ α2

Next, we show that (4.3) is the unique such path of length 4.
Consider an arbitrary α-avoiding path of length 4 from α1 to α2. When combined with the edges (α, α1)

and (α2, α), we obtain an induced 6-cycle (α, α1, β, γ, δ, α2, α) in L[α]. By [ABFR18], an induced 6-cycle in a
coloring graph arises in one of two situations: (a) two vertices alternately swapping between three colors, or
(b) three vertices independently swapping between two colors. Case (b) always occurs as part of a 3-cube.
Our setup involves two parts P ij1 , P

i
j2
, and specifies two colors for each of these parts (colors c1 and c3 for

P ij1 and colors c2 and c3 for P ij2). If we had case (b), the 3-cube allows all color changes independently, so

we would have a vertex where both P ij1 and P ij2 are colored c3, which would result in a proper coloring with
the number of colors fewer than the chromatic number, a contradiction. Therefore, we must have case (a).
The intermediate vertices of the 6-cycle are uniquely determined by the two involved parts and three colors.
Thus, the remaining vertices β, γ, δ in any induced 6-cycle formed this way are unique, proving that (4.3) is
the only shortest α-avoiding path of length 4 from α1 to α2. □

For an abstract link vertex α ∈ V (C), a modified use of Algorithm 2 can be applied to find all equivalent
link vertices, which are precisely the vertices of L[α]. After identifying the partition P (αG) of αG using

Algorithm 2, it is clear that changing every vertex in any one part P ij to any common free color results in an
equivalent link vertex, β. This process can be repeated at β to discover additional equivalent link vertices.
Given the connectivity of the labeled link graph, conducting this search in breadth-first order guarantees
that we will find all vertices in [α].

The subtlety in this approach is that although Algorithm 2 works equally well on both α and β, the exact
labeling of the partitions is not necessarily consistent. Even with only one connected component, there is
a potential mismatch. Suppose P (αG) = P 1 with the partition P 1 = P 1

1 ⊎ P 1
2 ⊎ P 1

3 , where βG is obtained
by recoloring vertices in P 1

1 . There is no guarantee that Algorithm 2 run on β will label P 1
2 as P 1

2 again; it
might instead be labeled P 1

3 .
The following algorithm, Algorithm 3, addresses this subtlety by not only identifying all of the vertices in

L[α] but also consistently labeling the parts and colors (and thus the edges in L[α]). Given an initial abstract
link vertex α, Algorithms 1 and 2 are run to obtain a canonical labeling of vertices, colors, and the partition
in Steps 1 and 2. A breadth-first search of all vertices in L[α] is then initialized in Steps 3 and 4. In these
steps, every edge incident to α in L[α] is labeled using the canonical labeling from the previous steps.

The final Step 5 runs the breadth-first search until all vertices are found, while consistently labeling all
edges of L[α]. Given a complete set of labeled edges incident to a vertex γ in L[α], including the edge γβ,
we analyze certain cycles to label all incident edges to β consistently. There are four such cases, which are
depicted in Figure 8 and described in the ensuing algorithm. In the algorithm, the breadth-first ordering
guarantees that when labeling the edges incident to some β, there is at least one predecessor γ (i.e., a
neighbor of β that is closer to α) whose incident edges have already been labeled.

Algorithm 3 (Labeled Link Graph Identification). Given a graph C and an abstract link vertex α ∈ V (C),
identify [α] and construct its labeled link graph L[α] as follows:

(1) Run Algorithm 1 to obtain G (or abort) with components H1, . . . ,Hd, labels on incident edges
indicating color-changing vertices and the common free color palette [fi] for each v ∈ Hi from α.

(2) Run Algorithm 2 to assign canonical color labels {fi + 1, . . . , fi + χ(Hi)} to the colors used in α for
vertices within each component Hi, consistent with its component-wise partition Pα.

(3) Initialize the vertex set V = {α} and the edge set E = ∅ for L[α]. Initialize an empty queue Q.
(4) Iterate for each i ∈ [d], each color c ∈ [fi], and each index 1 ≤ j ≤ χ(Hi): Let cj = fi + j denote

the color of P ij at α assigned by Algorithm 2. Let β be the abstract link vertex corresponding to

recoloring part j with c from α. Add β to V and Q, and αβ to E with label α
cjP

i
j c←−−→ β.

19

(5) While Q is nonempty: remove the next element β from queue Q and find a predecessor element γ
in V \Q such that βγ ∈ E. Let cjP

i
j c be the existing label of this edge γβ so that cj is the color of

P ij at γ and c is the color of P ij at β. For each 1 ≤ ℓ ≤ d, let Fℓ be the common free color palette

at γ for Hℓ; note that c ∈ F i and cj /∈ F i. We label all currently unlabeled incident edges to β (and
possibly other edges) by analyzing incident edges to γ as follows:
(a) Iterate through incident edges to γ where parts in Hi change to same free color c:

For each 1 ≤ k ≤ χ(Hi) with k ̸= j: use existing labels on edges incident to γ to identify

the unique δ such that γ
ckP

i
kc←−−→ δ. By exploring hypercube adjacent neighbors, and using

Algorithm 2 to confirm that each vertex we consider is in [α], find the shortest sequence of
vertices in [α]\{γ} from β to δ where two consecutive vertices are antipodal points of hypercubes
of alternating dimensions |P ij | and |P ik|. By Lemma 4.18, this path is β, β1, β2, β3, δ. If not
already in V , add β1, β2, β3 (in this order) to V and Q. Add the following edges to E with
labels

γ
cjP

i
j c←−−→ β

ckP
i
kcj←−−−→ β1

cP i
j ck←−−→ β2

cjP
i
kc←−−→ β3

ckP
i
j cj←−−−→ δ

cP i
kck←−−→ γ.

(b) Iterate through incident edges to γ where other parts in Hi change to different free
color: For each 1 ≤ k ≤ χ(Hi) with k ̸= j and c̃ ∈ F i \ {c}: use existing labels on edges

incident to γ to identify the unique δ such that γ
ckP

i
k c̃←−−→ δ. As this color change is independent

of recoloring cjP
i
j c on the edge γβ, there is a unique vertex β1 ∈ [α] hypercube adjacent to both

β and δ. If not already in V , add β1 to V and Q, and add the following edges to E with labels

γ
cjP

i
j c←−−→ β

ckP
i
k c̃←−−→ β1

cP i
j cj←−−→ δ

c̃P i
kck←−−→ γ.

(c) Iterate through incident edges to γ where P ij changes to different free color:

For each index c̃ ∈ F i \ {c}: use existing labels on edges incident to γ to identify the unique δ

such that γ
cjP

i
j c̃←−−→ δ. This abstract link vertex δ is necessarily hypercube adjacent to β, so we

add the edge δ
c̃P i

j c←−→ β to E.
(d) Iterate through incident edges to γ where where parts not in Hi change to a free

color: For each ℓ ∈ [d]\{i} and c̃ ∈ Fℓ: use existing labels on edges incident to γ to identify the

unique δ such that γ
csP

ℓ
k c̃←−−→ δ. As this color change is independent of recoloring cjP

i
j c on the

edge γβ, there is a unique vertex β1 ∈ [α] hypercube adjacent to both β and δ. If not already
in V , add β1 to V and Q, and add the following edges to E with labels

γ
cjP

i
j c←−−→ β

csP
ℓ
k c̃←−−→ β1

cP i
j cj←−−→ δ

c̃P ℓ
kcs←−−→ γ.

γ

β

β1

β2

β3

δ

cjP i
j c

c
k
P

ik
c
j

ckP
i
j
ccP i

k cj

c k
P

i j
c j

cP
i
k
ck γ

β

β1

δ

c
j P ij c

c̃P
i
k
ck

c
j P ij c

c̃P
i

k
ck δ

βγ

c̃P
ij c

cjP
i
j c

c j
P

i
j
c̃

γ

β

β1

δ

c
j P ij c

c̃P
ℓ
k
cs

c
j P ij c

c̃P
ℓ

k
cs

Figure 8. Illustration of Algorithm 3, Step 5, parts (a)-(d). The blue arrow indicates the
edge from β to its predecessor γ. Solid edges are already labeled; dashed edges are in the
process of being labeled (although some may have been previously labeled). Processing the
red dashed edge β ↔ β1 at each step eventually exhausts all incident edges to β.

20

As with our previous algorithms, we first show that the labeling produced by this algorithm is unique in
some sense with respect to a fixed labeling of Ck(G) in the case when k > χ(G). Subsequently, we will show
that it implies something structural about a version of the labeled link graph in the Cχ′(G′), χ′ = χ(G′)
interpretation under Hypothesis 1.

In Definition 4.16, the edge labeling in L[α] is uniquely determined because we implicitly fix a bijection
α 7→ αG. Since we want Algorithm 3 to apply to an abstract coloring graph C, there could be multiple
labelings of L[α], depending on the choice of bijection α 7→ αG. Algorithms 1 and 2 fix such a mapping, and
Algorithm 3 labels the labeled link graph consistent with this choice in its Step 1 and Step 2.

Lemma 4.19. Let C ∼= Ck(G) with k > χ(G) and let α be an abstract link vertex. Then Algorithm 3, when
run on C and α, exactly identifies L[α], where the edge labeling in L[α] is consistent with the labeling of C
produced by Algorithm 1 in Step 1.

Proof. First, Algorithm 3 finds all vertices of L[α], because all equivalent link k-colorings of G are connected
by a sequence of hypercubes by Corollaries 4.14 and 4.15. Second, Algorithm 3 correctly identifies each
abstract link vertex as being equivalent to α by the correctness of Algorithm 2. It remains to show that
Algorithm 3 consistently labels all edges in L[α].

Every vertex in L[α] has degree
∑d
ℓ=1 χ(Hℓ)(k − χ(Hℓ)). Indeed, for each connected component Hℓ, any

of its χ(Hℓ) parts can change to any of the k − χ(Hℓ) free colors. Step 5 finds and labels all of these edges,
as (a) labels χ(Hi)− 1 edges; (b) labels (χ(Hi)− 1)(k − χ(Hi)− 1) edges; (c) labels (k − χ(Hi)− 1) edges;
(d) labels

∑
ℓ ̸=i χ(Hℓ)(k− χ(Hℓ)) edges. These edges are all distinct. Summing these counts, and including

the edge that connects to the predecessor, gives the desired total degree.
Moreover, we claim that these edge labels are uniquely determined and hence correct. For Step 5(a),

we consistently label every 6-cycle by Lemma 4.18. For Step 5(b), we are recoloring two parts in the same
connected component to different colors. There is a unique fourth vertex where both color changes happen,
completing the induced square. Therefore, we can consistently label these color changes. Similar logic applies
to Step 5(d), since color changes on parts in two distinct components Hi and Hℓ (ℓ ̸= i) are independent.
Lastly, for Step 5(c), if two edges of a 3-cycle are already labeled (representing a single part changing to two
distinct free colors), we can uniquely label the third edge.

Finally, this labeling is consistent across all vertices β in [α] because Algorithm 3 relies on a breadth-first
search (BFS) in Step 5. Starting with the canonical labeling at α, the BFS ensures that when any vertex β
is processed, a neighboring vertex (its predecessor) has already been fully and consistently labeled, providing
a valid reference. To be exact, in parts (b) and (d), only β1 could be added to Q, and we are guaranteed
a predecessor β as we are currently processing it. In part (a), we add β1, β2, β3 to the queue in this order;
since β1 is adjacent to β (which is being processed), each vertex has a predecessor when dequeued. □

We have shown that, given a labeling of a link k-coloring and all of its hypercube neighbors, we can
uniquely construct the entire labeled link graph. Shifting to Hypothesis 1, where Ck(G) ∼= Cχ′(G′), we aim
to understand the corresponding proper χ′-colorings of G′ and their transformations across this labeled link
graph structure. By Lemma 4.12, every abstract link vertex of Ck(G) defines an analogous partition on a
subgraph of G′. However, the precise color changes throughout the entire labeled link graph in the G′ context
are not yet clear. In particular, it is not yet apparent whether the subgraph of G′ undergoing color changes
remains fixed across all vertices of the labeled link graph, or whether more than k colors are involved. The
following definition introduces L′

[α], an alternative version of the labeled link graph, whose edge labels record

the color changes of the underlying proper χ′-colorings in G′.
Each labeled edge in L[α] indicates that there is a hypercube between the two link vertices in C. By

Lemma 4.12, the same hypercube structure implies that the underlying colorings of G′ also differ in the color
of exactly one part. To keep track of this information, we create a new labeled graph.

Definition 4.20. Assume Hypothesis 1. Given an abstract link vertex α in C, we define L′
[α] as follows.

The graph L′
[α] shares the same vertex set and (unlabeled) edge set with L[α]. For each edge β

c1P
i
j c2←−−−→ γ in

L[α], if βG′ and γG′ differ in the color on part Qi, we label the edge β
c′1Q

ic′2←−−−→ γ accordingly in L′
[α].

21

Our next goal is to show that the edge labels in L′
[α] have a natural correspondence to the edge labels

in L[α]. Identifying 3-, 4-, and 6-cycles play a crucial role for labeling L[α] via Algorithm 3. The following
two lemmas assert that our interpretation of these cycles in L′

[α] is the natural one. Lemma 4.21 shows that

the 6-cycles (which are not part of a 3-cube) in L′
[α] correspond to two fixed parts cycling between three

colors. Lemma 4.22 states that 4-cycles in L′
[α] arise from two fixed parts independently changing colors,

while 3-cycles involve one fixed part changing among three colors.

Lemma 4.21. Assume Hypothesis 1. Let α, α1, α2 ∈ V (L′
[α]) be vertices with the edge αα1 labeled c1Q

i
1c3

and the edge αα2 labeled c2Q
i
2c3. If α1 and α2 are non-adjacent, and α is their only common neighbor, then

L′
[α] has a unique 6-cycle containing the path α1αα2, and its edge labels are given by:

α

α1

β

γ

δ

α2

c1Q i
1 c3

c
2 Q

i2 c
1

c2Q
i
1
c3c3Q i

2 c1

c 2
Q

i 1
c 1

c3Q
i
2
c2

Proof. The vertices α, α1, α2 in L′
[α] have corresponding elements in L[α]. By Lemma 4.18 applied to L[α],

the path α1αα2 extends uniquely to an induced 6-cycle (α, α1, β, γ, δ, α2, α). For every vertex in the 6-cycle
in L[α], the two outgoing incident edges in the 6-cycle represent changes to the same free color. This property
continues to hold in the labeling of this 6-cycle in L′

[α], as common free colors can be identified in the coloring

graph. In particular, a part changing to a free color in α1 → β agrees with the free color α1 → α, which is

c1. Figure 9 displays this partial information as α1
?Wc1←−−→ β for some subset W of vertices of G′. We can

similarly deduce the partial information about edge α2
?Zc2←−−→ δ. By the structure of 6-cycle of cubes in L[α],

the dimension of the cubes is alternating. Thus, |Z| = |Qi1| and W = |Qi2|.

α

α1

β

γ

δ

α2

c1Q i
1 c3

?W
c
1

???
???

c 2
Z
?

c3Q
i
2
c2

Figure 9. Partial information

We claim that W = Qi2. Suppose, to the contrary, that W ̸= Qi2. Since |W | = |Qi2|, it follows that
(4.4) |W ∩Qi2| < |Qi2| and Qi2 \W ̸= ∅.

At vertex β, we have βG′(Qi1) = c3, βG′(Qi2 \W) = c2, and βG′(W) = c1. For the cycle to reach α2, the
colors of these three distinct vertex sets (Qi1, Q

i
2 \W , and W) must all eventually change along the path

segment β → γ → δ → α2. Specifically, over these three edges βγ, γδ and δα2, there must be exactly one
edge where vertices colored c1 (those in W) change, one where vertices colored c2 (those in Qi2 \W) change,
and one where vertices colored c3 (those in Qi1) change. Since the edge δα2 is already labeled by taking

22

α

α1

β

γ

δ

α2

c1Q i
1 c3

c
2 Q

i2 c
1

c2?
???c1

c 2
Q

i 1
c 1

c3Q
i
2
c2

α

α1

β

γ

δ

α2

c1Q i
1 c3

c
2 Q

i2 c
1

c2Q
i
1
c3c3Q i

2 c1

c 2
Q

i 1
c 1

c3Q
i
2
c2

Figure 10. Identifying the final two edges in the 6-cycle

vertices colored c2 to a new color, the vertices in Qi2 \W must change on this edge back to c3. So, we may
write Z = (Qi2 \W) ⊎ Z ′ for some set Z ′ (allowing for the possibility that Z ′ = ∅).

Next, observe that the shortest path between abstract link vertices α and δ in the actual coloring graph
C is |Qi1|+ |Qi2|. There cannot be a shorter path as αG and δG differ colors on exactly |Qi1|+ |Qi2| vertices,
as these edges are correctly labeled as changing parts two distinct parts of dimension |Qi1| and |Qi2| in L[α].

However, with our assumption W ̸= Qi2, we construct a shorter path from α to δ2. Let Q̃i2 = W ∩ Qi2.
Starting at α, consider the sequence of color changes given by c2Q̃

i
2c3 and then c3Z

′c2 to reach δ. Note that

|Q̃i2| = |W ∩Qi2| < |Qi2| and |Z ′| < |Z| = |Qi1| using Qi2 \W ̸= ∅ from (4.4). We produced a path from α to

δ of length |Z ′|+ |Q̃i2| < |Qi1|+ |Qi2|, a contradiction.
Therefore, W = Qi2, and the edge αβ is labeled c2Q

i
2c1. By identical reasoning, we conclude Z = Qi1 and

the edge α2δ is labeled c1Q
i
1c2. We only have two remaining edges to identify as in Figure 10 (left). Both

Qi1 and Qi2 must return to their original color as we go around the cycle. As the βγ and γδ edges already
have one of the colors fixed in their edge label, there is only one possible way to label these two edges δγ
and γβ; see Figure 10 (right). □

.

Lemma 4.22. Assume Hypothesis 1. Let α, α1, α2 ∈ V (L′
[α]) be distinct vertices such that α is adjacent to

both α1 and α2.

(1) If αα1 has label c1Q
i
1c3 and αα2 has label c2Q

i
2c4, where c1, c2, c3, and c4 are all distinct, and Qi1

and Qi2 are disjoint sets, then there is a unique induced 4-cycle in L′
[α] that contains these two edges

and its labels are given by:

α
c1Q

i
1c3←−−−→ α1

c2Q
i
2c4←−−−→ β

c3Q
i
1c1←−−−→ α2

c4Q
i
2c2←−−−→ α.

(2) If αα1 has label c1Q
i
1c3 and αα2 has label c1Q

i
1c4, where c1, c3, and c4 are all distinct, then there is

a unique 3-cycle in L′
[α] that contains these two edges and its labels are given by:

α
c1Q

i
1c3←−−−→ α1

c3Q
i
1c4←−−−→ α2

c4Q
i
1c1←−−−→ α.

(3) If αα1 has label c1Q
i
1c3 and αα2 has label c2Q

j
2c4 for i ̸= j, where c1 and c3, and c2 and c4 are

necessarily pairwise distinct, and Qi1 and Qj2 are disjoint sets, then there is a unique induced 4-cycle
in L′

[α] that contains these two edges and its labels are given by:

α
c1Q

i
1c3←−−−→ α1

c2Q
j
2c4←−−−→ β

c3Q
i
1c1←−−−→ α2

c4Q
j
2c2←−−−→ α.

Proof. We prove each statement independently below.

(1) We are given αG′(Qi1) = c1, αG′(Qi2) = c2, with edges α
c1Q

i
1c3←−−−→ α1 and α

c2Q
i
2c4←−−−→ α2. Thus,

(α1)G′(Qi1) = c3, (α1)G′(Qi2) = c2 and (α2)G′(Qi1) = c1, (α2)G′(Qi2) = c4. Since Qi1, Q
i
2 are disjoint

23

parts and c1, c2, c3, c4 are distinct, the recoloring operations Qi1 : c1 → c3 and Qi2 : c2 → c4 are
independent. Let β be the coloring where βG′(Qi1) = c3 and βG′(Qi2) = c4 (other parts as in α).

This β is proper as c3 ̸= c4. The edges α1
c2Q

i
2c4←−−−→ β and β

c3Q
i
1c1←−−−→ α2 complete the stated unique

induced 4-cycle α
c1Q

i
1c3←−−−→ α1

c2Q
i
2c4←−−−→ β

c3Q
i
1c1←−−−→ α2

c4Q
i
2c2←−−−→ α.

(2) We are given αG′(Qi1) = c1, with edges α
c1Q

i
1c3←−−−→ α1 and α

c1Q
i
1c4←−−−→ α2. Thus, (α1)G′(Qi1) = c3 and

(α2)G′(Qi1) = c4, while all other parts are colored as in α. Since c3 ̸= c4, α1 and α2 differ only on Qi1

and are thus adjacent via the edge α1
c3Q

i
1c4←−−−→ α2. Together with the edge α2

c4Q
i
1c1←−−−→ α (returning

Qi1 to its color in α), this forms the unique induced 3-cycle α
c1Q

i
1c3←−−−→ α1

c3Q
i
1c4←−−−→ α2

c4Q
i
1c1←−−−→ α.

(3) We are given αG′(Qi1) = c1, αG′(Qj2) = c2, with initial edges α
c1Q

i
1c3←−−−→ α1 and α

c2Q
j
2c4←−−−→ α2. Here Qi1

and Qj2 are disjoint vertex sets, c1 ̸= c3, and c2 ̸= c4. The recolorings Qi1 : c1 → c3 and Qj2 : c2 → c4
are independent. If c3 ̸= c4, the reasoning from part (1) applies directly: the independent operations
with distinct target colors define the unique induced 4-cycle and its labeling as stated.

Consider the case c3 = c4 = c. We have αG′ ≡ (Qi1 : c1, Q
j
2 : c2), (α1)G′ ≡ (Qi1 : c,Q

j
2 : c2), and

(α2)G′ ≡ (Qi1 : c1, Q
j
2 : c). These vertices complete to a 4-cycle in L′

[α] because the matching 4-cycle

exists in L[α]. Let β be the fourth vertex in this 4-cycle (α, α1, β, α2, α). The α-avoiding path from

α1 to α2 is α1 → β → α2. To change from (α1)G′ ≡ (Qi1 : c,Q
j
2 : c2) to (α2)G′ ≡ (Qi1 : c1, Q

j
2 : c), part

Qi1 must change from c to c1, and part Qj2 must change from c2 to c. These two changes must occur
over the two edges (α1, β) and (β, α2). There are two ways to assign these changes to the edges:

(a) Path T1: α1
cQi

1c1←−−→ β
c2Q

j
2c←−−→ α2. Here, β would have Qi1 colored c1 and Qj2 colored c2. Thus,

βG′ ≡ (Qi1 : c1, Q
j
2 : c2), which is α. This is a contradiction, because β is distinct from α.

(b) Path T2: α1
c2Q

j
2c←−−→ β

cQi
1c1←−−→ α2. Here, from (α1)G′ ≡ (Qi1 : c,Q

j
2 : c2), recoloring Q

j
2 : c2 → c

yields βG′ ≡ (Qi1 : c,Q
j
2 : c). This path T2 avoids α, so this is the correct labeling.

Therefore, T2 provides the unique labeling for the α-avoiding path segment α1 → β → α2. Re-
instating c as c3 (for Qi1’s target) and c4 (for Qj2’s target, which is also c3 in this subcase), the

labels become α1
c2Q

j
2c4←−−−→ β and β

c3Q
i
1c1←−−−→ α2. This completes the 4-cycle as stated in the lemma:

α
c1Q

i
1c3←−−−→ α1

c2Q
j
2c4←−−−→ β

c3Q
i
1c1←−−−→ α2

c4Q
j
2c2←−−−→ α. In retrospect, the properness of β, ensured by the

existence of this 4-cycle structure, implies that if c3 = c4, no edge exists between Qi1 and Qj2. □

Building upon Lemmas 4.21 and 4.22, we find a natural correspondence between L[α] and L′
[α]. To

formalize this correspondence, the following lemma introduces functions describing how a proper k-coloring
αG is lifted to a χ′-coloring αG′ on a subgraph of G′ isomorphic to G. Recall that H1, . . . ,Hd are the
connected components of G, identified and labeled by Algorithm 1 run on Ck(G) and α. For each Hi, we
define two mappings: ψi and ϕi. The function ψi translates colors from the palette [k] used in the G-
interpretation of C to distinct colors in a specific palette Pi ⊆ [χ′] for the G′-interpretation. The function
ϕi maps each vertex in Hi to a vertex in G′. We encountered these two functions in Lemma 4.12 at a single
abstract link vertex. The following key lemma establishes that ψi and ϕi can be chosen consistently for every
link vertex within the same equivalence class.

Lemma 4.23. Assume Hypothesis 1. For each i ∈ [d] there exists a subset Pi ⊆ [χ′] with |Pi| = k and two

functions ψ
[α]
i and ϕ

[α]
i such that:

(1) ψ
[α]
i : [k]→ Pi is a bijection.

(2) ϕ
[α]
i : Hi → H ′

i is a graph isomorphism.

(3) For each labeled edge β
c1P

i
j c2←−−−→ γ in L[α], the corresponding labeled edge in L′

[α] is given by

β
ψi(c1)ϕi(P

i
j)ψi(c2)←−−−−−−−−−−−→ γ.

We use (ψ[α], ϕ[α]) as a shorthand for the collection of pairs (ψ
[α]
i , ϕ

[α]
i) for 1 ≤ i ≤ d.

24

Proof. By Lemma 4.6, there exist vertex-disjoint subgraphs H ′
1, . . . ,H

′
d in G′ such that H ′

i
∼= Hi for each

i ∈ [d]. The map ϕ
[α]
i : Hi → H ′

i can be constructed by comparing edges incident to α in Ck(G) ∼= Cχ′(G), as

in the proof of Lemma 4.6. By Lemma 4.12, for each i ∈ [d] there exists an injection ψ
[α]
i : [k]→ [χ′] such that

αG′(ϕi(v)) = ψ
[α]
i (αG(v)) for each vertex v ∈ V (Hi). As of yet, ψ

[α]
i is not uniquely defined for any of the

free colors, those colors that do not appear in αG. By inspection of incident edges to α in Ck(G) ∼= Cχ′(G),

we can define ψ
[α]
i to be compatible for free colors. More precisely, for each i ∈ [d], and each free color c at

αG within Hi, consider βG obtained from αG by recoloring all the vertices in a single independent part P ij

from αG(P
i
j) to c. We define ψ

[α]
i (c) to be βG′(ϕi(P

i
j)). This ensures the relation βG′(ϕi(v)) = ψ

[α]
i (βG(v))

for every β that is a neighbor of α in L[α]. After defining Pi = ψ
[α]
i ([k]), the map ψ

[α]
i : [k]→ Pi is a bijection.

By construction, the desired condition (3) holds for all incident edges to α in L[α], meaning that:

α
c1P

i
j c2←−−−→ β in L[α] =⇒ α

ψi(c1)ϕi(P
i
j)ψi(c2)←−−−−−−−−−−−→ β in L′

[α].

Choose some neighbor β in L′
[α]. Using the same iteration process as Algorithm 3 (Step 5), label all incident

edges to β in L′
[α]. These edges can be found through a cycle of appropriate length. Then Lemmas 4.21

and 4.22 propagate the desired correspondence (3) from labeled edges incident to α to those incident to
β. By continuing this process in a breadth-first ordering as in Algorithm 3 (Step 5), which is correct by

Lemma 4.19, all edges in L′
[α] will be labeled using the correspondence given by the pairs (ψ

[α]
i , ϕ

[α]
i). □

Examining the proof of Lemma 4.23, we observe that ψ[α] is constructed precisely in a way to satisfy

βG′ ◦ ϕ[α]i = ψ
[α]
i ◦ βG for each βG ∈ [αG]. This compatibility relation turns out to be important in later

arguments, primarily because it lends itself well to computation.

Corollary 4.24. Assume Hypothesis 1. Consider the functions (ψ
[α]
i , ϕ

[α]
i) from Lemma 4.23. For each β

in [α], the relation βG′ ◦ ϕ[α]i = ψ
[α]
i ◦ βG holds for each 1 ≤ i ≤ d.

The compatibility condition in Corollary 4.24 can be visualized as a commutative diagram.

V (Hi) [k]

V (H ′
i) Pi

ϕ
[α]
i

βG

ψ
[α]
i

βG′

Lemma 4.23 establishes the coloring of the vertices in V (H ′
1) ⊎ V (H ′

2) ⊎ · · · ⊎ V (H ′
d) throughout the

equivalence class [α] when viewed insideG′. Let L ⊆ V (G′) be the complement of V (H ′
1)⊎V (H ′

2)⊎· · ·⊎V (H ′
d).

The next corollary asserts that equivalent link colorings agree pointwise on L. We refer to L as the locked
set associated with the equivalence class [α]. For each vertex β ∈ [α], the coloring of L in βG′ is determined
by an orbit representative αG′ . This fixed assignment of colors to L must be proper with respect to the way
H ′

1, . . . ,H
′
d are colored (as derived from βG), since β exists as a vertex in the coloring graph.

Corollary 4.25. Assume Hypothesis 1. Suppose β ∈ [α]. Then βG′(w) = αG′(w) for every w ∈ L.

Proof. From Lemma 4.23, α and β share the same functions (ψ[α], ϕ[α]), with βG′(ϕ
[α]
i (v)) = ψ

[α]
i (βG(v)) for

every v ∈ V (Hi) and i ∈ [d]. Since α and β are connected in L[α], it suffices to reduce (by induction on
the length of path between them) to the case when α and β are adjacent in L[α]. In this case, we have an

edge of the form α
c1P

i
j c2←−−−→ β where P ij ⊂ V (Hi) is the unique part on which αG and βG differ. Specifically,

αG(P
i
j) = c1, βG(P

i
j) = c2, and αG(v) = βG(v) for all v ∈ V (G) \ P ij . Using Corollary 4.24, the colorings

αG′ and βG′ satisfy the compatibility relations with the same pair (ψ[α], ϕ[α]):

αG′ ◦ ϕ[α]i = ψ
[α]
i ◦ αG and βG′ ◦ ϕ[α]i = ψ

[α]
i ◦ βG

Applying these identities on the input V (Hi), we obtain that αG′ and βG′ differ on a single part ϕ
[α]
i (P ij).

By counting the number of edges between the vertices α and β in C, we see that αG′ and βG′ must agree on

all vertices in V (G′)\ϕ[α]i (P ij). Since L is disjoint from V (H ′
i), we get αG′(w) = βG′(w) for every w ∈ L. □

25

An example of the pair (ψ[α], ϕ[α]) and the associated locked set L is illustrated in the top row of Figure 11.
We leverage the previous results to deduce more information about the χ′-colorings of G′ at the abstract link
vertices. From Lemma 4.6, we know that G′ contains G as a subgraph where each connected component Hi

of G appears as an induced subgraph H ′
i. However, it is certainly possible for there to be an edge connecting

H ′
i and H

′
j for i ̸= j. The following corollary imposes strong restrictions in this case. It concludes that if H ′

i

and H ′
j are connected by an edge, their respective color palettes Pi and Pj must be disjoint. Furthermore,

no vertex in the locked set L adjacent to a vertex in H ′
i can have a color from Pi. Finally, the locked set L

must use every color in the [χ′] palette. Figure 11 depicts these properties. In the statement below, N(v)
denotes the set of neighbors of a vertex v in G′.

Corollary 4.26. Assume Hypothesis 1. Let α be an abstract link vertex. Then

(1) for every 1 ≤ i < j ≤ d, if there exist u ∈ H ′
i, v ∈ H ′

j with uv ∈ E(G′), then Pi ∩ Pj = ∅;
(2) for every i ∈ [d], v ∈ H ′

i, αG′(N(v) ∩ L) ⊆ [χ′]\Pi;
(3) αG′(L) = [χ′].

Proof. By Lemma 4.23, all α, β with [β] = [α] share the same pair (ψ[α], ϕ[α]) defining a fixed partition
(H ′

1, . . . ,H
′
d, L) of G

′ where H ′
i
∼= Hi.

(1) Let uv ∈ E(G′) with u ∈ V (H ′
i) and v ∈ V (H ′

j) for i ̸= j. Suppose, to the contrary, that Pi∩Pj ̸= ∅.
Take any color c ∈ Pi ∩Pj . Within [α] we may independently permute the colors (within k available
colors) inside eachHi andHj . Consequently, we can find a link k-coloring βG such that the associated
χ′-coloring βG′ simultaneously satisfies: βG′(u) = c and βG′(v) = c. This contradicts the fact that
βG′ is a proper coloring, and uv ∈ E(G′).

(2) We show that no color c ∈ Pi appears on N(v)∩L. Otherwise, choose w ∈ N(v)∩L with αG′(w) = c.
Find βG ∈ [αG] such that βG′(v) = c. This is possible because v ∈ H ′

i. Since βG′ |L = αG′ |L by
Corollary 4.25, we have βG′(w) = αG′(w) = c. The resulting equality βG′(v) = βG′(w) leads to a
contradiction as βG′ is a proper coloring and vw ∈ E(G′).

(3) Suppose c̃ ∈ [χ′] is not present in αG′(L). Find β ∈ [α] such that c̃ /∈ βG′(V (H ′
i)) for each i ∈ [d]. This

is possible, as βG′(V (H ′
i)) = ψ

[α]
i (βG(V (Hi))) and G has surplus colors. Now, c̃ /∈ αG′(L) = βG′(L).

As c̃ /∈ βG′(V (G′)), it follows that βG′ is a proper (χ′ − 1)-coloring of G′, a contradiction. □

As a final result in this subsection, we use the accumulated information regarding the proper coloring αG′

to apply the pair (ψ[α], ϕ[α]) to any abstract link vertex, not just those in [α]. In particular, we can convert
any link k-coloring of G to a proper χ′-coloring of G′ by applying the pair (ψ[α], ϕ[α]), while retaining the
colors of the locked set L as in αG′ . Figure 11 shows an example of applying (ψ[α], ϕ[α]) to an abstract link
vertex not in [α] and still obtaining a proper coloring that is itself an abstract link vertex. This “surgery”
technique produces many abstract link vertices from an equivalence class [α] of a single abstract link vertex.
This process will demonstrate that the set of abstract link vertices of Ck(G) cannot be in bijection with the
set of abstract link vertices of Cχ′(G′), ultimately showing that Hypothesis 1 is untenable.

Lemma 4.27. Assume Hypothesis 1. Let α, β be two abstract link vertices in C such that β /∈ [α]. Let

(ψ[α], ϕ[α]) be a pair for [α] from Lemma 4.23. Define β̃G′ : V (G′) → [χ′] by specifying β̃G′(ϕ[α](v)) =

ψ[α](βG(v)) for v ∈ V (G) and β̃G′(w) = αG′(w) for w ∈ L. Then β̃G′ is a proper coloring of G′. Moreover,

the corresponding vertex β̃ ∈ C (which may or may not be β) is an abstract link vertex satisfying β̃ /∈ [α].

Proof. We first establish that β̃G′ is a proper χ′-coloring. The domain of β̃G′ is

V (G′) = V (H ′
1) ⊎ · · · ⊎ V (H ′

d) ⊎ L.

We carefully check properness of β̃G′ on the set E(G′) by separating the edges into four types.

• Edges within H ′
i: For each u ∈ H ′

i, we have β̃G′(u) = βG(h
−1
i (u)). Since βG is a proper coloring and

hi : Hi → Ui is an isomorphism, β̃G′ preserves properness on E(H ′
i).

• Edges between H ′
i and H

′
j for i ̸= j: Suppose uv ∈ E(G′) with u ∈ H ′

i and v ∈ H ′
j . Corollary 4.26(1)

implies Pi ∩ Pj = ∅. Since β̃G′(u) ∈ Pi and β̃G′(v) ∈ Pj , we deduce that β̃G′(u) ̸= β̃G′(v).
26

• Edges between H ′
i and L: Suppose uw ∈ E(G′) with u ∈ H ′

i and w ∈ L. By Corollary 4.26(2), the

image set αG′(N(u)∩L) = β̃G′(N(u)∩L) is disjoint from Pi. Since w ∈ N(u)∩L and β̃G′(u) ∈ Pi,
it follows that β̃G′(w) ̸= β̃G′(u).

• Edges within L: The coloring β̃G′ |L is identical to αG′ |L. Since αG′ is a proper coloring, β̃G′ is also
proper on the subgraph induced by L.

Next, we argue that β̃ ∈ C (the vertex corresponding to the χ′-coloring β̃G′) is an abstract link vertex. When
verifying that β is an abstract link vertex, Algorithm 1 checks the clique-neighborhood around the vertex

βG. The same check applies to β̃ because ϕ[α] is a graph isomorphism, ψ[α] is a bijection, and β̃G′ ◦ ϕ[α] and
ψ[α] ◦ βG agree on V (G). Therefore, β̃ is also an abstract link vertex. It remains to show that β̃ /∈ [α]. The

relation β̃G′(ϕ[α](v)) = ψ[α](βG(v)) for all v ∈ V (G) implies that the corresponding k-coloring β̃G coincides

with βG. Since β /∈ [α], it follows that β̃ /∈ [α], as desired. □

αG αG′
(ψ[α], ϕ[α])

H1

1

2

31

u1

u2

u3u4

H ′
1

L

1

5

31

1

5

4 3

2

v1

v2

v3v4

βG β̃G′

(ψ[α], ϕ[α])

H1

4

1

42

u1

u2

u3u4

H ′
1

L

2

1

25

1

5

4 3

2

v1

v2

v3v4

Figure 11. Proper colorings of two graphs G, with k = 4 > χ, and G′, with k′ = 5 = χ′.
Consider the pair of functions (ψ[α], ϕ[α]) defined by ϕ(ui) = vi and ψ(1) = 1, ψ(2) = 5,
ψ(3) = 3, and ψ(4) = 2 with the palette P = {1, 2, 3, 5}. The top row shows a proper
coloring αG′ of G′ that relates to αG via the map (ψ[α], ϕ[α]). These two vertices look
identical locally in their coloring graphs. The bottom row shows that this pair (ψ[α], ϕ[α]),

when applied to an abstract link vertex β ̸∈ [α], still creates a proper coloring β̃G′ that
locally resembles an abstract link vertex. We note that G and G′ do not have equivalent
coloring graphs; this example merely illustrates Properties 2 and 3 in Corollary 4.26 and
Lemma 4.27.

4.4. Abstract link vertices of Ck(G), k > χ(G) and Cχ′(G′), χ′ = χ(G′) can never be in bijection if
Ck(G) ∼= Cχ′(G′). In this final subsection, we use the structural results accumulated by Algorithms 1, 2, and
3 to establish our main result: if a coloring graph C arises from a graph with surplus colors, then C does not
arise from any other base graph.

Theorem 4.4 establishes that if Ck(G) with k > χ(G) is isomorphic to Ck′(G′), then k′ = χ′ := χ(G′)
(meaning G′ has no surplus colors). Theorem 4.28 below proves this remaining scenario is impossible.
Assuming, for contradiction, that Ck(G) ∼= Cχ′(G′), we use properties of abstract link vertices. Our analysis

27

reveals that if the shared graph C is interpreted as Cχ′(G′), it must contain χ′! times the number of abstract
link vertices defined by its structure as Ck(G). This discrepancy yields a contradiction, ruling out the
isomorphism. The theorem upgrades Corollary 4.9 by removing the dependence on the number of vertices.

Theorem 4.28. Given a graph G and k > χ(G), there is no graph G′ such that Ck(G) ∼= Cχ(G′)(G
′).

Proof. Assume, to the contrary, that C ∼= Ck(G) ∼= Cχ′(G′) for some graphs G and G′, where k > χ(G) and
χ′ = χ(G′). First, we show that χ′ > 1. If χ′ = 1, then G′ is the edgeless graph Nr (with r ≥ 1 vertices).
The 1-coloring graph C1(Nr) contains exactly one vertex (representing the single coloring that assigns color
1 to all vertices). In contrast, the number of proper k-colorings of G is at least k! > χ(G)! ≥ 1. Thus, Ck(G)
has at least two vertices, contradicting that C1(Nr) has only one vertex. So, we must have χ′ > 1.

Let A be the set of abstract link vertices in C. Since C ∼= Ck(G) where k > χ(G), abstract link vertices
exist by Lemma 4.3, so |A| ≥ 1. Fix a vertex α ∈ A, and let (ψ[α], ϕ[α]) be a pair associated with the
equivalence class [α] as in Lemma 4.23. As before, let L ⊆ V (G′) denote the locked set for (ψ[α], ϕ[α]). For

every β ∈ A, define β̃G′ by β̃G′(ϕ[α](v)) = ψ[α](βG(v)) for v ∈ V (G) and β̃G′(w) = αG′(w) for w ∈ L. If

β ∈ [α], we have β̃G′ = βG′ by Corollaries 4.24 and 4.25, which corresponds to an abstract link vertex. If

β /∈ [α], then β̃G′ is a proper χ′-coloring of G′ by Lemma 4.27, corresponding to an abstract link vertex in
C. The construction produces |A| distinct proper χ′-colorings of G′, each representing a different abstract
link vertex in C, that all agree pointwise on the coloring of L.

For each such coloring β̃G′ , consider the set of χ′! colorings obtained by applying every permutation

σ ∈ Sχ′ to the global color set [χ′]. Each resulting coloring σ ◦ β̃G′ is a proper χ′-coloring of G′. Since β̃G′

corresponds to an abstract link vertex (a property preserved under permutation of colors), each σ ◦ β̃G′ must

also correspond to an abstract link vertex. These χ′! colorings generated from a single β̃G′ are all pairwise

distinct. Indeed, if σ ◦ β̃G′ = τ ◦ β̃G′ , then their restrictions to L are equal: σ(αG′ |L) = τ(αG′ |L). Since
αG′(L) = [χ′] by Corollary 4.26 (3), we deduce that σ = τ .

Moreover, the resulting sets of χ′! colorings generated by two distinct initial colorings, say β̃G′ and γ̃G′

(where β, γ ∈ A with β ̸= γ), are themselves disjoint. Indeed, if σ ◦ β̃G′ = τ ◦ γ̃G′ , then considering the
colors on L, we again get σ(αG′ |L) = τ(αG′ |L). The same reasoning from the previous paragraph yields

σ = τ . This implies β̃G′ = γ̃G′ , and consequently, β̃G′(ϕ[α](v)) = γ̃G′(ϕ[α](v)) for all v ∈ V (G). By definition,
ψ[α](βG(v)) = ψ[α](γG(v)) for all v ∈ V (G). As ψ[α] is injective, βG(v) = γG(v) for all v ∈ V (G), leading to
βG = γG. This equality between k-colorings of G implies β = γ as vertices in C, yielding a contradiction.

Therefore, the overall process generates exactly |A| · χ′! distinct χ′-colorings of G, each corresponding to
an abstract link vertex in C. Hence, the number of abstract link vertices in C ∼= Cχ′(G′) is at least |A| · χ′!.
By definition, the number of abstract link vertices in C ∼= Ck(G) is exactly |A|. Comparing the two counts,
we obtain |A| ≥ |A| · χ′!. This inequality yields a final contradiction, because |A| ≥ 1 and χ′ > 1. □

The progression of results in Section 4, which collectively establish Theorem 4.28, can be visualized in the
flowchart presented in Figure 12. Combining Theorem 4.4 and Theorem 4.28, our main theorem Theorem 1.1
is now proved. We conclude that coloring graphs with surplus colors are complete graph invariants.

References

[ABFR18] Francisco Alvarado, Ashley Butts, Lauren Farquhar, and Heather M. Russell, Forbidden subgraphs of coloring graphs,

Involve 11 (2018), no. 2, 311–324. MR3733960
[AKLR24] Shamil Asgarli, Sara Krehbiel, Howard W. Levinson, and Heather M. Russell, Counting subgraphs of coloring graphs,

arXiv e-prints (2024), available at https://arxiv.org/abs/2401.12883. Accepted for publication by Graphs and Com-
binatorics.

[BBH+25] Gaétan Berthe, Caroline Brosse, Brian Hearn, Jan van den Heuvel, Pierre Hoppenot, and Théo Pierron, Determining
a graph from its reconfiguration graph, arXiv e-prints (2025), available at https://arxiv.org/abs/2504.19783.

[BFH+16] Julie Beier, Janet Fierson, Ruth Haas, Heather M. Russell, and Kara Shavo, Classifying coloring graphs, Discrete
Math. 339 (2016), no. 8, 2100–2112. MR3500140

[HSTT24] Emma Hogan, Alex Scott, Youri Tamitegama, and Jane Tan, A note on graphs of k-colourings, Electron. J. Combin.
31 (2024), no. 4, Paper No. 4.48, 9. MR4831821

[Wes01] Douglas B. West, Introduction to graph theory, 2nd ed., Prentice Hall, Upper Saddle River, NJ, 2001.

28

https://arxiv.org/abs/2401.12883
https://arxiv.org/abs/2504.19783

Algorithm 1:
Reconstruction
+ Link Vertices

Hypothesis 1

Algorithm 2:
Partition Extraction

Lem 4.3: Abstract
link vertices ↔
link k-colorings

Lem 4.11: Alg 2
identifies partitions

Lem 4.19: Alg 3 labels
link graphs uniquely

Lem 4.18: Certain
labeled 2-paths imply a
unique 6-cycle of cubes

Thm 4.4: Unique G with
surplus colors generates C

Lem 4.6: Components
of G are induced in G′

Lem 4.12 Partitions
induced by a link
coloring are the

same for G and G′

Lem 4.23: A pair

(ψ[α], ϕ[α]) relates
links in G and G′

Lem 4.21 and 4.22:
cycles in L′

[α]

Algorithm 3: Identify
Labeled Link Graph

Cor 4.25: Colorings
in [α] agree on L

Cor 4.26: Palette and
locked set properties

Lem 4.27: Permuting
colors creates new links

Thm 4.28: Ck(G) ̸∼= Cχ′ (G′)

Figure 12. Flowchart for Section 4

Department of Mathematics and Computer Science, Santa Clara University, 500 El Camino Real, Santa Clara,

CA 95053
Email address: sasgarli@scu.edu

Department of Mathematics and Computer Science, Santa Clara University, 500 El Camino Real, Santa Clara,
CA 95053

Email address: skrehbiel@scu.edu

Department of Computer Science, Oberlin College, 10 N Professor St, Oberlin, OH 44074

Email address: hlevinso@oberlin.edu

29

	1. Introduction
	2. Definitions and Notation
	3. Coloring Graphs at the Chromatic Level May Have Multiple Base Graphs
	4. Any Coloring Graph With Surplus Colors Has a Unique Base Graph
	4.1. Reconstructing the base graph via link vertices
	4.2. Link vertices are associated with unique coloring partitions of a base (sub)graph
	4.3. Equivalent link vertices and labeled link graphs
	4.4. Abstract link vertices of Ck(G),k>chi(G) and Cchi'(G'),chi'=chi(G') can never be in bijection if Ck(G)=Cchi'(G')

	References

