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Abstract—The fundamental problem for inference control in data cubes is how to efficiently calculate the lower and upper bounds for

each cell value given the aggregations of cell values over multiple dimensions. In this paper, we provide the first practical solution for

estimating exact bounds in two-dimensional irregular data cubes (that is, data cubes in which certain cell values are known to a snooper).

Our results imply that the exact bounds cannot be obtained by a direct application of the Fréchet bounds in some cases. We then propose

a new approach to improve the classic Fréchet bounds for any high-dimensional data cube in the most general case. The proposed

approach improves upon the Fréchet bounds in the sense that it gives bounds that are at least as tight as those computed by Fréchet yet

is simpler in terms of time complexity. Based on our solutions to the fundamental problem, we discuss various security applications such

as privacy protection of released data, fine-grained access control, and auditing, and identify some future research directions.

Index Terms—Data cube, bound, inference problem.
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1 INTRODUCTION

SINCE its introduction, the data cube model [1] has found
widespread applications in decision support systems

such as online analytic processing (OLAP), data ware-
housing [2], and data mining [3]. A data cube can be
considered a high-dimensional data abstraction that allows
one to view aggregated data at different levels.

Fig. 1 illustrates a data cube example with three feature
dimensions: agent, time, and stock. The aggregation measure
of the data cube is the stock volume. In the core cuboid, each
cell has a nonnegative value indicating the stock volume
bought by a particular agent at a particular time. Besides the
core cuboid, the data cube consists of three two-dimensional
(2D) cuboids (denoted by “by stock and agent,” “by agent and
time,” and “by time and stock,” respectively), three one-
dimensional (1D) cuboids (denoted by “by stock,” “by agent,”
and “by time,” respectively), and one zero-dimensional
cuboid (the grand total). These cuboids can be computed by
aggregating the cell values in the core cuboid across one or
more dimensions. In general, an n-dimensional cube is
associated with 2n cuboids. The various cuboids, except the
core cuboid, are called star cuboids in this paper.

We consider the following inference problem in data
cubes. Assuming that the core cuboid contains sensitive
information about each cell but that none of the star cuboids
contain sensitive information, can a data snooper infer
accurate sensitive information about any cell using the
nonsensitive information provided in the star cuboids?

In the above data cube example, each cell in the core cuboid
shows which agent has bought which stock at what time and
in what volumes. Such information can be considered
sensitive, as it reveals each agent’s strategy for stock

investment. In many cases, the cell values in a core cuboid
reveal private information about individuals. For example, in
a patient-treatment cube, each cell indicates the number of
times that a patient undergoes a certain treatment (for
example, for AIDS), which is highly sensitive in real life. In
student record management, each cell in the data cube shows
the grade a student received for a particular course. The
sensitive information in these cases should not be released to
the public. However, although the data in a core cuboid must
be protected, the aggregated information in a star cuboid is
considered nonsensitive in most cases. Thus, the star cuboids
can usually be provided to the public for statistical analysis,
data mining, and OLAP services.

The inference problem exists since aggregations do not
completely protect the sensitive information [4]. It is
possible for data snoopers to use the remaining vestiges,
together with external knowledge, to infer sensitive
information in a core cuboid. Traditional access control [5]
cannot capture these inferences, as the aggregations
themselves are seemingly innocent. However, limiting such
malicious inference of sensitive information is a realistic
concern in practice, especially when large data cube
products such as a national census or survey are released.
This concern is demonstrated by the US Department of
Commerce requirement that national statistical offices
prevent unauthorized disclosure of sensitive subject-level
data when releasing aggregations.

To limit possible disclosure of sensitive information in a
data cube, we need to know how accurately a data snooper
can estimate the sensitive information. In particular, we
need to know how to calculate the lower and upper bounds
for each cell value given the aggregation values in the star
cuboids. This is the fundamental problem for inference
control in data cubes. The lower and upper bounds induced
by some fixed set of aggregations are of great importance in
measuring the disclosure risk associated with the release of
aggregations [6]. In recent years, the problem has become
more acute in that applications of the data cube model
enable online and query-based accesses to large-scale data
sets. Even national statistical offices are moving from
periodic releases of static tabulations to online services that
provide a large number of users with dynamically updated
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data sets. The traditional linear programming approach to
inference control would not be efficient in such a scenario.

In this paper, we revisit the Fréchet bounds [7] to solve the
inference problem for 2D regular data cubes. The Fréchet
bounds of a cell value are first proven to be exact lower and
upper bounds. We then propose the first practical solution for
estimating exact bounds in 2D irregular data cubes, which are
data cubes that contain cell values that are known to a
snooper. Our results imply that the exact bounds cannot be
obtained by a straightforward extension of the Fréchet
bounds in some cases.

We then propose a new approach to improve the classic
Fréchet bounds for any high-dimensional data cube in the
most generalcase. The proposed approach improves upon the
Fréchet bounds in the sense that it gives no-looser bounds yet
is simpler in terms of time complexity. Based on our solutions
to the inference problem, we discuss various security
applications of our results including privacy protection for
released data, fine-grained access control, and auditing.

The rest of this paper is organized as follows: Section 2
formulates the inference problem in data cubes. Section 3
argues why traditional linear programming is highly im-
practical for solving the inference problem. Section 4 solves
the inference problem in two dimensions based on the Fréchet
bounds. Section 5 presents our new approach to improve the
Fréchet bounds in high-dimensional data cubes. Section 6
discusses various security applications of our results. Sec-
tion 7 reviews related work. Finally, Section 8 concludes this
paper and identifies some future research directions. The
appendices provide formal proofs for the theorems proposed
in this paper. A six-page extended abstract of this paper
appeared in the 2006 IEEE Symposium on Security and
Privacy [8]. Added in this complete version are all of the
formal proofs and detailed discussions, which are important
and represent a major contribution of this paper.

2 PROBLEM FORMULATION

An n-dimensional data cube C is a collection of cuboids,
including a core cuboid and star cuboids, across the spectrum
of n� 1 dimensions to zero dimension. Each dimension
i ð1 � i � nÞhas di index values 1; 2; . . . ; di. The core cuboid is
an n-dimensional array with �n

i¼1di cell values. Let at1t2���tn be
the value at cell ðt1; t2; . . . ; tnÞ, where 1 � ti � di.

There are n
m

� �
ðn�mÞ-dimensional star cuboids for data

cube C, where 1 � m � n. Each ðn�mÞ-dimensional star
cuboid is an ðn�mÞ-dimensional array derived from the core

cuboid by aggregating the cell values along m dimensions.
The aggregation function is SUM.1 Let faþt2���tng be the ðn�
1Þ-dimensional star cuboid derived by aggregating the cell
values along the first dimension. For any meaningful
t2; . . . ; tn, we have aþt2���tn ¼

Pd1

t1¼1 at1t2���tn . (There is no
ambiguity when “þ” is used in subscript; it does not mean a
literal addition operation.) Other star cuboids can be denoted
similarly.

The inference problem in data cube C is stated as follows: given
all ðn� 1Þ-dimensional star cuboids, compute the lower and upper
bounds for each cell value at1t2���tn in the core cuboid. In
mathematical terms, this can be framed as follows: compute
the lower and upper bounds for each cell at1...tn such thatPdi

t0i¼1 at01...t0n
¼ at0

1
...t0

i�1
þt0

iþ1
...t0n

holds for any 1 � i � n and for
any meaningful combination of t01; . . . ; t0i�1; t

0
iþ1; . . . ; t0n.

In the formulation of the inference problem, only the

aggregations in ðn� 1Þ-dimensional star cuboids are consid-

ered. The reason is that the aggregations in other star cuboids

(that is, aggregations of the cell values along two or more

dimensions) can be easily derived from those aggregations

provided in the ðn� 1Þ-dimensional star cuboids.
A value at1t2���tn is said to be a lower bound of cell value

at1t2���tn in data cube C if for any possible core cuboid
fa0t1t2���tng from which the star cuboids of C can be derived,
the inequality a0t1t2���tn � at1t2���tn holds. A value at1t2���tn is said
to be the exact lower bound of cell value at1t2���tn in data cube
C if 1) it is a lower bound and 2) there exists a core cuboid
fa0t1t2���tng from which the star cuboids of C can be derived
and the equality a0t1t2���tn ¼ at1t2���tn holds. An upper bound or
exact upper bound at1t2���tn can be defined similarly.

An upper/lower bounda0 of cell valuea is said to be tighter
(no tighter, respectively) than another upper/lower bound a00

of the same cell value a ifa0 is closer (no closer, respectively) to
the exact upper/lower bound ofa thana00; otherwise,a0 is said
to be a no-looser (looser, respectively) bound in comparison
with a00, meaning it is at least as tight as a00.

Without loss of generality, we assume throughout this
paper that all cell values at1t2���tn in a data cube are nonnegative
real numbers. If this is not the case, one can add an
appropriate constant positive value to all cell values so as
to transform the data cube to a data cube with nonnegative
cell values. After a bound is computed for a transformed
cell value in the new data cube, one can subtract the
constant value from it in order to get the bound for the
original cell value. Note that in the statistical data protection
literature, a core cuboid with nonnegative integer cell
values is often called a contingency table.

3 THE IMPRACTICALITY OF USING LINEAR

PROGRAMMING

The exact bounds ½at1t2���tn ; at1t2���tn � for any cell value at1t2���tn
in our inference problem are the solutions to the

following two linear programming problems (LPs):

1) at1t2���tn ¼ min at1t2���tn , and 2) at1t2���tn ¼ max at1t2���tn . Both

are subject to linear constraints
Pdi

t0i¼1 at01...t0n
¼ at0

1
...t0

i�1
þt0

iþ1
...t0n

for any 1 � i � n and for any meaningful combination of

t01; . . . ; t0i�1; t
0
iþ1; . . . ; t0n. The

Pn
i¼1 d1 � � � � di�1 � diþ1 � � � � dn
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Fig. 1. A data cube example.

1. SUM can be extended to AVG provided that the number of cells
involved in aggregation is known.



constraints define a nonempty convex feasibility set for the

two LPs. According to linear programming theory, there

exist optimal solutions at1t2���tn and at1t2���tn , and these

solutions can be computed in polynomial time.2

We argue that linear programming does not scale
sufficiently for solving the inference problem for realistic
data cubes. One of the most efficient algorithms for linear
programming is Karmarkar’s algorithm [9], whose time
complexity is OðN3:5LÞ, where N is the number of variables,
and L is the number of bits required to store the LP in a
computer. In the LPs given above, N ¼ �n

i¼1di, and
L ¼ Oðn�n

i¼1diÞ. Thus, the time complexity of solving each
LP is Oðnð�n

i¼1diÞ
4:5Þ, which is prohibitive for processing

realistic data cubes. This conclusion has also been drawn by
Dobra et al. in [10] by showing a realistic data cube
(14-dimensional public survey table) with 4.5 billion cells.

4 TWO-DIMENSIONAL DATA CUBES

In this section, we consider the inference problem for 2D data
cubes. Based on the early work of Fréchet [7], it is well known
that the following Fréchet bounds are exact for solving the
inference problem.

Statement 1 (2D Fréchet bounds). Given two star cuboids
faþjg and faiþg of 2D data cube C, the 2D Fréchet bounds
for any cell value aij in C are

maxf0; aiþ þ aþj � aþþg � aij � minfaiþ; aþjg:

Theorem 4.1 (solution to the inference problem in two

dimensions). Two-dimensional Fréchet bounds are exact.

A proof sketch of the above theorem was outlined by
Cox in [11] via a stepping-stone algorithm. A formal
construction proof is presented in Appendix A.

Compared with LP, the Fréchet bounds reduce the time
complexity of computing the exact bounds of a cell value
from Oððd1d2Þ4:5Þ to two addition/subtraction operations
and two comparison operations.

Unfortunately, Theorem 4.1 may not hold if some of the
cell values are known to a data snooper. This is shown by a
counterexample in Appendix B. A snooper may know some
of the cell values either because these values are nonsensitive
and, thus, not protected or because the snooper has some
external knowledge about these cells. For example, in a
patient-treatment data set in which each cell indicates the
number of times that a patient undergoes a certain treatment,
a snooper who is also a patient would know his or her own cell
value and may also know some of the other cell values for his
or her patient friends. We investigate how to estimate the
exact bounds in such a scenario.

Assume that one or more subcore-cuboids are known to a
snooper. A subcore cuboid is a subset of the cell values
defined as faij j i 2 S1; j 2 S2g, where S1 � f1; . . . ; d1g, and
S2 � f1; . . . ; d2g. Then, the inference problem becomes the
following: given all ðn� 1Þ-dimensional star cuboids and a
collection of subcore-cuboids, calculate the lower and upper

bounds for each cell value in the core cuboid in excess of the union
of the given subcore-cuboids.

This problem is more generic due to the modeling of
unprotected cells and/or a snooper’s external knowledge.
From the linear programming point of view, this problem is
simpler than the original one as it has fewer variables (the
number of constraints is not necessarily smaller). However,
from the Fréchet bounds point of view, this problem is more
difficult to solve since we need to consider what additional
information a data snooper may obtain from the known cells.

To solve this problem, we transform it into a normalized
form. Let fAkg be the set of subcore-cuboids whose cell
values are known to a snooper. Let the core cuboid in excess
of the union of the subcore-cuboids be called the irregular
core cuboid. Let the star cuboids derived from the irregular
core cuboid be faiþ �

P
aij2[kAk aijg, faþj �

P
aij2[kAk aijg,

and aþþ �
P

aij2[kAk aij. Let the union of the irregular core
cuboid and the star cuboids derived from it be called the
irregular data cube. The normalized form of the inference problem
is described as follows: Given all ðn� 1Þ-dimensional star
cuboids in an irregular data cube, calculate the lower and
upper bounds for each cell value in the irregular core
cuboid.

It is clear that the normalized form is equivalent to the
original inference problem. (After normalization, the known
values can be marked as zeros in the original core cuboid.
With no ambiguity, we still use faiþg, faþjg, and aþþ to
represent the star cuboids in an irregular data cube after
normalization.) Consequently, the Fréchet bounds of aij are
still in the form of maxfaiþ þ aþj � aþþ; 0g � aij � min
faiþ; aþjg in an irregular data cube. It is easy to verify that
the Fréchet bounds after the normalization are no looser
than the Fréchet bounds before the normalization. Below,
the Fréchet bounds in an irregular data cube always refer to
those after the normalization.

Lemma 4.2 (exact lower bound in a particular irregular

data cube). Given a 2D irregular data cube, if no cell values
in row i or column j are known to a snooper, then the Fréchet
lower bound of aij is exact.

A construction proof of this lemma is provided in
Appendix C. Note that the Fréchet upper bound of aij may
not be exact. Fig. 2 illustrates a counterexample in which
two zero values are known to a snooper. In this example,
the Fréchet upper bound of a11 is 15, whereas the exact
upper bound of a11 is 11.

In reality, certain cell values in row i or column j may be
known to the snooper. Then, Lemma 4.2 cannot be applied
for computing the exact lower bound. To improve the lower
bound given in Lemma 4.2, we define the companion cuboid
of aij to be subcore cuboid Aij ¼ fat1t2 j at1j; ait2=2 [k Akg,
where Ak is a collection of subcore-cuboids that are known
to a snooper. Then, we have the following:
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2. If the core cuboid consists of integer counts, the LPs become integer
programming problems (IPs). Since the feasibility set of IPs is nonempty
and finite, there exist optimal solutions in this context as well. An IP usually
takes a much longer time to solve than the corresponding LP.

Fig. 2. Fréchet upper bound is not the exact upper bound in an irregular

data cube.



Theorem 4.3 (exact lower bound in an irregular data cube).
Given a 2D irregular data cube, if the sum of all cell values in
the companion cuboid of aij is known to a snooper, then the
Fréchet lower bound of aij in the companion cuboid is exact.

A construction proof is provided in Appendix D. Note
that Theorem 4.3 cannot be proven by a direct application of
the Fréchet bounds for two reasons: 1) in the companion
cuboid of aij, one may not know all aggregations except aiþ
and aþj, and 2) there could be some cells inside the
companion cuboid that are known to a data snooper. It
might be possible that the first reason gives a snooper less
information, whereas the second reason gives more.
Regardless of these reasons, Theorem 4.3 asserts that the
Fréchet lower bound is still exact.

In the case that the sum of all of the cell values in the
companion cuboid of aij is not known to a snooper, the
Fréchet lower bound in the companion cuboid cannot be
computed by the snooper. We will show that the Fréchet
lower bound in the companion cuboid is at least as tight as the
exact lower bound of aij. An inference auditor who has access
to all of the cell values can always calculate the grand total of
the companion cuboid and use the Fréchet lower bound in the
companion cuboid to estimate the exact lower bound.

Theorem 4.4 (no-looser estimate of the exact lower bound

in an irregular data cube). Given a 2D irregular data cube,
if the sum of all cell values in the companion cuboid of aij is
unknown to a snooper, then the Fréchet lower bound of aij in
the companion cuboid is at least as tight as the exact lower
bound of aij.

A formal proof is given in Appendix E. Although
Theorem 4.4 gives a no-looser estimate of the exact lower
bound in any irregular data cube, we now propose a no-
tighter estimate of the exact lower bound. First, we define
two companion sums of aij to be c1

ij ¼
P

t2
faþt2 j ait2=2 [k Akg

and c2
ij ¼

P
t1
fat1þ j at1j=2 [k Akg, where fAkg is a collection

of subcore-cuboids that are known to a snooper (note that a
snooper can calculate the companion sums from released
aggregations). Then, we have the following:

Theorem 4.5 (no-tighter estimate of the exact lower bound

in an irregular data cube). Given a 2D irregular data cube,
if the sum of all cell values in the companion cuboid of aij is
unknown to a snooper, then maxfaþj þ aiþ � c1

ij; aþj þ aiþ �
c2
ij; 0g is a lower bound of aij.

A formal proof is given in Appendix F. Since the
companion sums are less than the grand total, the lower
bound proposed in Theorem 4.5 is no looser than the
Fréchet lower bound (after normalization). Thus, the
bounds proposed in Theorems 4.3 and 4.4 are also no
looser than the Fréchet lower bound.

So far, our study has been primarily focused on estimating
the exact lower bound in an irregular data cube. In inference
control, a frequently asked question is whether a particular
cell value is greater than zero (for example, a patient is HIV
positive) or greater than a threshold (for example, an agent
buys a large-enough volume of stock). Estimating the exact
lower bound of a cell value is the most useful way to answer
such questions. To estimate the exact upper bound in an
irregular data cube, one can use the Fréchet upper bound
(after normalization) and further improve it by using the
shuttle algorithm (see Section 5.2) based on the estimates of
the exact lower bound provided above.

5 HIGH-DIMENSIONAL DATA CUBES

For regular data cubes, the Fréchet bounds have been
extended to n dimensions [12].

Statement 2 (n-dimensional Fréchet bounds). In an
n-dimensional data cube, the Fréchet lower bound for any
cell at1���tn equals the maximum of zero and the n

2

� �
possible

2D Fréchet lower bounds:

max
0; at1���ti�1þtiþ1���tn þ at1���tj�1þtjþ1���tn�
at1���ti�1þtiþ1���tj�1þtjþ1���tn j 1 � i < j � n

� �
;

and the Fréchet upper bound of at1���tn is the minimum of n
aggregation values in the ðn� 1Þ-dimensional star cuboids to
which the cell value contributes

min at1 � � � ti�1 þ tiþ1 � � � tn j 1 � i � nf g:
In particular, the three-dimensional Fréchet bounds for cell
value aijk are

max

0
aþjk þ aiþk � aþþk
aþjk þ aijþ � aþjþ
aiþk þ aijþ � aiþþ

8>><
>>:

9>>=
>>;
� aijk � min

aþjk
aiþk
aijþ

8<
:

9=
;:

The time complexity of computing the n-dimensional
Fréchet bounds for each cell value is Oð n

2

� �
Þ ¼ Oðn2Þ. This

complexity is significantly lower than the complexity
Oðð
Pn

i¼1 diÞ
4:5Þ of using linear programming to compute

the exact bounds.
Unfortunately, the Fréchet bounds may not be exact for

any high-dimensional data cube in general (there are special
cases based on decomposibility into graph structures, as
discussed in Section 7). This has been proven by Cox [11]
with counterexamples. Below, we propose a formulation of
new bounds that are no looser than the Fréchet bounds in
the most general case and whose time complexity is simpler
than that of the Fréchet bounds. Our bounds are also no
looser than the recent improvements on the Fréchet bounds
in high dimensions (see Section 5.2).

Statement 3 (n-dimensional new bounds). Given the star
cuboids of an n-dimensional data cube C, the new lower bound
for any cell value at1���tn in C is

max
0; at1���ti�1þtiþ1���tn�P

t6¼ti minfaþt2���ti�1ttiþ1���tn ; at1þt3���ti�1ttiþ1���tn ;
� � � at1���ti�1ttiþ1���tn�1þg j 1 � i � n

8<
:

9=
;:

Let at1���tn be the new lower bound of at1���tn . The new upper bound
of at1���tn is

min
at1���ti�1þtiþ1���tn�P

t 6¼ti at1���ti�1ttiþ1���tn j 1 � i � n

� �
:

In particular, the 3D new bounds for cell value aijk are

aijk ¼ max

0

aþjk �
P

t 6¼i minfatþk; atjþg
aiþk �

P
t6¼j minfaþtk; aitþg

aijþ �
P

t6¼k minfaþjt; aiþtg

8>>><
>>>:

9>>>=
>>>;
;

aijk ¼ min

aþjk �
P

t 6¼i atjk

aiþk �
P

t6¼j aitk
aijþ �

P
t6¼k aijt

8><
>:

9>=
>;:
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Theorem 5.1 (comparing new bounds with Fréchet

bounds). The new bounds are at least as tight as the Fréchet
bounds in n dimensions.

The proof is given in Appendix G. It is not difficult to
prove that the new bounds are the same as the Fréchet
bounds in two dimensions. We leave this as an exercise.

Note that the new bounds can be directly applied to
irregular data cubes following the normalization process
shown in Section 4. An alternative approach is to resort to the
high-dimensional Fréchet bounds. Recall that in n dimen-
sions, the Fréchet bounds are derived from n

2

� �
2D Fréchet

bounds, each of which can be computed using the method
proposed in Section 4. However, this approach is more
complex than the application of our new bounds.

5.1 Complexity Reduction

At first glance, computing our new bounds appears to be
more complex than computing the Fréchet bounds. If
computed in a straightforward manner, the new lower bound
for each cell requiresn� 2 comparison operations to compute
each “min,” ðdi � 1Þðn� 2Þ comparison operations and ðdi �
2Þ addition operations to get each “

P
”; thus, it requires

ð
P

i di � nÞðn� 2Þ þ n comparison operations and
P

i di � n
addition and subtraction operations to get the final “max.”
The time complexity3 of computing the new lower bound in
this way is Oðn

Pn
i¼1 diÞ. After all of the lower bounds are

obtained, the new upper bound for each cell can be computed
in
Pn

i¼1 di � n addition and subtraction operations and n� 1
comparison operations. Since the computation of the upper
bound depends on the lower bounds, its complexity is also
Oðn

Pn
i¼1 diÞ. In comparison, the time complexity of comput-

ing the Fréchet bounds (which is dominated by computing
the lower bound) is Oðn2Þ.

However, one can reduce the time complexity of comput-
ing the new bounds by precomputation and transformation.
Let �at1���tn ¼ minfaþt2���tn ; at1þt3���tn ; . . . ; at1���tn�1þg. We have the
following:

Theorem 5.2 (transformation of the new lower bound). The
new lower bound for cell value at1���tn can be transformed as

maxf0; at1���ti�1þtiþ1���tn �
X
t 6¼ti

�at1���ti�1ttiþ1���tn j 1 � i � ng:

The proof is given in Appendix H. According to this
theorem, one can precompute all �at1���tn before computing the
new bounds. During this process, each cell requires at most
n� 1 comparison operations. The computation of the new
lower bound for each cell requires

Pn
i¼1 di � n addition and

subtraction operations andn comparison operations. After all
of the lower bounds are obtained, each new upper bound
requires

Pn
i¼1 di � n addition and subtraction operations and

n� 1 comparison operations. The time complexity of
computing the new bounds in this manner is thusOð

Pn
i¼1 diÞ.

This complexity Oð
Pn

i¼1 diÞ is not only much simpler
than that of linear programming Oðnð�n

i¼1diÞ
4:5Þ but also

simpler than that of the Fréchet bounds Oðn2Þ in the case
that di is bounded. In real-world applications, a data cube is
usually built from a database relation with a large number
of attributes (it is common to see tens or hundreds of

attributes in applications); however, the number of cate-
gories (that is, di) for each attribute is usually bounded
(certain attributes such as binary attributes have very small
di). In such cases, the time complexity of our new bounds is
linear to n, whereas the Fréchet bounds are quadratic.

5.2 Comparisons with Other Solutions

In recent years, rigorous efforts have been made to improve
the Fréchet bounds in high dimensions. Most of the
improvements take place in three dimensions, although
some of them can be extended to n dimensions. In this
section, we compare our new bounds with the recent
improvements, including Fienberg’s bounding approach
[13], Chowdhury et al.’s network models for bounds [14],
Buzzigoli and Giusti’s shuttle algorithm [15], and Dobra
and Fienberg’s generalized Fréchet bounds [6], [10], [16]. A
review of most of these methods was given by Cox in [12].

5.2.1 Fienberg’s Bounding Approach

Fienberg’s bounding approach works in three dimensions
[13]. As correctly pointed out by Cox in [12], the lower
bound provided by Fienberg is equivalent to the Fréchet
lower bound, whereas the upper bound (also called the
Bonferroni upper bound of Fienberg) is no looser

aijk � ðFienberg boundÞminfaþjk; aiþk; aijþ;
aþþþ � aiþþ � aþjþ � aþþkþ
aijþ þ aiþk þ aþjkg

� ðFr�echet boundÞminfaþjk; aiþk; aijþg:

Theorem 5.3 (comparing new bounds with Fienberg

bounds). The new bounds are at least as tight as the Fienberg
bounds in three dimensions.

The proof is given in Appendix I. The above theorem can
be illustrated using the example shown in Fig. 3. The core
cuboid in this example is a 3� 3� 2 table of sample counts
taken from the 1990 Decennial Census Public Use Sample.
This example has also been used by Fienberg [13] and Cox [12]
for comparing bounds. In this example, the Fienberg bounds
are exactly the same as the Fréchet bounds.4 In comparison,
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3. The time complexity is derived solely based on the number of
addition, subtraction, or comparison operations. We do not address issues
such as data structure, memory cost, and I/O cost in this paper.

4. Certain numeric errors in [13] regarding this example have been
pointed out and corrected by Cox in [12].

Fig. 3. Comparison of bounds using Fienberg’s example [13, Table 1].



our new bounds are the same as the exact bounds and tighter
than the Fienberg bounds for certain cells.

5.2.2 Network Models for Bounds

Chowdhury et al. [14] presented network models for
computing the exact bounds for integer cells in three
dimensions. The network models provide a natural language
to express 2D tables (or 2D star cuboids) and an efficient
mechanism to compute the exact bounds.

The problem addressed in [14] is, assuming that one
3D core cuboid and one of its three 2D star cuboids are
protected, how to calculate the exact lower bound and upper
bound for each aggregation value in the protected star
cuboid, given the other two star cuboids. Chowdhury et al.
constructed networks for expressing the connections be-
tween the star cuboids and proposed two simple matrix
operators for obtaining the exact bounds. Although the
method is very efficient, it deals with 2D star cuboids only.
Cox’s comments [12] on this method are that “most general-
izations beyond two dimensions are apt to fail” and that the
problem can be solved directly using the Fréchet bounds
without recourse to networks.

5.2.3 Shuttle Algorithm

The shuttle algorithm is an iterative algorithm proposed by
Buzzigoli and Giusti [15]. The basic idea is that for each cell
value in three dimensions and each 2D aggregation
containing the cell, a candidate lower bound is computed
by subtracting from the aggregation the sum of the current
upper bounds of all of the other cells contained in the
aggregation. If the candidate lower bound improves the
current lower bound, it replaces it. A similar procedure is
used to improve the current upper bound with a candidate
computed from the sum of the current lower bounds. The
two-step procedure is repeated until the lower bounds or
upper bounds for all of the cells are stationary. The shuttle
algorithm can be easily extended to n dimensions.

The shuttle algorithm can work with any initial lower and
upper bounds. The initial lower and upper bounds could be
chosen from the Fréchet bounds, the Fienberg bounds, or our
new bounds. In this sense, the shuttle algorithm is comple-
mentary to our work. Cox has correctly pointed out in [12]
that the shuttle algorithm converges in a finite number of
iterations if all of the cell values are integers. However, it is not
clear how fast the algorithm converges. The time complexity
of this algorithm is at least as high as the algorithm used for
providing the initial bounds. A generalized version of this
algorithm was developed by Dobra et al. [10].

5.2.4 Dobra and Fienberg’s Generalized Fréchet

Bounds

Dobra and Fienberg [6], [10], [16] studied exact lower and
upper bounds, which they called generalized Fréchet
bounds, for a specific type of high-dimensional statistical
tables. A statistical table can be considered a data cube in
which a nonnegative random variable is assigned to each
cell. They assumed that the released set of marginals (that
is, values in star cuboids) is the set of minimum sufficient
statistics of a decomposible or reducible log-linear model.
Under such an assumption, the exact lower and upper
bounds of each cell can be expressed as explicit functions of
relating marginals.

The difference between our work and Dobra and
Fienberg’s is clear. Since we do not make any assumption
about the distribution of cell values, our results can be
applied to any data cube in the most general case, regardless
of the distribution of cell values. In contrast, Dobra and
Fienberg’s results pertain only to the reducible log-linear
models with minimal sufficient statistics. Their results
“represent only a small part of those needed to allow the
computation of upper and lower bounds ½. . .�” [16]. In a
recent development, Dobra et al. [10] presented a hash-
table-based structure and a generalized shuttle algorithm to
exploit the extreme sparsity of large data sets.

6 DISCUSSIONS ON SECURITY APPLICATIONS

In this section, we discuss some security applications based
on the solutions to the inference problem in data cubes.

6.1 Privacy Protection for Released Data

Privacy protection for released data has been a major
concern in many applications such as statistical data
publication, survey, and data mining. This concern is about
how to preserve an individual’s privacy in subject-level
data when aggregation data is released.

We consider data cubes in this application scenario (for
example, data cube products such as a national census or
survey are released). When data aggregations are released, it
is critical to ensure that the released data cannot be utilized by
data snoopers to obtain privacy information. We classify the
disclosure of privacy information into the following types
based on what the privacy information means:

. Existence disclosure. The lower bound of a cell value is
greater than zero (for example, a patient visits a
doctor at least one time for a certain disease).

. Threshold upward disclosure. The lower bound of a cell
value is greater than a certain threshold (for
example, an agent buys a large-enough volume of
certain stock).

. Threshold downward disclosure. The upper bound of a
cell value is less than a certain threshold (for
example, an agent does not buy a large-enough
volume of certain stock).

. Approximation disclosure. The difference of the upper
bound and lower bound of a cell value is less than a
certain threshold (for example, a professor’s salary
falls into a small-enough range).

The existence and threshold upward disclosures are
determined by the lower bounds that a snooper can infer,
whereas the threshold downward disclosure and the
approximation disclosure involve the upper bounds of
protected cell values.

For any type of disclosure, we can determine which cells
are subject to disclosure according to the exact bounds that
a snooper may obtain (for example, through LP). There will
be no mistakes in determining the cells if we use the exact
bounds. If the no-tighter bounds are used instead, there
might be false negatives (cells subject to disclosure are
considered subject to no disclosure) but no false positives
(cells subject to no disclosure are considered subject to
disclosure). If we use no-looser bounds, it may lead to false
positives but no false negatives.
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Given a set A0 ¼ fat0
1
���t0ng of cells that might be subject to

disclosure, we now propose a generic approach, called
k-anonymity partition, to limit the disclosure of those cells.
Define the projection of A0 to each dimension i as Pi ¼ ft0ig.
Assume that jPij ¼ minfjP1j; . . . ; jPnjg, and 0 < k � di. The
k-anonymity partition from dimension i is defined by the
following procedures:

. Partition the values in Pi into groups of k values. If
jPij � k, then the last group may consist of more
than k values (for simplicity, we describe our
method only for the groups of k values). If jPij < k,
then k� jPij values from Di � Pi are combined with
the values in Pi to form a group, where Di ¼
f1; . . . dig is the set of index values for dimension i.

. For each group of k values t1i ; . . . tki and for each
dimension j 6¼ i (without loss of generality, assume
j > i), release the aggregations of sum values
at1���t1i ���tj�1þtjþ1���tn þ . . .þ at1���tki ���tj�1þtjþ1���tn instead of in-
dividual sums at1���t1i ���tj�1þtjþ1���tn ; . . . ; at1���tki ���tj�1þtjþ1���tn in
the star cuboid fat1���tj�1þtjþ1���tng. In other words, any
k values at1���t1i ���tn ; . . . ; at1���tki ���tn are summed together in
all ðn� 1Þ-dimensional star cuboids. Other star cu-
boids can be processed similarly if they are released to
the public.

From the released star cuboids only, a snooper cannot
differentiate among any k values at1���t1i ���tn ; . . . ; at1���tki ���tn .
Now, consider any cell at01���t0n that might be subject to
disclosure before k-anonymity partition (that is, at0

1
���t0n 2 A

0).
Since t0i 2 Pi, there exists a set of k values in the form of
at1���t1i ���tn ; . . . ; at1���tki ���tn such that 1) at0

1
���t0n is one of these k values

and 2) these k values are always summed together in all star
cuboids. Therefore, at0

1
���t0n cannot be differentiated from a

group of k cells after k-anonymity partition. A k-anonymity
protection is thus achieved for those cells that might be subject
to disclosure at the price of reducing the number of
aggregated values that are released in the star cuboids.

Let us consider what a snooper can infer for each group of
k values after the k-anonymity partition. Assume that the
snooper can inferat0

1
���t0n > � for existence or threshold upward

disclosure before the k-anonymity partition, where � � 0 is a
predetermined threshold. After the k-anonymity partition,
the snooper can, at best, infer that at1���t1i ���tn þ . . .þ at1���tki ���tn
> � . The snooper cannot infer any of the k values having a
nonzero lower bound. Thus, all k values are safe from
existence and threshold disclosures.

For threshold downward disclosure and approximation
disclosure, however, the inference of a group of k values is
determined by its upper bound. Generally, assume that a
snooper can obtain �1 � at1���t1i ���tn þ . . .þ at1���tki ���tn � �2 after
the k-anonymity partition; then, the snooper can infer that
all of these k values are in the range of ½0; �2�. If �2 is small
enough, it may be considered a disclosure. In such case, one
can choose large-valued sums in the partition or increase k
so as to increase the upper bounds.

6.2 Fine-Grained Access Control and Auditing

If the aggregations in a data cube are not to be released for
public access, fine-grained access control and auditing can
be applied for protecting privacy information when users
query the data cube on the server side. In this scenario, a
user may be granted to access certain cell values and/or

aggregations values provided that no privacy information is
revealed from these values.

We assume that appropriate authentication is enforced
when a user queries the data cube. For each user, a subset of
cell values is defined as privacy information. The three
types of disclosure defined in the above section can still be
used to describe the leakage of privacy information.

To ensure that the server only answers those queries that
do not reveal any privacy information, an auditing monitor is
implemented to keep recording all of the queries that have
been asked by and answered to each user. The auditing
monitor should not be bypassed or tampered with for the
integrity of auditing records. When a user constructs a new
set of queries, fine-grained access control is implemented to
check whether the answers to this set of queries, combined
with historical auditing records, reveal any privacy informa-
tion. If not, grant the access request; otherwise, deny it.

The fine-grained access control can be easily performed
with an application of our results. The first reason is that the
bounds in our results can be computed in the presence of
known cell values (thus, we do not need to resort to LP). The
second reason is that the bounds of a cell can be computed
with a minimum number of aggregation values (instead of all
aggregation values in LP). As a result, the server can quickly
locate the relevant cells and compute their bounds given a set
of known cell values and aggregation values. The last reason
is that the high efficiency of our method is critical for
enforcing the access control in an online environment.

This access control is fine grained because it deals with
ad hoc sets of cell/aggregation values. In comparison, the
previous access/inference control method proposed for
data cubes [17] deals with cuboids or slices of data as
authorization objects. The previous method [17] derives
privacy breaches based on the logical relationships among
authorization objects, rather than the bounds of underlying
cell values. Due to these differences, their method is
complementary to ours.

7 RELATED WORK

Although the need for security protection in data cubes has
been identified [18], the fundamental problem of inference
control, which is how to efficiently calculate the lower and
upper bounds for each cell given the aggregations, has not yet
been fully addressed. A special case of this problem, the
inference of exact values (that is, the lower bounds and upper
bounds are the same) in data cubes, has been studied recently
[19], [20], [21]. In [19], Brankovic et al. gave the maximum
number of queries that can be answered without compromis-
ing any previously unknown values in a data cube. In [20],
Wang et al. gave a tight upper bound for the number of known
values such that a data cube is inference-free. In [21], it is
proven that even queries (that is, where an even number of
cell values are involved in multidimensional axis-parallel
cuboids) are not subject to exact inferences. In comparison,
we address a more generic and practical problem regarding
the inference of bounds rather than exact values in data cubes.

In the context of statistical databases, inference control (or
privacy protection) has been extensively studied [22], [23],
[24]. The proposed techniques can be roughly classified into
perturbation based and restriction based. The perturbation-
based techniques protect data against possible disclosure by
adding random noises to source data [25], [26], [27], [28], [29],
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[30], query answers [31], or database structures [32]. Since
these techniques inevitably introduce errors, they may not be
appropriate for certain applications.

The restriction-based techniques limit possible disclosure
by posing restrictions on queries and/or source data. The
advantage of this approach is that it does not introduce
any errors. The trade-off is that it may reduce the amount
of information that is provided for data services. Our
k-anonymity partition method falls into this category. It
borrows the k-anonymity concept proposed by Samarati and
Sweeney [33], [34] for protecting microdata (individual
respondent data). We extend it for protecting cell values in
data cubes. Our k-anonymity partition also borrows ideas
from the partition approach [35], [36], in which individual
entities are clustered into a number of mutually exclusive
subsets (called atomic populations). The difference is that our
method partitions the sum values in the star cuboids rather
than the individual values at the lowest level. Our method is
similar to the microaggregation approach [23], [37] in the
sense that certain sum values are clustered into mutually
exclusive groups prior to publication. The difference is that
our method clusters only a selected set of sum values, whereas
themicroaggregationapproachclustersall individual records
and then publishes the average over each group instead of the
individual records. Another related work is cell suppression
[11], [38], [39], [40], in which all cell values that might cause
disclosure are suppressed either fully or partially from a
released table(s). In comparison, we do not suppress any cell
values but aggregate selected sum values in the star cuboids.

8 CONCLUSIONS AND FUTURE DIRECTIONS

Data cubes, including those related to data warehouses,
data mining, and OLAP, are important decision-support
tools for business and scientific applications. Data cubes can
be used to discover trends and patterns in a multidimen-
sional and multilevel manner. Although data cubes restrict
user access to predefined aggregations, an inappropriate
inference of sensitive or private information about cell
values may still occur. To protect the data, it is critical to
discover such disclosure effectively and efficiently.

The main purpose of this paper is to provide practical
solutions for calculating the lower and upper bounds for each
cell value given the aggregations in a data cube. The lower
and upper bounds tell us to what extent a data snooper can
compromise the protected values. Although this problem can
be solved using linear programming, the time complexity of
this solution makes it prohibitive in practice.

The same problem has been studied using different
forms and terms in statistical data protection and statistical
databases. The best method for finding practical solutions
to this problem is one that was formulated by Fréchet in
1940, providing exact lower and upper bounds (Fréchet
bounds) in the 2D case. We advance the concept of Fréchet
bounds by contributing the following:

. We provide the first practical solution for estimating
the lower and upper bounds in 2D irregular data
cubes. Our results can be considered a nontrivial
extension of the Fréchet bounds in irregular data
cubes. In particular, we give the exact lower bound for
each cell value and no-tighter and no-looser estimates
of the exact lower bound, all of which are at least as

tight as a straightforward extension of the Fréchet
lower bound (after normalization) in irregular data
cubes. The upper bound for each cell value is the same
as the Fréchet upper bound (after normalization), and
it may be improved through the application of the
shuttle algorithm based on our lower bounds.

. We provide the first improvement of the Fréchet
bounds in arbitrary n dimensions for any nonnega-
tive data cubes. We prove that our new bounds for
each cell in n dimensions are at least as tight as the
n-dimensional Fréchet bounds and that the time
complexity of our approach can be reduced to be
linear in terms of the total number of indices in all
dimensions. In contrast, the Fréchet bounds are
quadratic in terms of the total number of dimen-
sions. We also compare our new bounds with recent
improvements of the Fréchet bounds. In particular,
we prove that our bounds are at least as tight as the
Fienberg bounds, that they provide a good starting
point for the shuttle algorithm, and that they are
more generic than the network models for bounds
and the generalized Fréchet bounds.

. Based on the bounds that a data snooper can obtain
for each cell, we discuss two security applications
including privacy protection for released data and
fine-grained access control and auditing. We classify
the disclosure of privacy information into three
types and propose a k-anonymity partition method
to protect the privacy information.

Our ongoing work includes an extension to dynamic data
cubes in which the cell values may be frequently updated over
time. For dynamic data cubes, new issues arise, including but
not limited to disclosure about which cells have been updated
and to what extent they have been updated. It would also be
interesting to develop practical algorithms for computing
exact bounds for large sparse data cubes.

APPENDIX A

PROOF OF THEOREM 4.1

Lemma 1.1. Given two sets of nonnegative values faþjg and faiþg
that satisfy the consistency condition

P
j aþj ¼

P
i aiþ ¼ aþþ,

there exists a 2D (nonnegative) core cuboidfaijg such thatfaþjg
and faiþg are star cuboids of it.

Proof. A construction proof is provided. Consider two
cases: 1) aþ1 þ a1þ � aþþ � 0 and 2) aþ1 þ a1þ � aþþ < 0.

For Case 1, choose a11 ¼ aþ1 þ a1þ � aþþ and

a1j ¼ aþj ðj 6¼ 1Þ;
ai1 ¼ aiþ ði 6¼ 1Þ;
aij ¼ 0; ði 6¼ 1; j 6¼ 1Þ:

8<
:

The 2D (nonnegative) core cuboid faijg constructed this
way can derive star cuboids faþjg and faiþg.

For Case 2, choose a11 ¼ 0. Due to the consistency
condition, there must exist fa1jgj 6¼1 and fai1gi6¼1 such that
a1j � aþj, ai1 � aiþ, and

P
j6¼1 a1j ¼ a1þ;P
i6¼1 ai1 ¼ aþ1:

�

Thus, the cell values in the first row and the first column
are determined in the core cuboid that is to be
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constructed. Peeling off the first row and column, a
smaller 2D core cuboid is to be constructed with the
revised star cuboids (see Fig. 4)

a0þj ¼ aþj � a1j; j ¼ 2; . . . ; d2;
a0iþ ¼ aiþ � ai1; i ¼ 2; . . . ; d1;
a0þþ ¼ aþþ � aþ1 � a1þ:

8<
:

These revised star cuboids still satisfy the consistency
condition. Therefore, the above process can be applied
recursively. In any recursive step, if Case 1 happens, the
construction stops; otherwise, the construction process
continues until the last row or column is peeled off. Finally,
a 2D nonnegative core cuboid faijg is constructed, from
which the star cuboids faþjg and faiþg can be derived. tu

Proof of Theorem 4.1. Without loss of generality, the
theorem is proven for cell value a11 only.

First, prove that minfaþ1; a1þg is the exact upper bound
ofa11. Since all cell values are nonnegative, minfaþ1; a1þg is
an upper bound of a11. To prove that it is the exact upper
bound, one needs to prove that there exists a core cuboid
fa0ij � 0g such that 1) a011 ¼ minfaþ1; a1þg and 2) the star
cuboids faiþg and faþjg can be derived from it. Without
loss of generality, assume that aþ1 � a1þ. Let a011 ¼
minfaþ1; a1þg ¼ aþ1 and a0i1 ¼ 0 for i 6¼ 1. The first column
in the core cuboid fa0ijg is thus constructed. Peeling off this
first column, a smaller 2D core cuboid is to be constructed
with revised aggregation values: a01þ ¼ a1þ � aþ1, a0þþ ¼
aþþ � aþ1, a0þj ¼ aþj for j ¼ 2; . . . ; d2, and a0iþ ¼ aiþ for
i ¼ 2; . . . ; d1. These aggregation values satisfy the consis-
tency condition. From Lemma 1.1, a nonnegative core
cuboid fa0ijg can be constructed with these aggregation
values. Combining this core cuboid with the peeled-off
column, one obtains the required core cuboid.

Then, prove that maxf0; a1þ þ aþ1 � aþþg is the exact
lower bound of a11. From a11 þ a12 þ . . .þ a1d2

¼ a1þ and
a1i � aþi, one can derive a11 � a1þ � ðaþ2 þ aþ3 þ . . .þ
aþd2
Þ ¼ aþ1 þ a1þ �aþþ. Thus, maxf0; a1þ þ aþ1 � aþþg is

a lower bound of a11. To prove that it is the exact lower
bound, one needs to prove that there exists a core cuboid
fa0ij � 0g such that 1) a011 ¼ maxf0; a1þ þ aþ1 � aþþg and
2) the star cuboids faiþg and faþjg can be derived from it.
The proof of this is exactly the same as that of Lemma 1.1.tu

APPENDIX B

THEOREM 4.1 MAY NOT HOLD IN IRREGULAR DATA

CUBES

We show that Theorem 4.1 may not hold in irregular data
cubes. Consider the simple example shown in Fig. 5. In this

example, a single subcore-cuboid A0 is known to a snooper,
whereas the other three subcore-cuboids A1, A2, and A3 are
protected. If the Fréchet bounds are directly applied to a cell
value aij 2 A1, then

aiþ þ aþj � aþþ ¼ aiþ þ aþj �
X
ðA0; A1; A2; A3Þ

� aij � minfaiþ; aþjg;

where
P
Ak denotes the sum of all cell values in sub-core

cuboid Ak (k ¼ 0, 1, 2, or 3). These bounds may not be the
exact bounds due to the existence of no-looser bounds

a0iþ þ aþj � aþþ ¼ a0iþ þ aþj �
X
ðA1; A2; A3Þ

� aij � minfa0iþ; aþjg;

where a0iþ ¼ aiþ �
Ps1

i¼1 aij can be computed by a snooper.
Moreover, one can verify that the above lower bound of aij
can be further improved by the following:

a0iþ þ aþj �
X
ðA1; A3Þ � aij:

APPENDIX C

Proof of Lemma 4.2. Without loss of generality, consider a11

and assume that all ai1 and a1j are not known to a
snooper. It is clear that the Fréchet lower bound of a11 is
a lower bound of a11. To prove that it is the exact lower
bound, we construct an irregular core cuboid fa0ij � 0g
such that a011 has the value of the Fréchet lower bound
and that the star cuboids faiþg and faþjg can be derived
from it.

First, consider the case where a1þ þ aþ1 � aþþ � 0.
From a1þ þ aþ1 � aþþ � 0, we have a11 �

P
i;j6¼1 aij.

There exist f�ijgi;j6¼1 such that
P

i;j6¼1 �ij ¼ a11 and
0 � �ij � aij. Let

a011 ¼ 0;
a01j ¼ a1j þ

P
i 6¼1 �ij ðj 6¼ 1Þ;

a0i1 ¼ ai1 þ
P

j 6¼1 �ij ði 6¼ 1Þ;
a0ij ¼ aij � �ij ði 6¼ 1; j 6¼ 1Þ:

8>><
>>:

From fa0ijg, one can derive the star cuboids faiþg and
faþjg, because

P
j a
0
1j ¼

P
j6¼1ða1j þ

P
i 6¼1 �ijÞ ¼ a1þ

for i 6¼ 1 :
P

j a
0
ij ¼ a0i1 þ

P
j6¼1 a

0
ij ¼

ai1 þ
P

j 6¼1 �ij þ
P

j 6¼1ðaij � �ijÞ ¼ aiþ:

8<
:
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Fig. 4. Constructing a 2D core cuboid in Lemma 1.1.

Fig. 5. Example of an irregular data cube.



Similarly, one can verify
P

i a
0
ij ¼ aþj for all j. The

construction is complete.
Then, consider the case where a1þ þ aþ1 � aþþ > 0.

Let

a011 ¼ a1þ þ aþ1 � aþþ;
a01j ¼ aþj ðj 6¼ 1Þ;
a0i1 ¼ aiþ ði 6¼ 1Þ;
a0ij ¼ 0 ði 6¼ 1; j 6¼ 1Þ:

8>><
>>:

It is clear that
P

j a
0
ij ¼ aiþ and

P
i a
0
ij ¼ aþj for all i and j.tu

APPENDIX D

Proof of Theorem 4.3. Without loss of generality, consider
a11 and its companion cuboid A11 in an irregular cuboid
A. Let c be the sum of all cell values in A11. The Fréchet
lower bound of a11 in the companion cuboid A11 is
maxf0; a1þ þ aþ1 � cg (note that a1þ, aþ1, and c are
known to a snooper). It is clear that this bound is a
lower bound of a11. To prove that it is the exact lower
bound, we need to construct another irregular cuboid
A0 ¼ fa0ijg such that a011 has the value of the Fréchet lower
bound in the companion cuboid and that the star cuboids
of A can be derived from it.

We first construct another companion cuboid A011 such
that a011 has the value of the Fréchet lower bound in the
companion cuboid and that the 1D sums of the
companion cuboid A11 remain unchanged in A011. The
construction of such A011 follows the proof of Lemma 4.2.

Then, the irregular cuboid A0 is constructed by
combining A011 with those cells in A�A11. It is clear
that the star cuboids of A can be derived from A0. tu

APPENDIX E

Proof of Theorem 4.4. Without loss of generality, consider
the Fréchet lower bound of a11 and its companion cuboid
A11. According to the proof of Theorem 4.3, there exists
another companion cuboidA011 such that a011 has the value
of the Fréchet lower bound and that the 1D sums of the
companion cuboid A11 remain unchanged in A011. By
combining A011 with those cells in A�A11, one obtains an
irregular core cuboid from which the star cuboids in the
original irregular data cube can be derived. Since the exact
lower bound of a11 is the lowest possible value in any
irregular core cuboid from which the original star cuboids
can be derived, the Fréchet lower bound of a11 in its
companion cuboid A11 is no less than the exact lower
bound of a11. tu
Fig. 6 gives an example that shows that in certain cases,

the Fréchet lower bound in the companion cuboid is indeed
tighter than the exact lower bound.

Note that in Theorem 4.4, a snooper knows neither the
grand total of the companion cuboid nor the Fréchet lower
bound in the companion cuboid. The Fréchet lower bound
in the companion cuboid is a lower bound from an auditor’s
perspective; it cannot be considered a lower bound from a
snooper’s perspective (as in the proof of Theorem 4.3).

APPENDIX F

Proof of Theorem 4.5. Without loss of generality, consider

a11 and its companion sums c1
11 and c2

11. For any irregular

core cuboid fa0ij � 0g from which the star cuboids of the

original cube can be derived, we have aþ1 þ a1þ � c1
11 ¼

a011�
P

t1;t2 6¼1fa0t1t2 j a
0
1t2
=2 [k Akg�a011 and aþ1þa1þ�c2

11¼
a011 �

P
t1;t2 6¼1fa0t1t2 j a

0
t11=2 [k Akg � a011; therefore, maxfaþ1

þa1þ � c1
11; aþ1 þ a1þ � c2

11; 0g is a lower bound of a11. tu
Fig. 7 gives an example that shows that in certain cases,

maxfaþ1 þ a1þ � c1
11; aþ1 þ a1þ � c2

11; 0g is indeed looser than
the exact lower bound of a11. In this example, a41 ¼ a14 ¼
a44 ¼ 0 are known to a snooper. The snooper can compute
maxfaþ1 þ a1þ � c1

11; aþ1 þ a1þ � c2
11; 0g ¼ 3. If three is the

exact lower bound of a11, then a21 and a31 must be five and
four, respectively, to satisfy aþ1 ¼ 12. Consequently, a2j ¼
a3j ¼ 0 for j ¼ 2; 3; 4 for satisfying a2þ ¼ 5 and a3þ ¼ 4. A
contradiction is committed since aþ4 ¼ 3 can never be
satisfied. Therefore, maxfaþ1 þ a1þ � c1

11; aþ1 þ a1þ � c2
11; 0g

cannot be the exact lower bound in this example.

APPENDIX G

Proof of Theorem 5.1. First, prove that the new lower
bound is indeed a lower bound for cell at1���tn . From

at1���tn ¼ at1���ti�1þtiþ1���tn �
X
t 6¼ti

at1���ti�1ttiþ1���tn

and

at1���ti�1ttiþ1���tn � minfaþt2���ti�1ttiþ1���tn ;

at1þt3���ti�1ttiþ1���tn ; � � � ; at1���ti�1ttiþ1���tn�1þg;

we have

at1���tn � at1���ti�1þtiþ1���tn�X
t6¼ti

minfaþt2���ti�1ttiþ1���tn ; at1þt3���ti�1ttiþ1���tn ; � � �

at1���ti�1ttiþ1���tn�1þg:

Thus, the new lower bound is indeed a lower bound.
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Fig. 6. Fréchet lower bound in the companion cuboid is not the exact
lower bound.

Fig. 7. maxfaþ1 þ a1þ � c1
11; aþ1 þ a1þ � c2

11; 0g is not the exact lower

bound.



Then, prove that the new lower bound is greater than
or equal to the n-dimensional Fréchet lower bound. For
any term in the max bracket in the formula of the
n-dimensional Fréchet lower bound, one has

at1���ti�1þtiþ1���tn þ at1���tj�1þtjþ1���tn�
at1���ti�1þtiþ1���tj�1þtjþ1���tn ¼
at1���ti�1þtiþ1���tn �

X
t 6¼ti

at1���ti�1ttiþ1���tj�1þtjþ1���tn �

at1���ti�1þtiþ1���tn �
X
t 6¼ti

minfaþt2���ti�1ttiþ1���tn ;

at1þt3���ti�1ttiþ1���tn ; � � � at1���ti�1ttiþ1���tn�1þg:

Thus, for any of n
2

� �
terms in the max bracket of the lower

Fréchet bound, there exists one out of n terms in the max

bracket of our new lower bound such that the latter is

greater than or equal to the former. Therefore, the new

lower bound is greater than or equal to the Fréchet lower

bound.
Now, consider the new upper bound for at1���tn . From

at1���tn¼at1���ti�1þtiþ1���tn�
P

t 6¼tiat1���ti�1ttiþ1���tn andat1���ti�1ttiþ1���tn
� at1���ti�1ttiþ1���tn , where at1���ti�1ttiþ1���tn is the new lower
bound of at1���ti�1ttiþ1���tn , we have at1���tn � at1���ti�1þtiþ1���tn �P

t 6¼ti at1���ti�1ttiþ1���tn . Thus, the new upper bound is indeed
an upper bound. Compared with the Fréchet upper
bound, it is clear that the new upper bound is less than
or equal to the Fréchet upper bound. tu

APPENDIX H

Proof of Theorem 5.2. We prove that the transformed lower

bound is the same as the new lower bound given before:

max
0; at1���ti�1þtiþ1���tn�P

t6¼ti minfaþt2���ti�1ttiþ1���tn ; at1þt3���ti�1ttiþ1���tn ;
� � � at1���ti�1ttiþ1���tn�1þg j 1 � i � n

8<
:

9=
;:

If for all t 6¼ ti, one has

minfaþt2���ti�1ttiþ1���tn ; at1þt3���ti�1ttiþ1���tn ;

� � � at1���ti�1ttiþ1���tn�1þg ¼ �at1���ti�1ttiþ1���tn ;

then the theorem is proven. Otherwise, there exists a

t 6¼ ti such that the following equation holds

minfaþt2���ti�1ttiþ1���tn ; at1þt3���ti�1ttiþ1���tn ;

� � � at1���ti�1ttiþ1���tn�1þg >
�at1���ti�1ttiþ1���tn ¼ at1���ti�1þtiþ1���tn :

Then,

at1���ti�1þtiþ1���tn�X
t 6¼ti

minfaþt2���ti�1ttiþ1���tn ; at1þt3���ti�1ttiþ1���tn ;

� � � at1���ti�1ttiþ1���tn�1þg < 0

at1���ti�1þtiþ1���tn �
X
t6¼ti

�at1���ti�1ttiþ1���tn � 0:

The theorem is proven. tu

APPENDIX I

Proof of Theorem 5.3. Since the Fienberg lower bound is

equivalent to the Fréchet lower bound, we only need to

prove that the new upper bound aijk is less than or equal

to the Fienberg upper bound.
On the one hand, one can verify that

aijk þ
X

t1 6¼i;t2 6¼j;t3 6¼k
at1t2t3 ¼ aþþþ�

aiþþ � aþjþ � aþþk þ aijþ þ aiþk þ aþjk:

On the other hand, from the formula of aijk, one can

derive

aijk � aþjk �
X
t1 6¼i

at1jk

� aþjk �
X
t1 6¼i
ðat1þk �

X
t2 6¼j

at1t2þÞ

¼ aþjk �
X
t1 6¼i
ðat1jk �

X
t2 6¼j;t3 6¼k

at1t2t3Þ

¼ aijk þ
X

t1 6¼i;t2 6¼j;t3 6¼k
at1t2t3 :

Combining this with (1) and given the obvious fact that

aijk � minfaþjk; aiþk; aijþg, one has aijk � minfaþjk; aiþk;
aijþ; aþþþ � aiþþ � aþjþ � aþþk þ aijþ þ aiþk þ aþjkg. tu
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