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Data-Driven Intelligent Manipulation of Particles in
Microfluidics

Wen-Zhen Fang, Tongzhao Xiong, On Shun Pak, and Lailai Zhu*

Automated manipulation of small particles using external (e.g., magnetic,
electric and acoustic) fields has been an emerging technique widely used in
different areas. The manipulation typically necessitates a reduced-order
physical model characterizing the field-driven motion of particles in a complex
environment. Such models are available only for highly idealized settings but
are absent for a general scenario of particle manipulation typically involving
complex nonlinear processes, which has limited its application. In this work,
the authors present a data-driven architecture for controlling particles in
microfluidics based on hydrodynamic manipulation. The architecture replaces
the difficult-to-derive model by a generally trainable artificial neural network to
describe the kinematics of particles, and subsequently identifies the optimal
operations to manipulate particles. The authors successfully demonstrate a
diverse set of particle manipulations in a numerically emulated microfluidic
chamber, including targeted assembly of particles and subsequent navigation
of the assembled cluster, simultaneous path planning for multiple particles,
and steering one particle through obstacles. The approach achieves both
spatial and temporal controllability of high precision for these settings. This
achievement revolutionizes automated particle manipulation, showing the
potential of data-driven approaches and machine learning in improving
microfluidic technologies for enhanced flexibility and intelligence.
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1. Introduction

Manipulation of small particles and biolog-
ical samples plays an important role in dif-
ferent engineering applications and funda-
mental science. The development of com-
puterized control schemes have facilitated
the emerging automated strategies of par-
ticle manipulation with limited human in-
terventions. Often, such a manipulation
requires a reduced-order physical model
to describe the motion of particles driven
by a variety of external fields, for exam-
ple, magnetic,[1] electric,[2] acoustic,[3] and
optical[4] ones. However, such models can
only be obtained in highly idealized setups
that allow multiple assumptions such as
point particles, negligible inter-particles, or
particle-device interactions, and simple ge-
ometric settings, etc.[5] Lacking such mod-
els for general scenarios has considerably
limited the application scope of automated
particle manipulation. Here, we address
this limitation using a data-driven approach
and demonstrate its success in automating
a specific technique that exploits hydrody-
namics to manipulate particles.

Compared to the external-field-driven techniques, hydrody-
namic particle manipulation does not need extra power sources
but gentle viscous fluid forces on the particles to control their
motion. Hence, this technique as exemplified G. I. Taylor’s pio-
neering four-roll mill device[6] does not rely on the specific ma-
terial or physical properties of particles as often necessitated by
field-based methods. Inspired by the automated four-roll mill,[7]

Schroeder and coworkers achieved versatile hydrodynamic par-
ticle manipulation in a microfluidic chamber termed Stokes
trap[5,8,9] using a model predictive control scheme.

Like other field-driven techniques, automated hydrodynamic
manipulation[7,9–12] necessitates a model to characterize the flow-
driven motion of particles, namely, to describe their transla-
tional and/or rotational velocities as functions of their states
and the control signals, for example, the cylinders’ rotational
rates of the four-roll mill. A general model can be obtained by
solving the 3D Navier–Stokes or Stokes equations, but is too
costly for feasible real-time control. Reduced-order models us-
ing the Hele–Shaw approximation allowed the manipulations
in idealized settings,[9,10,13] which however crucially depend on
stringent assumptions—a creeping Newtonian flow in a laterally
unbounded domain between two closely-gapped plates together
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Figure 1. Data-driven intelligent manipulation of multiple particles in a microfluidic flow at a vanishing Reynolds number Re ≪ 1. A) A 3D disk-shaped
chamber of radius R and height h, laterally connecting N inlet channels of width d equally spaced in angle. The flow pattern inside it can be tuned in
time for multiplexed motion control of M particles of the same radius a = 0.1R by adjusting the inlets’ mean velocities Uj(t) ∈ [− Uc, Uc] with j = 1, 2,
…, N. In this particular N = 3 chamber hosting M = 3 particles, a snapshot of the flow field in the mid-plane (z = 0) is shown. B) Upon recording the
kinematics and positions of particles for sufficiently time, an ANN is trained to predict their translational Vi and rotational velocities 𝛀i (i = 1, 2, …, M)
as functions of their positions ri and the inlet velocities Uj. C) An MPPI controller integrating the ANN model determines the optimal inlet velocities to
achieve multiplexed motion control of particles, for example, targeted delivery showcased here of one particle only to avoid visual complexity.

with tracer particles. By choosing the Stokes trap as a model flow
device, we present a data-driven strategy for automated particle
manipulation in a general flow configuration relaxing these as-
sumptions. Here, we specifically focus on large particles com-
pared to the device thus featuring considerable hydrodynamic
interactions that cannot be conveniently captured by reduced-
order modeling. Using the recorded motion of particles and flu-
idic control signals as the data, we train an artificial neural net-
work (ANN) that learns the flow physics of hydrodynamically in-
teracting particles in strong confinement to further predict their
kinematics subject to varying control signals. We then integrate
the ANN into a model predictive path integral (MPPI) controller
designed for reinforcement learning tasks.[14–16] Applying this
ANN-MPPI control strategy in a numerically emulated Stokes
trap, we successfully deliver various tasks of hydrodynamic par-
ticle manipulation such as targeted assembly, multiplexed path
planning and navigating particles through obstacles.

2. Virtual Stokes Trap

We test and demonstrate by employing the ANN-MPPI controller
for hydrodynamic particle manipulation in a virtual Stokes trap.
The emulation is realized by a particle-resolved flow solver based
on Lattice Boltzmann method solving the fluid flow and im-
mersed boundary method capturing the motions of finite-sized
particles (see Appendix). Because Reynolds number Re ≪ 1 in
a typical Stokes trap,[9,10] the current work considers a creeping
flow. We manipulate the motion of M spherical particles of the
same radius a = 0.1R inside a disk-shaped chamber of radius R
and height h = 0.4R filled with Newtonian fluids (see Figure 1A),
as motivated by the experiments.[9,17] Its perimeter is connected
to N ⩾ 3 side inlets of width d = 0.4R equally distributed in angle.
The mean velocities of fluid flow into these inlets are denoted by
Uj with 0 ⩽ j ⩽ N − 1 for the jth inlet, satisfying

∑N−1
j=0 Uj = 0 due

to mass conservation. The velocities of the N inlets except for the
zeroth constitute the Stokes trap’s N − 1 control variables within

the range [ − Uc, Uc]. Controlling the inlet velocities allows for
adjusting the flow pattern in the chamber and the motion of par-
ticles therein. For demonstration purpose, we constrain the par-
ticles to the z = 0 mid-plane, associated with no particle motion
in the z-direction due to the top–down symmetry.

3. Data-Driven Feedback Controller

The planar coordinates of the ith (i = 1, 2, …, M) particle are de-
noted by ri = [ri

x, ri
y], and its translational and rotational veloci-

ties are Vi = [Vi
x, Vi

y] and Ωi, respectively. In a creeping flow as

considered here, the collection of the particles’ translational V̂ =
[V1,… , VM] velocities depend on their instantaneous positions
r̂ = [r1,… rM] and the inlet velocities Û = [U1,… , UN−1], namely,
V̂ = V̂(r̂, Û) and so as the rotational velocities 𝛀̂ = [Ω1,… ,ΩM].
For a particular Stokes trap, we first numerically calculate [V̂, 𝛀̂]
as a function of randomly seeded combinations [r̂, Û]. Using the
collected data, we train a standard feedforward ANN model typ-
ically including 1–3 hidden layers that can calculate the approxi-
mate velocities as a function of [r̂, Û] efficiently (Figure 1B). This
approximator will serve as the model for the MPPI controller.

We then briefly describe the MPPI controller for our hydro-
dynamic manipulation (see Figure 1C). MPPI is a stochastic
model predictive control scheme for model-based reinforcement
learning tasks.[14,15] At a specific time t, MPPI seeks the optimal
sequence of actions—inlet velocities here, Û∗ = (Û∗

0,… , Û∗
T−1),

over T steps with each having a time interval of Δt. First, an initial
sequence Û∗0 that ideally approximates Û∗ is guessed. Second, a
number of K sequences are sampled around Û∗0, where the kth
sequence deviates from Û∗0 by a small perturbation Ûk − Û∗0 =
𝝐

k = (𝝐k
0,… , 𝝐k

T−1) representing an exploration noise. The compo-
nents of 𝝐 follows the normal distribution, namely, 𝝐l ∼  (0, 𝜎2I)
with l = 0, …, T − 1, where 𝜎2 denotes the exploration variance
and I the identity matrix of size N − 1. Accordingly, the optimal
sequence Û∗ will be identified as a weighted sum of all sampled
sequences Û∗ = Û∗0 +

∑K
k=1 wk

𝝐
k subject to

∑K
k=1 wk = 1, where
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Figure 2. Guiding particles such that each executes its respectively assigned target trajectory. Here, we steer three particles to trace the letters “N,” “U,”
and “S” and finalize their journeys simultaneously. A) The solid and dashed curves indicate the completed and unfinished parts of a prescribed trajectory
for the ith particle at time t, when the contour length of the latter is Li(t). The two parts are separated by the projection ri

prj(t) of the particle’s position

ri(t) onto the trajectory. B–D) Instantaneous positions and past trajectories of the particles at t/Tc = 3.0, 6.2, and 9.45. The hollows circles in (B) mark
the initial positions of particles. The vectors and contour color indicate the mid-plane velocity fields u∕Uc at z = 0.

the weight wk quantifi=es the relative importance of the kth se-
quence. To determine wk, we first use the ANN model to evolve
the sequence in the time window [t, t + TΔt] and calculate a cost
value Sk to quantify how far the evolved trajectory deviates from
the objective. We then obtain

Wk = exp

[
−Sk − 𝜎−2

2

T−1∑
l=0

Û∗0
l ⋅

(
Û∗0

l + 2𝝐k
l

)]
(1)

leading to wk = Wk∕
∑K

k=1 Wk. In particular, the cost Sk =∑T
l=1 𝜓 [r̂(t), r̂k(t′ = t + lΔt)] sums the instantaneous cost func-

tions 𝜓 within the sampled time window t′ ∈ [t, t + TΔt]. The
form of 𝜓(t′) shall be designed case by case for different manip-
ulative tasks. In the current work for path-planning and naviga-
tion, 𝜓 involves only the positions of particles.

4. Results

4.1. Steering Particles to Follow Individual Trajectories

First, we steer M particles to follow an individual target trajectory
fi(r) = 0 (i = 1, …, M) simultaneously. We use a two-component
instantaneous cost function 𝜓 consisting of

𝜓1 =
M∑

i=1

|f i(ri(t′))|,𝜓2 = −
𝛿r̂ ⋅ L̂(t)‖𝛿r̂‖‖L̂(t)‖ (2)

where 𝛿r̂ = [𝛿r1,… , 𝛿rM] with 𝛿ri = [ri(t′) − ri(t)] ⋅ 𝝉 i(t) represent-
ing the projected travelling distance of the ith particle along its
desired trajectory within the time window [t, t′] as shown in Fig-
ure 2A. Here, 𝝉 i(t) is the tangent vector at the projected posi-
tion of the ith particle’s position ri(t) onto its desired trajectory.
L̂(t) = [L1,… , LM](t) with Li(t) is the contour length of the re-
maining (uncompleted) part of the desired trajectory at time t,
where the completed and remaining parts are separated by the
projection ri

prj(t). The first cost function 𝜓1 guides the particles
to follow their respective target trajectories, and the second func-
tion 𝜓2 guarantees all particles to complete their journeys at the
same time.

Using a Stokes trap of M = 8 inlets, Figure 2 shows that the
MPPI controller based on the cost function Equation (2) enables
the steering of three particles to successfully trace out the let-
ters “NUS” simultaneously (see Video S1, Supporting Informa-
tion), that is, the particles start and finish the tracing of individ-
ual letters simultaneously. This example showcases the capabil-
ity of this ANN-MPPI approach in the precise control of multiple
particles both spatially and temporally, empowering complex and
simultaneous manipulations of particles in subsequent applica-
tions.

4.2. Targeted Assembly of Particles

Having guided the particles to follow individual trajectories, we
then attempt targeted assembly of particles as a powerful mean
to synthesize colloidal molecules and superstructures.[18,19] For a
numerical demonstration, we address how to gather particles to-
gether without modeling the inter-particle bondage, considering
that protein-coated particles brought sufficiently close can form
a stable assembly.[9,20]

In Figure 3A–D, we demonstrate the sequential assembly of
three particles numbered 1–3 (see Video S2, Supporting Infor-
mation) using the cost functions described in Appendix. First,
the inlet flows are controlled such that particle 1 is held fixed
in space throughout the assembly process, similar to the use of
an optical tweezer or a micro-pipette aspiration in trapping or
confining a particle or biological cell. Particle 2 is then trans-
ported next to particle 1 (Figure 3B,C), a representative oper-
ation conducted to initiate particle–particle interactions in sce-
narios such as drop coalescence,[21] vesicle fusion,[22] and cellu-
lar communications.[23] Subsequently, steering particle 3 to ap-
proach particle 2 while freezing particles 1–2 allows the three to
form a line assembly (Figure 3D). This example showcases the
current approach as a versatile tool for building assembly of parti-
cles encoding a specific ordering, for instance, the surfactant-like
or barcode-mimicking colloidal chain.[24]

Besides the sequential chain formation, the particles can also
be assembled into structures of different shapes simultaneously,
namely, all particles are brought into close contact at the same
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Figure 3. Targeted assembly of three particles into a line array (top row) or an equilateral triangle cluster (bottom row) featured by a uniform surface-
to-surface distance of 0.5a. This relatively large distance is adopted here to ease the numerical demonstration. A) Initial positions of particles. B,C)
Controlling particles 1 and 3 to stay still but particle 2 next to particle 1. D) Freezing particles 1 and 2 while moving particle 3 to assemble them into a
line array. E–H) Moving three particles simultaneously to form an equilateral triangle cluster.

time. We illustrate in Figure 3E–H the simultaneous assembly
of particles in the shape of an equilateral triangle (see Video S3,
Supporting Information) based on the cost functions given in the
Appendix. As a remark, the manipulation via fluid flows alone
here is contactless and noninvasive, without relying on optical,
magnetic, or other physical properties of the particles typically
required by other particle manipulation techniques.

4.3. Path Planning of a Particle Assembly

The ANN-MPPI-controlled Stokes trap cannot not only produce
different particle assemblies but also control the motion of the
assemblies. We illustrate this capability by controlling a three-
particle line assembly to trace out the letter “D” in Figure 4B–D
(see Video S4, Supporting Information). As a second example,
in Figure 4E–G the particle assembly shaped in equilateral trian-
gle nicely executes a convoluted, clover-shaped path (see Video
S5, Supporting Information). Note that the particles here are not
bonded but free to move apart. Hence, it is remarkable that the
forces responsible for both holding the particles together as an
assembly and steering itself during the whole course are solely
generated by the fluid flows modulated by the ANN-MPPI con-
troller.

To achieve the above tasks, we use a three-component instan-
taneous cost function 𝜓 = 𝜔1𝜓1 + 𝜔2𝜓2 + 𝜔3𝜓3 as

𝜓1 = ‖(t′) −prj(t
′)‖∕R (3a)

𝜓2 = −sgn
([
(t′) −(t)

]
⋅ 𝝉(t)

)
(3b)

𝜓3 =
i≠j∑
i,j

|‖ri(t′) − rj(t′)‖ − dij
tar|∕R (3c)

where  denotes the centroid of assembly, prj indicates the pro-
jection of  onto the prescribed path, and 𝝉 the latter’s corre-
sponding tangent vector at prj (see Figure 4). We design the
cost functions 𝜓1 and 𝜓2 for guiding the centroid to move along
the desired path, where the former reduces the centroid-path dis-
tance and the latter allows the centroid to follow the path profile.
Besides, 𝜓3 is added to preserve the inter-particle distances and
hence the shape of the particle assembly. Here, the weights 𝜔1 =
3000, 𝜔2 = 30 and 𝜔3 = 5000 are used.

4.4. Guiding Particles through Obstacles

Microfluidic chambers with obstacles have been adopted as a con-
trolled testbed to examine transport phenomena of particulate
media in porous media.[25,26] In particular, porous structures typ-
ically complicate the motion of particles and hence make it dif-
ficult to steer them. Here, we explore using intelligent hydrody-
namic manipulation for collision-free navigation of particles in a
“porous” environment depicted in Figure 5. This setting is fea-
tured by a 3 × 3 uniform lattice of square pillars each of width
0.2R, with a center-to-center distance of 0.5R between every two
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Figure 4. Path planning of a three-particle assembly. A) Schematic similar to Figure 3A but focusing on the centroid position of the cluster. B–D) Guiding
a line assembly to follow letter “D.” E–G) Guiding a triangular assembly to follow a clover-shaped path. The hollow circles in (B) and (E) denote the
initial positions of particles.

Figure 5. Navigating one particle in a three-inlet chamber including a uniform grid of square pillars each of size 0.2R. The center-to-center distance
between every two neighboring pillars is 0.5R. The particle is directed to enter (resp. leave) the chamber via the southwest (resp. northwest) inlet. rsta|l
denotes the intermediate stations introduced to guide the particle.

neighboring pillars. Unlike the above-shown multiplexed manip-
ulations, here, we navigate a single particle to focus on collision
avoidance. Despite the complex particle-pillar hydrodynamic in-
teraction as captured by the ANN, the degrees of freedom of the
particle motion remain two, thus allowing an N = 3 chamber for
motion control as shown in Figure 5. To facilitate the navigation,
we set up Ñ = 5 intermediate stations rsta|l (l = 1,… , Ñ) guid-
ing the particle to follow a polyline toward the target rtar ≡ rsta|Ñ .
Hence, the particle enters the southwestern inlet of the chamber
and leaves it from the northwestern one via these targets consec-

utively (see Video S6, Supporting Information). The cost function
for targeting the lth station reads

𝜓(l) = 𝜔
‖rsta|l − r1(t′)‖2‖rsta|l − r1(t)‖2

(4)

with 𝜔 = 1000. Note that we have not introduced a cost function
to penalize and thus avoid the particle collision with the obsta-
cles. Instead, the MPPI controller abandons any collision-leading
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Figure 6. Simultaneously controlling the motion and orientation of a prolate particle of aspect ratio 2: its centroid executes a perturbed circular trajectory
while its major axis is consistently aligned with the trajectory. 𝜃

𝝉
is the angle between the particle’s translational velocity and the ex axis, while 𝜃axis denotes

that between the particle’s major axis and the x-axis.

sampling sequences by setting their corresponding weights Wk

(Equation (1)) to zero.

5. Conclusion and Discussion

Automated hydrodynamic control has been an emerging tech-
nique for versatile manipulation of micro-scale particulate me-
dia. Previous studies utilizing feedback control necessitate a
reduced-order model to describe the flow-driven particle mo-
tion. The model, though indispensable, is however not acces-
sible for general microfluidics likely featuring finite inertia,[27]

non-Newtonian fluids,[28] non-spherical particles and cells,[29]

strong hydrodynamic interactions,[30] or complex channels. In
this work, we replace the generally inaccessible model with a
readily trainable ANN with sufficient data. Then, we integrate it to
an MPPI controller to achieve a plethora of targeted and directed
control of particles in a numerically-emulated microfluidic de-
vice, demonstrating both spatial and temporal controllability of
high precision.

To demonstrate using the learned hydrodynamics of interact-
ing particles for their versatile motion control, our current setting
has been limited to a Newtonian creeping flow. Upon relaxing the
limitation, we expect the control strategy to excel also in other
general scenarios. Figure 6, for example, showcases manipulat-
ing a prolate to follow a perturbed circular path with the former’s
major axis persistently aligned with the path. Throughout this
work, we have exploited the instantaneity of Stokes flow to use
the simplest feedforward ANN without considering how particle
kinematics depends on the past information (e.g., the particle po-
sitions or inlet velocities). However, this dependence would arise
in inertial[27] or viscoelastic[28] microfluidic flows or other sce-
narios involving deformable structures such as filaments,[31,32]

cells,[33] or fluid interfaces.[34] This consequently calls for using
ANNs with memory, for example, recurrent neural networks[35]

to characterize particle kinematics.
The numerically demonstrated data-driven intelligent Stokes

trap can be readily realized in experiments considering the al-
ready mature utilization of Stokes traps[5,8–12] and that ANNs han-
dle numerical and physical data indistinguishably. We also antici-
pate that the data-driven approach may obviate certain equipment
calibrations. The original setting requires calibrating the relation

between the flow rate in a tubing and the applied voltage of a pres-
sure regulator, because the former is varied by adjusting the latter
that determines the pressure. Such calibrations are unnecessary
because ANNs directly map the applied voltage onto the particles’
kinematics. Another related benefit of using ANN lies in its abil-
ity to model, as a “black box,” systematic imperfection and mal-
function of certain device parts, which would enable the ANN-
based control without actually fixing the equipment glitches.

Future directions for automated hydrodynamic manipulation
include applying reinforcement learning to learn the dynam-
ics while controlling as demonstrated recently,[36] incorporat-
ing the principle of symmetry-based manipulation,[37] manipu-
lating motile microorganisms or synthetic microswimmers in
spirit of exploring or endowing artificial intelligence in these
swimmers,[38–44] and integrating deep-learning-enabled image
classification[45] for automated cell sorting. We also envision
that machine learning for particle manipulation is not limited
to hydrodynamic control but can be conveniently adopted for
other external-field-directed techniques. The extrapolation has
been exemplified by the recent studies employing reinforcement
learning to manipulate particles using an optical[46] or acoustic
field.[47,48] Taken together, we anticipate a surge of using machine
learning to endow microfluidics with intelligence.[49–51]

Appendix

A.1. Numerical Methods

We build the virtual Stokes trap using a 3 flow solver based on Lattice Boltz-
mann method (LBM) and immersed boundary method (IBM): the former
is adopted to solve the flow and latter to capture the interfaces of mov-
ing particles. Besides, no-slip boundary conditions on the chamber walls
and square pillars are imposed using the standard bounce-back scheme
of LBM. The LBM–IBM solver enables explicitly resolving the fluid motion
around particles, as well as the flow between particles and chamber walls.
Hence, inter-particle and particle-wall hydrodynamic interactions are cap-
tured directly as a part of solution. Details of the LBM–IBM implementa-
tion are referred to ref. [52]. Note that since we use the solver to emulate
a virtual microfluidic device instead of examining specific flow physics, we
do not pursue an especially high numerical resolution in space: the di-
ameter 2a of particle spans 12 LBM grids of size dx in most simulations,
and 24 grids for the case with obstacles (Figure 5). Besides, we have im-
posed a repulsive force[53,54] on particles when they are in close proximity
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to a nearby particle or channel wall. Admittedly, this repulsion is partially
ad hoc, though also encoding a physical origin of lubrication force that is
typically underestimated due to an insufficient grid resolution.

Using this LBM-IBM implementation, we do not actually solve the
Stokes equation but the incompressible Naiver–Stokes equation with
small but finite inertia, that is, 0<Re= 𝜌UcR/𝜇 that is ideally much smaller
than unity to approach the considered Stokes flow limit, where 𝜌 and 𝜇
denote the density and dynamic viscosity of the fluid, respectively. Here,
Re also sets the numerical time step dt following dt/Tc = (dx/R)2(𝜏LBM −
0.5)Re/3 where the dimensionless relaxation time 𝜏LBM = O(1).

To approximate the Re = 0 limit, we set Re = 0.1 corresponding to a par-
ticle Reynolds number of Rep = 𝜌Uca/𝜇 = 0.01 considering the fixed size
ratio a/R = 0.1 throughout the study. In typical flows that vary smoothly
in time, such a small Rep is safely below the threshold required to neglect
inertia, hence allowing Navier–Stokes solvers to address Stokes flows as
commonly used.[55] However, this strategy needs to be modified for a flow
featuring significant time variation as shown here. In our case, the inlet ve-
locities Û∕Uc are changed as the control signal at a constant time interval
Δt (that determines how often the controller changes the inlet velocities).
A sudden flow variation upon every adjustment will boost the accelera-
tion term Re𝜕ũ∕𝜕t̃ that would otherwise be zero in an exact Stokes flow.
To eliminate this artificially large acceleration, we seek a stationary state
every time a new control signal Û∕Uc is imposed: we hold the positions
of particles but update their velocities and the flow field iteratively to be
time-independent. This iterative process is time costly and is used only at
the first time step upon the adjustment.

Besides, we choose the control step Δt/Tc = 0.05 throughout the work
as guided by the original implementations of Stokes trap.[9,17] In the ex-
periments, the controller modulates at a frequency of 30 Hz, resulting in a
dimensionless control step Δt/Tc ≈ 0.04, where Tc is calculated according
to the experimental values.

A.2. Sequential Line Assembly

To form the sequential line assembly shown in the top row of Figure 3,
we deliver particles to the target positions corresponding to the assembly.
We use a two-stage cost function 𝜓 : the first stage for steering particle 2
to approach particle 1 that is held still simultaneously (Figure 3B,C), and
the second stage for attaching particle 3 to the assembly of particles 1 and
2 (Figure 3D). The first-stage cost function 𝜓 = 𝜔1𝜓1 + 𝜔2𝜓2 + 𝜔3𝜓3
involves

𝜓1 =
‖r2

tar − r2(t′)‖2

‖r2
tar − r2(t)‖2

(A1a)

𝜓2 = ‖r1
tar − r1(t′)‖2∕R2 (A1b)

𝜓3 = ‖r3
ini − r3(t′)‖2∕R2 (A1c)

where ri
ini and ri

tar denote the initial and target positions of the ith particle,
respectively. Note r1

ini = r1
tar. Here, 𝜓2 and 𝜓3 enforce the stationarity of

particles 1 and 3, respectively. The weights 𝜔1 = 100, 𝜔2 = 105 and 𝜔3 =
2 × 104. The second-stage cost function can be designed similarly.

A.3. Build a Triangular Assembly Simultaneously

Similar to the line assembly, we first specify the target positions r̂tar =
[r1

tar, r2
tar, r3

tar] of particles forming a triangular cluster. We design the cost
function 𝜓 = 𝜔1𝜓1 + 𝜔2𝜓2 comprising

𝜓1 =
‖̂rtar − r̂(t′)‖2

‖Δr̂‖2
,𝜓2 = −

[̂
r(t′) − r̂(t)

]
⋅ Δr̂‖̂r(t′) − r̂(t)‖‖Δr̂‖ (A2)

where Δr̂ = r̂tar − r̂(t). The second component, 𝜓2 ∈ [ − 1, 1], drives the
particles toward their goals as straightforward as possible; the optimal
scenario of𝜓2 =−1 occurs when every particle lies on the path connecting
its instantaneous (at t) and target position. Here, w1 = 500 and w2 = 30
are used.
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