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ABSTRACT. We show that the chromatic quasisymmetric function (CQF) of a labeled path
graph on n vertices is not symmetric unless the labeling is the natural labeling 1, 2, ..., n or
its reverse n, ..., 2, 1. We also show that the star graph K1,n−1 with n ≥ 3 has a nonsym-
metric CQF for all labelings.

1. INTRODUCTION

R. Stanley [Sta95] defined the chromatic symmetric function of a graph as an infinite
power series generalization of the chromatic polynomial: if a graph G has vertex set V =
{v1, . . . , vn}, with PC(G) denoting its proper colorings using colors from P = {1, 2, . . . },
then its chromatic symmetric function is

X(G; x) =
∑

c∈PC(G)

xc,

where xc = xc(v1)xc(v2) · · · xc(vn) with c(vi) the color of vertex vi.
The chromatic quasisymmetric function of a graph is a generalization of the chromatic

symmetric function. It was introduced by Shareshian and Wachs [SW16] as a tool to
solve the Stanley-Stembridge Conjecture [SS93] given in terms of the chromatic symmet-
ric function in [Sta95], which is a central area of research in algebraic combinatorics. Spe-
cial cases of this conjecture have been solved, for example [CH19, GS01, HP19, HNY20].
More recently, Hikita has a preprint [Hik24] proving the Stanley-Stembridge conjecture in
full generality. For the chromatic quasisymmetric function, we have a graph G = (V, E),
with |V | = n, whose vertices are labeled with [n] = {1, 2, ..., n}. More precisely, we have
a bijective map L : V → [n] that assigns a label to each v ∈ V . The data (G, L) constitute a
labeled graph. Instead of differentiating between the vertices and the labels, we will often
identify the vertex set V = {v1, v2, . . . . , vn} with [n] = {1, 2, . . . , n}.

Given a coloring c ∈ PC(G), the ascent set of c is:

AscG(c) = {ij ∈ E | i < j and c(i) < c(j)}.

The ascent number of c is ascG(c) = # AscG(c). Similarly, the descent set of c is

DesG(c) = {ij ∈ E | i < j and c(i) > c(j)}.
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The descent number of c is desG(c) = # DesG(c). If the graph G is clear from the context,
we omit the subscript G. As above, we denote by xc the monomial xc(1)xc(2) · · · xc(n) where
c(i) is the color of the vertex labeled i ∈ [n].

The chromatic quasisymmetric function (CQF) of G is

X(G; x, q) =
∑

c∈PC(G)

xcqasc(c).

We can express X(G; x, q) as

X(G; x, q) =
∑
k≥0

Xk(G; x)qk,

where each Xk(G; x) is a quasisymmetric function of degree n. Moreover, X(G; x, q) is a
polynomial in q with degree equal to the number of edges of G. Finally, the chromatic
quasisymmetric function refines the chromatic symmetric function as X(G; x, 1) = X(G; x).
See [SW16, Page 502].

In general, there is no known classification of labeled graphs whose chromatic qua-
sisymmetric functions have coefficients that are symmetric. In this paper, we completely
resolve this question for the path graph Pn. We also discuss the star graph Kn−1,1 and give
a sufficient (but not necessary) condition for an arbitrary tree to have a nonsymmetric
CQF (see Corollary 5.4).

The natural labeling of Pn is 1, 2, ..., n or its reverse n, ..., 2, 1, since reversing labels on
the path graph leads to an isomorphic labeled graph. More precisely, if (Pn, L) is a labeled
path, then it has a natural labeling if L(vi) = i for all i or L(vi) = n + 1 − i for all i. For
example, the two isomorphic natural labelings for P5 are:

1 2 3 4 5 5 4 3 2 1 .
The path graph below has a “non-natural” labeling:

3 2 5 1 4 .
Shareshian and Wachs [SW16] proved that X(Pn; x, q) is symmetric if Pn is labeled with

the natural labeling. In this paper, we prove the converse statement, which leads to the
following result:

1.1. Theorem. The chromatic quasisymmetric function of Pn is symmetric if and only if Pn has
the natural labeling.

The principal strategy is to associate to each labeled path graph Pn a ribbon diagram
with n boxes, which encodes the ascent-descent pattern linked with the labeling of the
path. Section 3 provides details about this approach.

Outline. In Section 2, we give essential definitions and provide background. In Sec-
tion 3, we associate a ribbon tableau RD(Pn) to a given colored labeled path. We prove
our main Theorem 1.1 in Section 4. Finally, in Section 5, we treat the CQF of the star graph
K1,n−1 and present a general result for a class of trees.

Acknowledgments. We are grateful to the referees for their detailed comments, subtle
corrections, and pertinent suggestions, and to Maria Gillespie, Joseph Pappe, and Kyle
Salois for helpful discussions.
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2. PRELIMINARIES

This section reviews the necessary definitions and background material for chromatic
quasisymmetric functions (CQFs). We discuss both symmetric and palindromic CQFs.
As a sufficient test for a CQF to be palindromic, we study the properties of the flip map on
the vertex set, given by i 7→ n+ 1− i.

Following the development and notation in [Sag20], let x = {x1, x2, . . . } be a countably
infinite set of commuting variables, and let C[[x]] be the algebra of formal power series in
x. We say f(x) ∈ C[[x]] is homogeneous of degree n if the sum of the exponents of each mono-
mial in f(x) equals n, and f(x) is symmetric if the coefficient of the monomial xm1

i1
xm2

i2
· · ·xmℓ

iℓ

(for i1, i2, . . . , iℓ distinct subscripts) is the same as the coefficient of xm1

1 x
m2

2 · · ·xmℓ

ℓ in f(x).
Let

Symn = {f(x) ∈ C[[x]] | f(x) is symmetric and homogeneous of degree n}.

Then the algebra of symmetric functions is

Sym =
⊕
n≥0

Sym
n
.

Sym is well-studied, and there are several interesting bases indexed by integer partitions.
The reader is referred to [Sag20], [Sta23], and [Mac15] for a wealth of information on
symmetric functions.

We say that f(x) ∈ C[[x]] is quasisymmetric if the coefficient of xm1

i1
xm2

i2
· · ·xmℓ

iℓ
for i1 < i2 <

· · · < iℓ is the same as the coefficient of xm1

1 x
m2

2 · · ·xmℓ

ℓ in f(x). Let

QSymn = {f(x) ∈ C[[x]] | f(x) is quasisymmetric and homogeneous of degree n}.

Then the algebra of quasisymmetric functions is

QSym =
⊕
n≥0

QSym
n
.

Note that every symmetric function is also quasisymmetric, but the converse is false.
Bases of QSym are indexed by integer compositions.

Given a composition α = (α1, α2, . . ., αℓ) ⊨ n, the monomial quasisymmetric function
Mα ∈ QSym

n
is defined by:

Mα =
∑

i1<i2<···<iℓ

xα1

i1
xα2

i2
· · · xαℓ

iℓ
.

Then, QSym
n

is a vector space of dimension 2n−1, with basis {Mα | α ⊨ n} for n ≥ 1 and
QSym

0
is spanned by {M0 = 1}, where 0 stands for the empty composition.

Given α = (α1, α2, . . . , αℓ) ⊨ n, the reverse of α is the composition αr = (αℓ, αℓ−1, . . . , α1).
Define an involution ρ on QSym

n
by assigning

ρ(Mα) =Mαr ,

on the basis elements and extending linearly. The map ρ further extends to an involution
of QSym

n
[q].

In this paper, we focus on two special classes of chromatic quasisymmetric functions.
• We say that a CQF X(G; x, q) is symmetric if X(G; x, q) ∈ Sym[q], meaning that the

coefficients are symmetric functions (not just quasisymmetric functions).
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• We say that a CQF X(G; x, q) is palindromic if X(G; x, q) is a palindromic polynomial
in q, meaning that the coefficient (living in QSym) of qi equals the coefficient of
qm−i wherem is the number of edges in G.

An equivalent definition for symmetry of X(G; x, q) is that the coefficient of Mα in
X(G; x, q) is equal to the coefficient ofMβ (as polynomials in q) where β is any rearrange-
ment of α.

Shareshian and Wachs [SW16, Proposition 2.6] show that ρ reverses the coefficients of a
CQF as a polynomial in q, which we will use in Proposition 2.2. Hence, a CQFQ is palin-
dromic if and only if ρ(Q) = Q. It is straightforward to check that a necessary condition
forQ to be palindromic is that the coefficient ofMα inQ is equal to the coefficient ofMαr

for each composition α.
As an illustration, consider the labeled path graph P4:

3 4 1 2 .
The associated CQF is

(5q3 + 7q2 + 7q+ 5)M(1,1,1,1) + (2q3 + q2 + q+ 2)M(1,1,2)+

(q3 + 2q2 + 2q+ 1)M(1,2,1) + (2q3 + q2 + q+ 2)M(2,1,1) + (q3 + 1)M(2,2),

which is palindromic, but not symmetric since the coefficients ofM(1,1,2) andM(1,2,1) differ.
According to [SW16, Corollary 2.8], every symmetric CQF is palindromic. When show-

ing that a particular graph has a nonsymmetric CQF, it is sometimes feasible to show the
stronger result that the CQF is nonpalindromic.

On the other hand, showing that a given CQF is palindromic appears to be a difficult
task. Below, we present one criterion that guarantees a graph has a palindromic CQF.

Recall that two labeled graphs (G, L) and (G ′, L ′) are isomorphic if there exists a graph
isomorphismω : G→ G ′ such that L ′(ω(v)) = L(v) for each vertex v ∈ V(G). In this case,
we write (G, L) ∼= (G ′, L ′).

2.1. Definition. Let (G, L) be a labeled graph with vertex set V = {v1, ..., vn} with the
labeling map L : V → [n]. The flip map f sends (G, L) to the labeled graph (G ′, L ′) by
defining G ′ to have the vertex set V and the labeling L ′(vi) = n + 1 − L(vi). For brevity,
we write f(G) := G ′. We say G is invariant under the flip map if (G, L) ∼= (G ′, L ′).

We present three examples of trees that are invariant under the flip map.

3 6 1 4 7 2 5

4

61

3

7 2

5 4

1

7

5 236

2.2. Proposition. Suppose Q is the CQF of a labeled graph G, and Q ′ is the CQF of the labeled
graph G ′, obtained from G via the flip map. Then Q+Q ′ is palindromic.

Proof. Any proper coloring c of G is also a proper coloring of G ′ (and vice-versa), corre-
sponding to the same monomial xc, as the flip map permutes the labels of the vertices of
G, but does not change the color of each vertex.
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It is straightforward to check that AscG(c) = DesG ′(c). Therefore, we also have that
AscG ′(c) = DesG(c), and so

Q ′ =
∑

c∈PC(G ′)

xcqascG ′ (c) =
∑

c∈PC(G)

xcqdesG(c) = ρ(Q),

where the last equality follows from [Sag20, Theorem 8.5.3 (b)]. Since ρ is an involution,
we then have:

ρ(Q+Q ′) = ρ(Q+ ρ(Q)) = ρ(Q) +Q = Q ′ +Q.

So, Q+Q ′ is indeed palindromic. □

The proposition above allows us to conclude the following.

2.3. Corollary. Suppose Q is the CQF of a labeled graph G and suppose Q ′ is the CQF of the
labeled graph G ′ = f(G). If G is isomorphic to G ′ as labeled graphs, then Q is palindromic.

Proof. By Proposition 2.2 and the fact that Q = Q ′:

ρ(Q) = ρ

(
Q+Q ′

2

)
=
Q+Q ′

2
= Q,

as desired. □

3. LABELED PATHS AND RIBBON TABLEAUX

Given a labeled path graph (Pn, L), its vertex set is V = {v1, . . . , vn} where vivi+1 is an
edge for 1 ≤ i ≤ n−1. We can then define a permutation σ = σ1σ2 · · ·σn where σi := L(vi).

3.1. Definition. Given a labeled path Pn with associated permutation σ1σ2· · ·σn, the ascent-
descent pattern, or ad-pattern for short , is a wordw1w2 · · ·wn−1, in the alphabet {a, d}, with
wi = a if σi < σi+1 and wi = d if σi > σi+1, for each 1 ≤ i ≤ n− 1.

For example, consider the two labelings of P5 below.

3 5 1 4 2 5 1 2 3 4

The ad-pattern for the left graph is adad, and for the right graph, daaa.
By definition, the CQF of a path is invariant under permuting the labels but maintain-

ing the order of the labels of adjacent vertices. To understand the CQF of a labeled path,
it therefore suffices to focus on its ad-pattern alone.

We can visualize an ad-pattern using a ribbon diagram (also called a rim-hook or border
strip) with n boxes as follows. We start with a single box and then sequentially append a
new box to the right (resp. above) for each a (resp. d) in the ad-pattern. For example, the
two graphs above have ad-patterns

3 5 1 4 2
a d a d

adad

5 1 2 3 4
d a a a

daaa

and hence ribbon diagrams
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and

respectively.
Note that we can completely describe a ribbon diagram with n boxes by a composition

α = (α1, α2, . . . , αℓ) ⊨ n, whereαi is the number of boxes in row i of the diagram, with row
1 being the bottom row. For example, the two ribbon diagrams above have corresponding
compositions of (2, 2, 1) and (1, 4). We call the ribbon diagram whose composition is α
the α ribbon. For example, the left ribbon diagram above is the (2, 2, 1) ribbon. We will
also refer to the CQF of a labeled path as the CQF of its ribbon diagram.

3.2. Definition. Any contiguous collection of boxes of a ribbon diagram D is called a
sub-ribbon of D, or more specifically, a β sub-ribbon, if it has composition β.

For example, the shaded boxes form a (1, 2, 2) sub-ribbon of the ribbon diagram:

.

We can use a ribbon tableau to encode a coloring of a labeled path Pn. Given a proper
coloring c ∈ PC(Pn) of a labeled path Pn with vertex set [n], we place the color c(i) in the
ith box of its ribbon diagram, starting with the bottom, left box, and following the ribbon,
creating its ribbon tableau. For example, below, we have two colored paths (with the color
of each vertex indicated above it) and their corresponding ribbon tableaux.

3 5 1 4 2
1 2 1 2 1

5 1 2 3 4
1 2 3 2 3

1

1 2

1 2

2 3 2 3

1

We define RD(Pn) to be the ribbon diagram associated to a (labeled) path Pn. We define
the proper coloring of RD(Pn), denoted RT(c), to be the ribbon tableau associated to a proper
coloring c ∈ PC(Pn) with the number in each box called its color.

In Section 4, certain boxes of RD(Pn) will have special significance, so we define them
now.

3.3. Definition. Given a path Pn, whose vertices are labeled with [n], and corresponding
ribbon diagram RD(Pn), a left-upper (LU) corner of RD(Pn) is a box with no box to its left
and no box above it. A right-lower (RL) corner is a box with no box to its right and no box
below it.

For example, in the two ribbon diagrams below, the left-upper corners are labeled “LU,”
and the right-lower corners are labeled “RL.”



CHROMATIC QUASISYMMETRIC FUNCTIONS OF THE PATH GRAPH 7

LU

LU RL

LU RL

LU RL

RL

Observe that the maximum ascent number of a proper coloring c of a graph G = (V, E)
equals |E|. This maximum is achieved if and only if, for each edge ij ∈ E, we have c(i) <
c(j) whenever i < j. If G = Pn, this happens if and only if the colors of RT(c) increase left
to right in each row and increase from top to bottom in each column. In particular, the color 1
must always be assigned to an LU box.

More generally, if Pn does not have the natural labeling, for a given coloring c and its
corresponding colored ribbon tableau RT(c), asc(c) equals the number of adjacent hori-
zontal pairs in RT(c) whose colors increase left to right plus the number of adjacent verti-
cal pairs whose colors increase top to bottom.

4. THE CHROMATIC QUASISYMMETRIC FUNCTION OF THE PATH GRAPH

For any labeled graph G with n vertices, consider the expansion of X(G; x, q) in the
monomial quasisymmetric function basis:

X(G; x, q) =
∑
α ⊨ n

cα(q)Mα.

Note that the coefficients cα(q) are polynomials in q. If G = Pn, then Mα appears in
X(Pn; x, q) if and only if there is a proper coloring of RD(Pn) that uses color i αi times, for
i = 1, 2, . . . . We say such a coloring has content α. The coefficient of qk in cα(q) equals the
number of proper colorings of Pn using content α, with k ascents.

For example, if P4 is

2 4 3 1 ,

then RD(P4) is

and

X(P4, x, q) = (3q3 + 9q2 + 9q+ 3)M(1,1,1,1)

+ (2q2 + 3q+ 1)M(1,1,2) + (q3 + 2q2 + 2q+ 1)M(1,2,1)

+ (q3 + 3q2 + 2q)M(2,1,1) + (q2 + q)M(2,2).

We see that c(1,1,2)(q) = 2q2 + 3q + 1, so there are two colorings of RD(P4) that yield 2
ascents and use color 1 one time, color 2 one time, and color 3 two times, as shown below.

2 4 3 1
1 3 2 3

2 4 3 1
2 3 1 3
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3

2

1 3

3

1

2 3

In what follows, we assume that the vertices of Pn are labeled with [n], but not in the
natural order. Hence its ad-pattern is not aa · · ·a or dd · · ·d, and so RD(Pn) does not
have composition (n) or (1n).

We prove Theorem 1.1 by analyzing several types of configurations or sub-ribbons that
RD(Pn) might contain. First, we can reduce the number of cases with the following:

4.1. Proposition. If a labeled path Pn has a symmetric CQF, then the labeled path obtained by
applying the flip map of Definition 2.1 has a symmetric CQF.

Proof. We extend the definition of the flip map to a colored path graph, Pn. Let f(Pn) be
the colored, labeled path obtained from Pn by replacing label iwith n+1−i, but retaining
the coloring. Then

X(f(Pn); x, q) =
∑

c∈PC(f(Pn))

xcqasc(c) =
∑

c∈PC(Pn)

xcqdes(c).

By [SW16, Corollary 2.7], since X(Pn, x, q) is symmetric, we have that

X(Pn, x, q) =
∑

c∈PC(Pn)

xcqdes(c).

Thus,
X(f(Pn); x, q) = X(Pn; x, q)

and both are symmetric. □

Translating this result to ribbon diagrams, we note that the ad-pattern of f(Pn) is ob-
tained from the ad-pattern of Pn by replacing each ‘a’ with a ‘d’ and each ‘d’ with an ‘a’.
This corresponds to reflecting the ribbon diagram RD(Pn) across the diagonal that starts
at the lower left corner of the ribbon diagram and has slope 1, resulting in the “reflection”
of the ribbon diagram.

For example, if Pn is

2 4 3 1 ,
then f(Pn) is obtained from Pn by replacing vertex label iwith 4− i+ 1:

3 1 2 4 ,
and their corresponding ribbon diagrams are

and ,

respectively, with the second ribbon diagram being the reflection of the first.
Proposition 4.1 allows us to conclude that any statement about the symmetry, or lack

thereof, of the CQF of a ribbon diagram immediately applies to the CQF of its reflection.
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The proposition below reduces our study to ribbon diagrams with the same number of
LU and RL corners. Namely, it shows that the corresponding labeled paths do not have
symmetric CQFs if these counts are different. Two examples of such ribbon diagrams are:

LU RL

LU RL

RL

LU

LU RL

LU RL

4.2. Proposition. Let Pn be a labeled graph such that the number of LU and RL corners of RD(Pn)
are different. Then, X(Pn; x, q) is not palindromic, and hence not symmetric.

Proof. Let k be the number of LU corners and j be the number of RL corners.
If k < j, then q|E|M(k,1n−k−j,j) is a term of X(Pn; x, q). This is because we can construct a

coloring c with content (k, 1n−k−j, j) and asc(c) = |E| as follows. The LU corners can be
colored 1, the RL corners can be colored with the largest color, and all other boxes can be
colored using the remaining colors so that row and column entries increase. However,
q|E|M(j,1n−k−j,k) is not a term of X(Pn; x, q) because there is no way to place color 1 in j > k
boxes, while maximizing ascents, since, to maximize ascents, color 1 can only be placed
in the k LU corners.

If k > j, a similar argument shows that q|E|M(k,1n−k−j,j) is a term of X(Pn; x, q), but
q|E|M(j,1n−k−j,k) is not. Note that the largest color can only be placed in the j RL corners
for maximum ascent.

In either case, we have found a composition α such that the coefficients ofMα andMαr

are not equal, and hence X(Pn; x, q) is not palindromic. □

Proposition 4.2 was proved independently and recast in terms of acyclic directed graphs,
sources and sinks in [GPS24, Lemma 4.2]. Note that our LU corners and RL corners cor-
respond to their sources and sinks, respectively.

We say that i consecutive rows (resp. columns) that each contain at least 2 boxes is a
stack of i rows (resp. columns). If all rows (resp. columns) contain at least two boxes,
we say the ribbon diagram consists of stacked rows (resp. columns). A ribbon diagram of
stacked rows is shown below.

Our next result shows that labeled paths whose ribbon diagrams consist of stacked
rows do not have a symmetric CQF.

4.3. Notation. If f(x) is a formal power series, we denote the coefficient of xn in f(x) by
[xn]f(x).

4.4. Proposition. Suppose that Pn is a labeled path whose composition corresponding to RD(Pn)
is α = (α1, α2, . . . , αk) with αi ≥ 2 for each i and k ≥ 2. Then, X(Pn; x, q) is not symmetric.
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Proof. Let r, s be the lengths of any two adjacent rows of RD(Pn), i.e. (r, s) = (αi, αi+1).
Choose b to be any integer in the interval [r, n−k−s+2]. Note this interval is non-empty
since (r − 1) + (s − 1) + k ≤ n, where the left-hand side counts the number of boxes in
rows i, i+ 1, as well as the LU corners in RD(Pn).

To prove that X(Pn; x, q) is not symmetric, we show that

[q|E|M(k,1n−k)]X(Pn; x, q) > [q|E|M(1b−1,k,1n−k−b+1)]X(Pn; x, q).

Let A denote the set of proper colorings of RD(Pn) with content (k, 1n−k) and maximum
ascent number |E|. Each coloring in A contributes q|E|M(k,1n−k) to X(Pn; x, q). Note that
these colorings use color 1 exactly k times and every other color once. The set A is
not empty because every row has at least two boxes. Similarly, let B denote the set of
proper colorings of RD(Pn) with content (1b−1, k, 1n−k−b+1) and maximum ascent num-
ber |E|. Each coloring in B contributes q|E|M(1b−1,k,1n−k−b+1) to X(Pn; x, q). Note that these
colorings use color b exactly k times and every other color once.

We extend B to B ′, the set of (not necessarily proper) colorings of RD(Pn) with content
(1b−1, k, 1n−k−b+1) such that the rows are strictly increasing left to right, while the columns
are weakly increasing top to bottom.

For example, consider the (3, 3, 4) ribbon diagram. Let i = 1, so r = 3 and s = 3. Then,
since k = 3, we have b ∈ [3, 6]; we choose b = 4. With content (13, 3, 14), the ribbon
tableau below, constructed according to the proof of this proposition, is an element of B ′,
but the coloring is not proper, so it is not an element of B.

3 4 5 6

4 7 8

1 2 4

As noted previously, because every coloring c ∈ A has a maximum ascent number, the
colors of c must increase in each row. Since there are k rows and k copies of color 1, the
leftmost box of each row must be colored 1.

Define a bijection ζ : A → B ′ as follows: Given c ∈ A, identify the unique k − 1 rows
not containing b. Replace the k− 1 occurrences of 1’s in these rows with b’s and sort each
row so that its colors are increasing left to right. For example, if

c1 = 1 3 4 8

1 6 7

1 2 5

, then ζ(c1) = 1 3 4 8

4 6 7

2 4 5

,

which is in B. But if

c2 = 1 3 7 8

1 5 6

1 2 4

, then ζ(c2) = 3 4 7 8

4 5 6

1 2 4

,

which is in B ′ \ B.
By construction, ζ(c) ∈ B ′ since ζ(c) could only (potentially) have a descent in a column

consisting of the box at the end of a row and the box immediately above it.

a1 · · ·
· · · a2
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But every row of ζ(c) must contain color b exactly once, and the rows are increasing, so
a1 ≤ b and b ≤ a2. Thus, the columns of ζ(c) weakly increase from top to bottom.

By definition, each coloring c ′ ∈ B ′ has exactly one b per row, and there will be exactly
one row that contains both 1 and b. With this observation, we define the inverse ζ−1 :
B ′ → A as follows: Given c ′ ∈ B ′, identify the k − 1 rows not containing 1, replace each
occurrence of b in these rows with 1, and sort each row so its colors increase left to right.

Next, we show that there exists a coloring in B ′ \ B, from which it follows that

[q|E|M(k,1n−k)]X(Pn; x, q) = |A| = |B ′| > |B| = [q|E|M(1b−1,k,1n−k−b+1)]X(Pn; x, q).

Let m = n − k + 1 be the maximum color used by colorings in B ′. We construct a
coloring in B ′ \ B as follows.

• Fill row i of RD(Pn) with (1, 2, . . . , r− 1, b) and note that the row is increasing left
to right since b ≥ r.

• Fill row i + 1 of RD(Pn) with (b,m − s + 2, . . . ,m − 1,m) and note that the row is
increasing left to right since b ≤ n− k− s+ 2 = m− s+ 1.

• Fill the rest of RD(Pn) arbitrarily such that the coloring is in B ′.

Then the coloring is not in B since the column (consisting of two boxes) joining rows i
and i+ 1 contains two adjacent copies of color b. □

4.5. Corollary. Suppose that Pn is a labeled path with associated ribbon diagram consisting of at
least two stacked columns. Then, X(Pn; x, q) is not symmetric.

Proof. The result follows by combining Proposition 4.4 and Proposition 4.1. □

The following two propositions show that ribbon diagrams containing certain sub-
ribbons correspond to labeled paths that are not symmetric.

4.6. Proposition. Suppose that Pn is a labeled path with vertex set [n]. If RD(Pn) contains a
(1, 1, 3) sub-ribbon, , begins (on the lower left) with the (1, 3) sub-ribbon, , or ends

with the (1, 1, 2) sub-ribbon, , then Q = X(Pn; x, q) is not symmetric.

Proof. Let k be the number of LU corners of RD(Pn). We show that

[q|E|M(k+1,1n−k−1)]Q = 0 but [q|E|M(1,k+1,1n−k−2)]Q > 0.

For a proper coloring with |E| ascents and content (k + 1, 1n−k−1), each copy of color 1
must be placed in an LU corner to respect the increasing conditions on the rows and
columns. There are k < k + 1 LU corners, so such a coloring does not exist, hence
[q|E|M(k+1,1n−k−1)]Q = 0.

On the other hand, let T be one of the sub-ribbons in the statement. Color the LU corner
of T with color 1 and the two neighboring boxes with color 2. Color the remaining k − 1
LU corners of RD(Pn) with 2, and arbitrarily color the rest of RD(Pn) with the remaining
distinct colors {3, 4, . . . , n− k} such that the rows are increasing left to right and columns
are increasing top to bottom. This is a proper coloring with a maximum ascent number
by construction. Thus, [q|E|M(1,k+1,1n−k−2)]Q > 0, giving the desired conclusion. □
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To illustrate the proof of Proposition 4.6, consider the following ribbon tableau with
k = 3 LU corners. The given coloring, with the (1, 1, 3) sub-ribbon shaded, shows that
[M(1,4,17)]Q > 0.

2 9

5

1 2 4 6

2

2 3 8

7

4.7. Corollary. Suppose that Pn is a labeled path with vertex set [n]. If RD(Pn) contains a (3, 1, 1)
sub-ribbon, , or begins with a (2, 1, 1) sub-ribbon, , or ends with a (3, 1) sub-ribbon,

, has a nonsymmetric CQF.

Proof. The result follows by combining Proposition 4.6 and Proposition 4.1. □

4.8. Definition. Suppose that Pn is a labeled path. We say RD(Pn) is regular if RD(Pn) has a
row of length 2 followed by a row of length at least 2, or a terminal row of length 1. In this
case, the (2, 1) sub-ribbon contained in these rows is called the regular (2, 1) sub-ribbon.

For example, the ribbon diagram below is regular, with two examples of regular (2, 1)
sub-ribbons shaded.

4.9. Proposition. Suppose that Pn is a labeled path such that
• RD(Pn) does not contain a (1, 1, 3) sub-ribbon, , does not begin with the (1, 3) sub-

ribbon, , does not end with the (1, 1, 2) sub-ribbon, , and

• RD(Pn) is regular.
Then, Q = X(Pn; x, q) is not symmetric.

Proof. Let k be the number of LU corners of RD(Pn). We show that

[q|E|M(k,1n−k)]Q > [q|E|M(1,k,1n−k−1)]Q.

LetA be the set of proper colorings of RD(Pn) with content (k, 1n−k) and maximum ascent
number |E|, whose cardinality equals the coefficient [q|E|M(k,1n−k)]Q. These colorings use
k copies of color 1 and each of the next n − k colors once. Let B denote the set of proper
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colorings of RD(Pn) with content (1, k, 1n−k−1) and maximum ascent number |E|, whose
cardinality equals the coefficient [q|E|M(1,k,1n−k−1)]Q. These colorings use k copies of color
2 and each of the colors {1, 3, 4, ..., n− k− 1} once.

To show that |B| < |A|, we produce an injective map ψ : B → A that is not surjective.
Define ψ : B → A as follows: given T ∈ B, ψ(T) is obtained by replacing all 2’s in the LU
corners of T by 1’s. For example, if

T = 2

1 3

2

2 5

2 4

6

, then ψ(T) = 1

1 3

2

1 5

1 4

6

.

By the first hypothesis, each T ∈ B contains k − 1 LU corners colored 2 and one LU
corner colored 1. As a result, ψ is well-defined. Indeed, ψ(T) has the maximum ascent
number because replacing 2s with 1s maintains all ascents. Furthermore, ψ is an injection
since the unique 2 in ψ(T) is adjacent to exactly one 1, which uniquely determines T .

However, ψ is not a surjection. By the second hypothesis, RD(Pn) contains a regular
(2, 1) sub-ribbon S. We construct a ribbon tableau T ′ ∈ A not in the image of ψ: color
the LU corners of S with color 1, and its RL corner with color 2. Color the remaining LU
corners with color 1 and the rest of T ′ arbitrarily so that row and column entries strictly
increase. Then T ′ is not in the image of ψ, since no coloring in ψ(B) contains a 2 that is
adjacent to two 1’s because the purported pre-image would not be a proper coloring, as it
would have two adjacent boxes colored 2. □

Below is an example of such a ribbon tableau T ′, with S shaded.

1

1 2

3

1 5

1 4

6

We now give a proof of the main theorem.

Proof of Theorem 1.1. Since Pn with the natural labeling has a symmetric CQF [SW16], we
only need to prove the converse.

Let Pn be a path whose labeling is not natural. By Proposition 4.2, we can assume that
Pn has the same number of LU and RL corners. Accordingly, RD(Pn) has at least a stack
of two rows or a stack of two columns. If RD(Pn) consists entirely of a stack of rows
or a stack of columns, X(Pn; x, q) is not symmetric by Proposition 4.4 and Corollary 4.5.
Assume RD(Pn) has a mix of stacks of rows and stacks of columns. By Proposition 4.1,
we may assume that RD(Pn) starts with a stack of columns (including, possibly, columns
with two boxes). Consider the first transition point from the stack of columns to the stack
of rows, where we must necessarily encounter a row r of length ≥ 3, colored in olive
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below.
· · ·

...

If the column left adjacent to r has at least 3 boxes (colored in cyan below), then RD(Pn)
has a (1, 1, 3) sub-ribbon and X(Pn; x, q) is not symmetric by Proposition 4.6.

· · ·

...

Thus, we may assume that the column c left adjacent to r has 2 boxes. If c is the first
column of RD(Pn), then the tableau begins with:

.

In this case, we can apply Proposition 4.6 to deduce that X(Pn; x, q) is not symmetric.
Otherwise, there is at least one more column to the left of c. In this juncture, we have a
regular (2, 1) sub-ribbon:

· · ·

...

.

Now, either RD(Pn) contains a (1, 1, 3) sub-ribbon, begins with a (1, 3) sub-ribbon, or
ends with a (1, 1, 2) sub-ribbon, so we are done by Proposition 4.6, or it does not, so we
are done by Proposition 4.9. Hence, we conclude in all possible cases that X(Pn; x, q) is
not symmetric. □

5. THE CHROMATIC QUASISYMMETRIC FUNCTION OF OTHER TREES

Theorem 1.1 shows that only the natural labeling of the path graph Pn results in a sym-
metric CQF. However, it is not the case that every tree will have some labeling that results
in a symmetric CQF, as shown by the following theorems.

Consider the star graph K1,n−1 on n ≥ 3 vertices. The central vertex is the unique vertex
of degree > 1.

5.1. Proposition. The CQF of a (labeled) star graph G with n vertices is palindromic if and only
if n is odd and the central vertex is labeled n+1

2
.

Proof. Suppose the central vertex of G is labeled j where 1 ≤ j ≤ n. Consider the coeffi-
cients of the two monomial quasisymmetric functions M(1,n−1) and M(n−1,1) in X(G; x, q).
First note that they each consist of only one term, qr and qs, respectively. This is because
there is only one way to color the vertices with content (1, n− 1), namely, the central ver-
tex receives color 1 and other vertices receive color 2; the ascent number for this coloring
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is r = n − j. Similarly, there is only one way to color the vertices with content (n − 1, 1):
the central vertex receives color 2, and other vertices receive color 1; the ascent number
for this coloring is s = j− 1. Note that r+ s = n− 1.

If n is even, then r ̸= s, and X(K1,n−1; x, q) is not palindromic. If n is odd, and r ̸=
s, then X(K1,n−1; x, q) is not palindromic. Thus, r = s = n−1

2
is a necessary condition

for X(K1,n−1; x, q) to be palindromic. Note that r = s = n−1
2

if and only if the central
vertex is labeled n+1

2
. In this case, the labeled graph is invariant under the flip map of

Definition 2.1 and thus, the coefficient of qi is equal to that of qn−1−i and X(K1,n−1; x, q) is
palindromic. □

5.2. Proposition. The CQF of a (labeled) star graph G with n ≥ 4 vertices is never symmetric.

Proof. Symmetric CQFs are palindromic by [SW16, Corollary 2.8]. Thus, by Proposi-
tion 5.1, we need only show that the star graph on n vertices (for n odd) and central vertex
labeled n+1

2
does not have a symmetric CQF. Using the content (1, 2, n− 3), the maximum

ascent number is n−1
2

; indeed, with the central vertex colored 1, there is an ascent for each
edge e = (n+1

2
)i with vertex i > n+1

2
. However, for the content (2, 1, n− 3), the maximum

ascent number is n−1
2

+ 2. This ascent number is achieved by coloring the central vertex
with 2, and two vertices with labels smaller than n+1

2
with color 1, obtaining two addi-

tional ascents. Thus, the coefficient ofM(1,2,n−3) is a polynomial in q of degree n−1
2

, but the
coefficient of M(2,1,n−3) is a polynomial in q of degree n−1

2
+ 2, and so X(K1,n−1; x, q) is not

symmetric. □

We also have the following general result on bipartite graphs.

5.3. Proposition. Let G be a connected labeled bipartite graph with an odd number of edges and
unequal bipartition, that is, G = A ∪ B for two independent sets A and B with |A| ̸= |B|. Then,
the CQF of G is not palindromic, and in particular, is not symmetric.

Proof. Let a = |A| and b = |B|; it is given that a ̸= b. The coefficient of M(a,b) in X(G; x, q)
consists of a single term qr, where r equals the number of edges ij such that i ∈ A and
j ∈ B with i < j. Similarly, the coefficient of M(b,a) in X(G; x, q) consists of a single term
qs, where s equals the number of edges ij such that i ∈ A and j ∈ B with i > j. Since
r + s = |E(G)| is odd, it follows that r ̸= s. As the coefficients of M(a,b) and M(b,a) differ,
X(G; x, q) is not palindromic. □

5.4. Corollary. Let T be a labeled tree with an even number of vertices with unequal bipartition.
Then, the CQF of T is not palindromic, and in particular, is not symmetric.

With this in mind, we therefore conclude with the following question, which was re-
cently answered in [GPS24].

5.5. Question. For which labeled trees T is X(T ; x, q) symmetric?

In [GPS24], the authors prove that the path graph Pn with the natural labeling is the
only tree with symmetric CQF.

The reader may wonder how our paper and [GPS24] differ and coincide. As noted
earlier, both papers contain a version of Proposition 4.2. Our map in the proof of Propo-
sition 4.9 is a specialization of [GPS24, Definition 4.7] with k = 1. Beyond that, the proof
methods are different, and all results were arrived at independently. It is interesting that
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in both papers, enumerating the multiplicity of q|E| in a CQF is used to determine whether
a CQF is symmetric.
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