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B S T R A C T

ubstantial efforts have exploited reinforcement learning (RL) in the development of micro-robotic locomotion. These RL-powered micro-robots
re capable of learning a locomotory policy based on their experience interacting with the surroundings, without requiring prior knowledge on
he physics of locomotion in that environment. However, in their applications, micro-robots often encounter changes in the environment and need
o adapt their locomotory gaits like living organisms in order to achieve robust locomotion performance. In standard RL methods, such a non-
tationary environment can cause the micro-robots to continuously relearn the policy from scratch, degrading their locomotion performance. In
his work, we explore a first use of a recently developed context detection method combined with deep RL to facilitate micro-robotic locomotion
n a dynamically changing environment. As a proof-of-principle, we consider a simple micro-robot immersed in non-stationary environments
witching between a viscous fluid environment and a dry frictional environment. We show that the RL with context detection approach enables
he micro-robot to effectively detect changes in the environment and deploy specialized locomotory gaits for different environments accordingly
o achieve significantly improved locomotion. Our results suggest the integration of deep RL with context detection as a potential tool for robust
icro-robotic locomotion across different environments.

. Introduction

In the famous 1959 seminar ‘‘There’s Plenty of Room at the Bottom’’ on nanotechnology, Feynman outlined his vision of
wallowing a micro-robot that can roam the human body to perform micro-surgery. Building such micro-robots not only require
icro-/nanofabrication techniques but also knowledge of their physics of locomotion at the microscopic scale. When entering

he microscopic world, various physical forces come out in different proportions; simply scaling down macroscopic locomotion
trategies therefore would not work effectively. In particular, swimming at the microscopic scale becomes very challenging due
o the dominance of the viscous force over the inertial force [1,2]. The Reynolds number (Re), which compares the magnitude
f the viscous force to the inertial force, is negligibly small for micron-sized objects (e.g., 10−6 for flagellated bacteria to 10−2

or spermatozoa) [3,4]. At such low Re, Purcell’s scallop theorem [1] rules out the possibility of generating self-propulsion using
ny reciprocal motion – a sequence of body configurations that possess time-reversal symmetry. Common macroscopic swimming
trategies at high Re, such as flapping motions of wings, therefore become ineffective at low Re. To swim at the microscale,
icroorganisms have evolved different propulsion strategies with their sophisticated biological molecular machinery. However,
ithout similar molecular machinery as microorganisms do, designing simple synthetic mechanisms that enable self-propulsion at

ow Re represents a fundamental challenge in developing swimming micro-robots. To this end, Purcell [1] presented a pioneering
xample with a three-link micro-swimmer to demonstrate how a swimmer can generate self-propulsion in the absence of inertia by
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Fig. 1. A model micro-robot consisting of three identical spheres of radius 𝑅 connected by two extensible arms with lengths 𝐿1 and 𝐿2. The position of the
spheres are denoted by the coordinates 𝑥𝑖. The goal of the micro-robot is to perform locomotory gaits by adjusting the arm lengths 𝐿1 and 𝐿2 to generate net
displacement in the positive 𝑥-direction.

performing cyclic motions in a non-reciprocal manner, overcoming the constraints due to kinematic reversibility. In a latter effort,
Najafi and Golestanian [5] presented another elegant example of a micro-swimmer consisting of three linked spheres (Fig. 1), which
can self-propel by varying the distances between the spheres. In addition to these ingenious designs, growing cross-disciplinary
interest has contributed to the development of swimming micro-robots for potential biomedical applications, such as drug delivery
and microsurgery [6,7].

More recent efforts have explored the applications of machine learning techniques in studying locomotion [8–16] and naviga-
tion [17–22] problems in fluid environments. In particular, reinforcement learning (RL) has been employed to equip micro-swimmers
with the capability to learn effective swimming gaits without prior knowledge of low-Re locomotion [23,24]. For instance, recent
studies have shown that a micro-swimmer consisting of linked spheres can successfully acquire swimming gaits [11] previously
invented by Najafi and Golestanian [5] and adjust its gaits to navigate in targeted swimming directions [13]. Furthermore, this
versatile approach can empower the cooperative swimming of a pair of microswimmers [15] and is adaptable for application
with other reconfigurable microswimmers [12,16]. Similar RL techniques can also be applied to learn locomotion strategies in
a drastically different environment, such as coordinated crawling movements on frictional surfaces [25,26]. This is particularly
important for biomedical applications of micro-robots, which may encounter complex and heterogeneous biological environments
consisting of both fluid and solid terrains. Successful biomedical applications of micro-robots therefore rely on their ability to traverse
vastly different environments [27–29]. However, micro-robots to date are typically designed for operation in a specific environment.
When there is a change in the environment (e.g., from a fluid terrain to a solid terrain), the optimal locomotory gaits in the original
environment may become largely ineffective in the new environment. Such a dynamically changing environment is an example of
a non-stationary environment in RL, where the dynamics of the environment may change in unknown or unpredictable manners.

A challenge associated with learning in non-stationary environments is ‘‘catastrophic forgetting’’ [30,31], which is the tendency of
an agent to quickly forget previously learned policy upon learning new policy when encountering a new environment. Consequently,
a micro-robot would need to learn from scratch whenever it transitions from one environment to another, even for an environment
that has already been experienced and learned by the micro-robot. The time required for the relearning process degrades the
locomotion performance. Moreover, the epochs at which these changes in environment occur are unknown to the micro-robot,
adding uncertainty to its overall locomotion performance. In contrast, natural microorganisms can encode memory patterns of
previously experienced environmental stimuli, enabling them to robustly adapt to changes in environment [32–35]. Many previous
works have focused on improving the RL algorithms to better adapt to the newly occurring information, but few have provided
a method to maintain separate data structure suited for a non-stationary environment [36–38]. To address RL in non-stationary
environments, it is desirable to have a RL agent that can retain its previously learnt policy in various environments and quickly
adapt its policy according to the change in a non-stationary environment.

In this work, we demonstrate a first use of a recently developed context detection method [38] combined with deep RL [39]
to facilitate the locomotion of a micro-robot in a dynamically changing environment. Here, the term ‘‘context’’ indicates a type of
dynamics in a specific environment; hence, a context change in this work corresponds to a change in the environment in which
the micro-robot is immersed. The context detection method computes high-confidence change-point detection statistics, in real
time, to detect changes in the environment (or context) and inform the decision-making strategy. The algorithm makes use of the
change-point detection statistics to decide whether new policies need to be created and deployed when a change in environment
is encountered or previously-optimized policies might be reused. Similar context detection methods have been implemented in
applications such as traffic lights control and maze escaping in non-stationary environments [36,38]. Here we introduce its first
use in micro-robotic locomotion. Specifically, here we consider the locomotion of a simple model micro-robot consisting of three
linked spheres (Fig. 1), which can encounter changes between two environments with drastically different dynamics: a viscous fluid
medium and a dry frictional medium. We show that the RL context detection approach can enable the micro-robot to effectively
detect changes in the environment and adapt its locomotory gaits accordingly, realizing an ‘‘amphibious’’ micro-robot for both
aquatic (viscous fluid medium) and terrestrial (dry frictional medium) locomotion. We compare the locomotion performance of the
micro-robot against RL without context detection in various scenarios. Taken together, the results represent a proof-of-principle
demonstration of the context detection approach in micro-robotic locomotion and suggest its potential use for locomotion across
more complex non-stationary environments in future studies.
2
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Fig. 2. Schematic of the reinforcement learning with context detection algorithm. The micro-robot performs an action 𝑎𝑡 in a dynamically changing environment
(bottom), where the current environment (viscous or frictional) is unknown to the micro-robot. After taking the action, the micro-robot reaches a new geometric
configuration, which is the next observation 𝑜𝑡. The reward 𝑟𝑡 is calculated based on the displacement of the centroid. Receiving the reward and the next
observation, the reinforcement learning agent utilizes its context detection method to determine the model that best fits the current environment – a model for
the viscous or frictional environment or a new model to be created (Top). Based on the selected model, the agent advises the next action to the micro-robot,
and the next iteration begins. During the training process, the agent progressively updates its policy models and context detection method.

2. A model micro-robot for ‘‘amphibious’’ locomotion

We consider a simple reconfigurable system composed of three identical spheres of radius 𝑅 connected by two arms with variable
lengths, 𝐿1 and 𝐿2, as illustrated in Fig. 1. This system generalizes the micro-swimmer first studied by Najafi and Golestanian [5],
which permits only discrete actions of a single arm at a given time, by allowing continuous and simultaneous actuation of the
two arms. This allows the emergence of more complex gaits for locomotion in environments other than the purely viscous fluid
medium considered previously [5]. By symmetry, the micro-robot can only generate motion in the 𝑥-direction, and the position of
sphere 𝑖 is denoted by the coordinate 𝑥𝑖. The centroid of the micro-robot is therefore given by 𝑥𝑐 =

∑

𝑖 𝑥𝑖∕3. The overall goal of
the micro-robot is to acquire effective locomotory gaits that generate a net displacement of its centroid in the positive 𝑥-direction
in different environments. We immerse the micro-robot in a non-stationary environment that can change dynamically between a
viscous fluid medium and a dry frictional medium. We consider these two drastically different media as a proof-of-principle of
an ‘‘amphibious’’ micro-robot that adapts its locomotory gaits for both aquatic (viscous fluid medium) and terrestrial (dry friction
medium) locomotion.

To simulate the dynamics of the micro-robot in a purely viscous fluid environment, we model the hydrodynamic interaction
between the spheres by the Oseen tensor [5,40]. This approximation is valid in the asymptotic limit where the spheres are relatively
far apart (i.e., 𝑅 ≪ 𝐿1, 𝐿2). We also assume that the arms have negligible hydrodynamic influences. The velocity of the spheres are
related to the forces by 𝑥̇𝑖 = 𝐺𝑖𝑗𝐹𝑗 , where 𝐺𝑖𝑗 is the one-dimensional Oseen tensor [41–43] given by

𝐺𝑖𝑗 =

⎧

⎪

⎨

⎪

1
6𝜋𝜇𝑅 if 𝑖 = 𝑗

1
4𝜋𝜇|𝑥𝑖−𝑥𝑗 |

if 𝑖 ≠ 𝑗,
(1)
3
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𝜇 is the dynamic viscosity of the fluid, and 𝐹𝑗 is the hydrodynamic force on the sphere 𝑗. The arm actuation rates 𝐿̇𝑖 are related to
the position of the spheres kinematically as 𝐿̇1 = 𝑥̇2 − 𝑥̇1 and 𝐿̇2 = 𝑥̇3 − 𝑥̇2. The kinematics of the micro-robot is fully determined
upon applying the force-free condition, ∑𝑖 𝐹𝑖 = 0, at low Re, where inertial effect is considered negligible.

To simulate the locomotion of the micro-robot on a dry frictional medium, we consider a standard Coulomb sliding friction law,
which has been applied to study different locomotion problems on land [44,45]. The friction experienced by the spheres 𝐹𝑖 depends
on the net driving force 𝑓𝑖 exerted on these spheres by the arms and the Coulomb sliding friction 𝐹𝑐 as

𝐹𝑖 =

{

−𝐹𝑐 𝑥̇𝑖∕|𝑥̇𝑖|, if |𝑓𝑖| > 𝐹𝑐

−𝑓𝑖, if |𝑓𝑖| ≤ 𝐹𝑐 .
(2)

ere, when the net driving force 𝑓𝑖 on the sphere is greater than the Coulomb sliding friction 𝐹𝑐 (i.e., |𝑓𝑖| > 𝐹𝑐), the sphere
xperiences a constant frictional force given by 𝐹𝑐 , independent of the magnitude of its velocity. When |𝑓𝑖| ≤ 𝐹𝑐 , the sphere instead
xperiences a static friction that balances the net driving force, 𝐹𝑖 = −𝑓𝑖. Consistent with locomotion in the low Re regime, here
e again consider the physical regime where inertial effect is negligible [45]. The motion of the spheres is therefore determined by
nforcing the force free condition in the inertialess regime.

We consider a non-stationary environment that changes between the purely viscous fluid medium and frictional medium
escribed above, where the change of the environment occurs instantaneously [46]. The micro-robot is not prescribed any
ocomotory gaits a priori. Instead, we apply a deep RL approach combined with a context detection method to enable the micro-robot
o learn and adapt its locomotory gaits autonomously in such a dynamically changing environment. In this work, we scale lengths
y the fully extended arm length 𝐿, velocities by the maximum arm actuation rate 𝑉𝑐 , time by 𝐿∕𝑉𝑐 , and forces by 𝜇𝐿𝑉𝑐 . Hereafter

we refer only to scaled quantities and use the same symbols for convenience. The micro-robot can vary the arm lengths 𝐿1 and 𝐿2
in the range of [0.6, 1]. In our simulations, during each action step we consider uniform arm actuation rates 𝐿̇1 and 𝐿̇2 in the range
of [−1, 1]. We set the time duration for each action step as 𝛥𝑡 = 0.1.

3. Reinforcement learning with context detection

We employ a deep RL approach [8,13,22,39] to train the micro-robot to generate net displacement of its centroid in the positive
𝑥-direction. In the RL algorithm, the state 𝑠 ∈ (𝑥1, 𝑥2, 𝑥3) contains all the 𝑥-coordinates of the spheres. The observation 𝑜 ∈ (𝐿1, 𝐿2)
is extracted from the state as geometric configurations. The RL agent determines the next action based on the current observation
through an actor neural network. The micro-robot then performs the action 𝑎 ∈ (𝐿̇1, 𝐿̇2) by actuating both of its arms for the duration
of one action step. The RL agent evaluates the success of the action by measuring the net centroid displacement: 𝑟𝑡 = 𝑥𝑐𝑡+1 −𝑥𝑐𝑡 . The
training process is divided into a total of 𝑁𝑒 episodes, with each episode containing 𝑁𝑡 = 100 action steps. We randomly initialize a
state 𝑠0 at the beginning of each episode to facilitate a full exploration of the observation space. The actor and critic networks are
further updated for every 20 episodes by maximizing the expected long-term rewards E[𝑅𝑡=0|𝜋𝜙]. Here, 𝜋𝜙 is the stochastic control
olicy, 𝑅𝑡 =

∑∞
𝑡′ 𝛾

𝑡′−𝑡𝑟𝑡′ is the infinite-horizon discounted future returns, and 𝛾 is the discount factor measuring the greediness of
he algorithm. We set 𝛾 = 0.99 to ensure the farsightedness of the RL algorithm.

The RL framework described above has been shown effective for learning locomotory gaits for a single, stationary environ-
ent [8,13]. Here we adapt this RL framework for a non-stationary environment by applying it in each individual environment
ith a context change detection algorithm. For context change detection, we employ a high confidence change point detection
ethod developed recently by Alegre et al. [38], which enables the agent to quickly detect a change of environment and trains
set of partial models for different environments as illustrated by Fig. 2. Consider a non-stationary environment consisting of a

ist of environments 𝐸1...𝐸𝐾 . Let 𝐶 be a random environment change point switching from 𝐸𝑖 to 𝐸𝑗 . A proper detection method
hould consider the time it takes to detect the change point 𝐶 as well as false detection before 𝐶 occurs. The high confidence change
oint detection method minimizes both by computing quality signals based on the experience of the micro-robot (i.e., the action
erformed, the state transition, and the reward). The quality signals, 𝑊𝑘,𝑡 = max(0,𝑊𝑘,𝑡−1+𝐿𝑘,𝑡), are computed for each partial model
at every action step 𝑡 utilizing a multivariate variant of cumulative sum (MCUSUM) method [38], where 𝐿𝑘,𝑡 is the log-likelihood

atio indicating how likely a particular model 𝑘 becomes a better fit than the current model. The algorithm will activate the partial
odel with the highest quality signal that surpasses a threshold ℎ and thereby enables the swimmer to adapt its locomotory gaits in

esponse to the change of environment. Furthermore, in the context detection algorithm, a new partial model will be generated when
ll other partial models become ineffective in describing the current environment, allowing the micro-robot to explore unlimited
istinct environments (Fig. 2 top, see Supplementary Information for more details of the algorithm).

. Results and discussion

.1. Training and locomotory gaits

In Fig. 3(a), we show the average training results of RL agents with context detection in a non-stationary environment switching
etween the viscous and frictional media (blue line). In the training process, we periodically switch between the two media every 100
pisodes, which was empirically found to provide satisfactory training outcomes, leading to the oscillatory episode reward shown
n Fig. 3(a). As the training proceeds, the RL agent with context detection gradually builds up its experience with the two media,
hich is used to improve its ability to both detect a change in the environment and develop specialized locomotory strategies of the

wo partial models. We contrast the result against those by RL agents trained separately without context detection in the viscous
4
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Fig. 3. (a) The average episode reward of the training process is plotted against the training episode. Generally, all RL agents increase their episode reward as
he number of training episode increases. Each line represents the training results averaged over five agents. For the RL agents trained in the viscous (green line)
nd frictional (red line) environments without context detection, the values of episode reward quickly plateau. We periodically switch between two environment
or the RL agents with context detection (blue), leading to the oscillatory behaviour in the episode reward. As the training proceeds, the RL agents with context
etection gradually improve the partial models and eventually reach a similar episode reward for both environments. (b) A typical cycle of the swimming gaits
sed by the RL agents with context detection in the viscous fluid medium. The lengths of the two arms, 𝐿1 and 𝐿2, modulate in a manner akin to harmonic

oscillations with a mismatch in phases. (c) A typical cycle of the crawling gaits used by the RL agents with context detection in the frictional medium. The
crawling gaits are characterized by the use of only a single arm while the other arm remains static and fully contracted, significantly different from the swimming
gaits.

Fig. 4. Displacement of the micro-robot’s centroid in non-stationary environments that periodically switch between viscous (white regions) and frictional (grey
regions) media, with (a) 10% and (b) 50% of the total duration in the frictional medium. The blue lines track the performance of RL agents with context
detection, whereas the green and red lines track, respectively, the performance of RL agents trained separately in the viscous and friction environments without
context detection.

environment (green line) and the frictional environment (red line). We observe that the episode reward of the RL agents with context
detection gradually approaches to those by RL agents trained only for specific environments. In particular, the RL agents with context
detection quickly acquire similar levels of reward as the RL agents trained in the viscous environment at around 6 × 103 episodes.
5
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Fig. 5. Displacement of the micro-robot’s centroid in a non-stationary environment with non-periodic changes between viscous (white regions) and frictional
(grey regions) media. The blue line tracks the performance of the RL agent with context detection, whereas the green and red lines track, respectively, the
performance of RL agents trained separately in the viscous and friction environments without context detection.

After around 2×104 episodes, the RL agent with context detection successfully learns a set of locomotory gaits that generate similar
pisode rewards in both environments, while also acquiring the ability to effectively detect environment change. The RL agents with
ontext detection are capable of detecting a change in the environment with typically 3 to 7 action steps. As a remark, we note that,
owards the end of the training, the episode rewards in the frictional environment (approximately 2) are much larger than that in
he viscous environment (approximately 0.1) as shown in Fig. 3(a). This is due to the intrinsic difference in the dynamics of the
wo environments; the effective crawling gaits in the frictional environment displace the micro-robot substantially more than the
ffective swimming gaits do in the viscous medium.

In Fig. 3(b) and (c), we visualize the locomotory gaits employed by the RL agent with context detection in the viscous [panel (b)]
nd frictional [panel (c)] environments by plotting the variation of the arm lengths 𝐿1 and 𝐿2 of a representative stroke sequence.

Since uniform actuation rates are employed for each action step, the arm length variations are piece-wise linear functions. We note
the significant differences between the locomotory gaits in these two environments: in the viscous environment, the micro-robot
actuates the two arms in a manner akin to harmonic oscillations with a mismatch in phases [ Fig. 3(b); see also SI Movie 1],
reminiscent of the swimming gait previously studied for the Najafai–Golestanian swimmer [47]; the mismatch in phases was shown
essential for generating net swimming motion in a viscous fluid medium. In contrast, the crawling gaits in the frictional environment
are characterized by some sequential movements of only a single arm while the other arm remains static in the fully contracted state [
Fig. 3(c); see also SI Movie 2]. The RL agents are capable of learning these specialized locomotory gaits without any prior knowledge
of the locomotion physics in these different environments. We also note that the epochs at which the changes in environment occur
are unknown to the micro-robot. With context detection, the micro-robot can detect the changes in the environment and deploy the
swimming and crawling gaits adaptively (see SI Movie 3).

4.2. Locomotion performance in different non-stationary environments

To illustrate the advantage of the context detection method, we next compare the locomotion performance of the RL agents with
context detection against RL agents without context detection but trained separately for the viscous or frictional environment, by
placing them in different non-stationary environments. We track their centroid displacements as they perform different actions in a
non-stationary environment. In Fig. 4(a), we consider a non-stationary environment that periodically switches between the viscous
(white regions) and frictional (grey regions) media, with 10% of the total duration in the frictional medium. We observe that the RL
agent with context detection (blue line) shows substantially better performance in terms of the larger displacement of the centroid
than the RL agents without context detection (red and green lines), demonstrating the significance of detecting the change in the
environment and adaptively deploying specialized locomotory gaits for the corresponding environments. Specifically, the RL agent
with context detection displays an approximately six-fold (two-fold) enhancement in the centroid displacement compared with the
RL agent trained in the viscous (frictional) environment at the end of the simulation. In particular, we observe that the RL agent
trained in the frictional environment (red line) is able to move in the desired direction only when it is in the frictional environment;
it indeed moves in the opposite direction when the environment becomes viscous, as indicated by the negative slopes in the white
regions shown in Fig. 4(a). Similarly, the locomotion policy of the RL agent trained in the viscous environment (green line) is only
effective in the viscous environment, moving the agent in the opposite direction when the environment becomes frictional. In stark
contrast, the RL agent with context detection (blue line) always moves in the target direction by adapting its locomotory gaits based
on the detected changes in the environment, as indicated by the positive slopes in all regions.
6
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We note that the level of enhancement in the locomotion performance of the RL agent with context detection depends on the
omposition of the non-stationary environment. To illustrate, we consider in Fig. 4(b) a non-stationary environment that switches
eriodically between viscous and frictional environments with equal duration in both environments. In such a non-stationary
nvironment, the disadvantage of the RL agent trained in the viscous environment (green line) becomes more apparent because
f the longer duration spent in the frictional environment, where the agent moves in the wrong direction; overall, the RL agent
oves in the negative 𝑥-direction at the end of the simulation in this non-stationary environment, opposite to the target direction.
n the other hand, the RL agent trained in the frictional environment (red) has significantly improved performance because of the

ncreased duration spent in the frictional medium. In this non-stationary environment, the RL agent with context detection still
isplays enhanced locomotion performance relative to the RL agent trained in frictional environment, but in a diminished manner
ompared with that in the non-stationary environment in Fig. 4(a).

Last, we remark that although periodic changes in the environment are considered in Fig. 4, the epochs at which the changes in
nvironment occur are unknown to the agent. The context detection approach continues to work whether the change of environment
s periodic or not. To illustrate this point, we consider in Fig. 5 a non-stationary environment with non-periodic changes between the
iscous (white regions) and frictional (grey regions) media. We observe that the RL agent with context detection (blue line) remains
apable of detecting the change in the environment and adapting its locomotory gaits to always move in the positive 𝑥-direction

in such a non-stationary environment with non-periodic changes. This capability again results in superior locomotion performance
compared with RL agents without context detection (green and red lines), illustrating the impact of the context detection method.

5. Conclusions

In their potential applications, micro-robots may encounter heterogeneous surrounding environments including both fluid and
solid terrains. Optimal locomotory gaits in one environment, however, may become largely ineffective in a different environment. To
achieve robust locomotion performance, these micro-robots need to adapt their locomotory gaits like living organisms in response to
changes in the environment. In this work, we explore a first use of a context detection method combined with deep RL as a potential
tool to facilitate micro-robotic locomotion in a dynamically changing environment. As a model micro-robot, we consider a simple
reconfigurable system consisting of three linked spheres immersed in a non-stationary environment that switches between a viscous
fluid medium and a dry frictional medium. These two specific media are considered here to realize an ‘‘amphibious’’ micro-robot
performing aquatic (viscous fluid medium) and terrestrial (dry frictional medium) locomotion. We demonstrate that the use of
high-confidence change-point detection statistics empowers the RL agent to detect changes in the environment and deploy effective
swimming (crawling) gaits in the viscous fluid (dry frictional) environment, leading to superior locomotion performance compared
with RL agents without context detection. These results serve as a proof-of-principle of integrating deep RL with context detection
to enable smart micro-robotic locomotion in a dynamically changing environment.

We remark on some limitations of the current study and suggest potential directions for subsequent investigations. First, the
context change detection method assumes individual environments to be distinct, meaning that either the effective locomotory
strategies (observation transition function) or the reward function should be significantly different in order for the method to be
effective. A non-stationary environment consisting of environments with very similar observation transition and reward functions
may cause failure in training the detection mechanism; however, even without context detection in these scenarios, the RL agent is
expected to achieve sufficiently effective performance in similar environments. Second, as a first step in modelling a dynamically
changing environment, the change in environment is assumed to be instantaneous in this work. Subsequent efforts should account
for a transition phase where the micro-robot moves across the boundary between two different environments. In this more complex
scenario, the heterogeneity in the dynamics of individual parts of the micro-robot will need to be captured by the governing
equations. It will be interesting to examine the locomotion strategy and the use of the context detection approach during such a
transition phase in future work. Third, the influences of external disturbances such as flows, obstacles, and Brownian noise [48–52]
is another important practical aspect to address, given the small sizes of the micro-robots and the presence of other uncontrolled
environmental factors within complex biological settings. Understanding the impact caused by these hydrodynamic and thermal
fluctuations is an ongoing focus, both during the training phase of the micro-robot and its resulting navigation performance. Finally,
we consider in this work a non-stationary environment consisting of the purely viscous fluid and dry frictional media only as a
proof-of-principle demonstration. In their potential medical applications, micro-robots are expected to traverse diverse and complex
biological environments, including different types of non-Newtonian fluids (e.g., blood and mucus) and lubricated solid surfaces
(e.g., gastrointestinal walls). Without adaptability like living organisms, it remains formidable for micro-robots to achieve robust
locomotion performance across these different environments. The proof-of-principle demonstration here suggests the possibility
of addressing these outstanding challenges by integrating deep RL with context detection to empower adaptive locomotion of
micro-robots across different environments.
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