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What do crack propagation problems,

fluid-structure interaction problems,

phase-boundary evolution problems, and

shape optimization problems have in com-

mon?  By the time you finished reading

the question the answer would have likely

popped in your mind: they are types of

problems motivated by important engi-

neering applications in which finding the

domain of the problem is part of the solu-

tion.  These problems are more generally

known as free or moving boundary prob-

lems.  If these do not feel challenging

enough, then try considering problems in

which the boundary of the domain itself

has some interesting dynamics.  For ex-

ample, the in-plane turbulent motion of a

soap film induced by the surrounding air,

the swimming of small microorganisms in

which the thin vesicles that form their bod-

ies are currently modeled as two-dimen-

sional fluids with through-the-plane

bending stiffness [1], and the propagation

of a hydraulic fracture, in which the dy-

namics of the fracturing fluid on the crack

surface is often modeled with Reynolds’

lubrication equations [2].

It would not be an understatement to say

that this class of problems has fascinated

the computational mechanics community

for decades now.  The fundamental issue

that needs to be addressed is, among

several others, how to approximate both

the domain and the solution as the do-

main evolves.  It would be a mirage to

pretend that within this article we could

comprehensively review the universe of

proposed methods for this class of prob-

lems.  It is useful, however, to think about

them in terms of the order of approxima-

tion of the domain; after all, the domain

is part of the solution, so it should be

approximated with the same order as the
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Figure 1:
Rigid propeller rotating 

at a constant angular 
velocity in a Newtonian
fluid in two-dimensions.

The Universal Mesh made
of equilateral triangles

(top-left) is deformed to
exactly mesh the domain
of the fluid for any angle
of the propeller (bottom).

Top-right: Snapshot of the
speed contours.
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solution sought.  For example, the so-

called level set method (which truly stands

for a variety of algorithms) is often applied

on structured meshes and the domain is

represented implicitly with a level set

function.  In most methods this function is

piecewise affine, and this constrains the

approximation of the domain to be at

most second-order with the mesh size

(for example, in the Hausdorff distance).

Level set functions based on piecewise

higher-order polynomials or rational func-

tions are possible, but other complexities

often appear when constructing approxi-

mation schemes of the same order for

the solution.  A similar remark applies to

most embedded or immersed boundary

methods, which either cut elements, as

in extended finite element methods, or

represent the boundary of the domain as

a collection of connected segments [3,4].

As a second example we mention fluid-

structure interaction methods based on

an Arbitrary Lagrangian-Eulerian  (ALE)

description for the kinematics of the do-

main.  In this context, approximations of

the evolving domain of any order are

possible.  These methods are based on

deforming a mesh that is fixed to a refer-

ence domain.  Such deformation is de-

scribed by a deformation mapping (or

diffeormorphism), and its image is the

deformed domain at each time instant.

The limitation of these methods is found

for some large deformations of the refer-

ence domain, such as in the propeller

example of Figure 1. In these situations

the deformed mesh can be highly sheared

or even entangled, similar to what is often

encountered when simulating solids under

very large shear deformations. 

Universal Meshes

This scenario prompted us to rethink

the way to construct approximations to

problems with moving domains.  In

particular, in a situation like the one in

Figure 1, in which a mesh needs to be

constructed for any possible position of

the propeller, we made the observation

that while the set of all elements inter-

secting the propeller at any single position

(Figure 1, top-left) does not exactly mesh

the domain, it is actually very close to

doing so.  Hence we wondered: would it

be possible to simply deform such a set

of elements so as to exactly match the

domain?  If we could do that for any

position of the propeller, then the mesh

on the background would be a Universal
Mesh for all the domains needed in the

problem. 

It turns out that this idea is possible, so far

in two-dimensions and with meshes made

of triangles. The algorithm we proposed to

do so is illustrated in Figure 2 [5,6].

It consists of three steps: 

(a) Loop over the elements in the mesh

and select all elements that have at least

one vertex inside the domain, 

(b) project the boundary of the region

formed by the (closure) of all these ele-

ments onto the boundary of the domain

through the closest point projection, and

(c) relax some of the vertices near the

boundary away from it, for example but

not necessarily, along the direction normal

to the boundary.  

A video explanation of how this algorithm

works can be found in [7], in which we

showcase the robustness and speed of

the algorithm through an interactive imple-

mentation in a tablet device.  Given that

the algorithm is pretty simple, it is fair to

ask why it has not been proposed earlier

(a related idea can be found in [8])?  Well,

a naïve application of this idea on arbitrary

meshes, even Delaunay meshes, quickly

reveals that elements with bad aspect

ratios or inverted elements could easily

appear [5].  We analyzed under what

conditions on the Universal Mesh and the

domain it is possible to use the algorithm

above and obtain a mesh with a guaran-

teed lower bound on the element quality.

The result is expressed as a theorem [6],

and it essentially states that if (1) the do-

main is smooth (C
2

), (2) the size of each

element intersected by the boundary is

Figure 2:
Sketch of the algorithm applied to a circular domain (in red) 
Left: Elements with one node inside the domain are selected 
(in light red).  Then their boundary (in black) is projected onto the circle
with the closest point projection, and nodes in the interior of the circle
are relaxed away from the boundary 
Right: A theorem guarantees that the resulting mesh for the circle 
(in black) will have good quality elements.  For comparison, the 
original Universal Mesh is also shown in the background (in gray)
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small enough (with upper bounds that de-

pend on the local curvature or local fea-

ture size of the domain), and (3) some

angles of the element, or better perhaps

all angles in the mesh, are acute, then the

algorithm renders a good-quality mesh,

with the boundary of the mesh coinciding

exactly with the boundary of the domain. 

Furthermore, the upper bounds for the 

element mesh size near each point of the

domain boundary can be explicitly com-

puted, and used to robustly and automati-

cally estimate whether a given Universal

Mesh is able to mesh the domain or

needs to be replaced.  Another appealing

feature of the algorithm is that it defines a

one-to-one map between the domain and

the closure of all the elements selected in

step (a), and that by interpolating this map

we precisely recover the isoparametric

map. Consequently, when such interpola-

tion is performed, the algorithm above can

be simply regarded as a robust meshing

preprocessor, and any elements of the

user’s liking can be adopted. 

So, what is distinctive about a Universal

Mesh then?  A key advantage and differ-

ence over standard meshing algorithms is

that for a problem with a moving domain

the connectivity of the Universal Mesh

is retained as the domain changes (as

long as no new smaller features ap-

pear), and hence the data structures

in the problem do not have to be re-

built from scratch (or just minimally

altered).  Things like iterating over the

geometry, often necessary when the

domain itself is part of the solution, are

now simple and possible.  Algorithms

based on a Universal Mesh have in some

way the best of both worlds: the advan-

tages of immersed boundary methods

in that the geometry can undergo large

changes or motions with minimal changes

to the grid, and the accuracy of ALE

methods that deform the mesh to 

approximate the domain.

This is the basic idea.  We show some

application examples next. 

Applications

When we showcase the use of Universal

Meshes we like to begin with the example

of the propeller in Figure 1, since it pre-

cisely embodies the balance between ALE

and immersed boundary methods that a

Universal Mesh provides.  To construct

the spatial discretization for this problem

Figure 3:
Why is simulating hydraulic fractures a difficult problem? 
One reason is that a nice mesh is needed on the crack surfaces to 
solve for the motion of the fluid, and simply cutting elements does 
not render one

Figure 4:
A Universal Mesh used to simulate a traditional example of brittle crack propagation.
The inset shows the Universal Mesh in red and part of the initial crack in a thick pink
segment. The deformed mesh (in black) exactly meshes the crack path (in blue), so no
elements were cut
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we did not have to build any special 

elements, rather, we could choose among

any of the stable combinations for incom-

pressible flow: in this case a P2/P1 Taylor-

Hood element.  It would be nice to have

the same flexibility for time integration,

wouldn’t it?  It so happens that it is also

possible to choose the preferred time 

integrator; we call it a plug-and-play 

approach, and for problems with smooth

enough solutions, it enables the construc-

tion of methods of any order for problems

with moving domains [9].  For the 

propeller we adopted a standard 

second-order Runge-Kutta method.

A different type of fluid-structure interac-

tion problem was what motivated us a few

years ago to create Universal Meshes.

You may have heard about it lately, since

it holds the promise to essentially change

the global energetic landscape [10].  

We are talking about the simulation of 

hydraulic fractures.  Extensive reserves 

of natural gas are trapped in rocks with

low permeability, and the main way to 

enhance gas flow is to massively fracture

the rock by injecting fluid at high-pressure.

The reason this problem is difficult to 

simulate is that not only do we need to

allow arbitrary crack propagation, but as

the crack surfaces evolve, we also need a

reasonable mesh on them to solve the

partial differential equations that describe

the fluid motion through the crack.  Simply

cutting elements does not lead to a good

mesh on the crack surfaces (Figure 3).  In

contrast, by deforming a Universal Mesh

we are guaranteed to have a nice surface

mesh on the cracks (Figure 4).  Of course,

for accuracy reasons the Universal Mesh

often needs to be periodically changed,

and this is what we show in Figure 5 for

an initially curved hydraulic fracture in

plane strain (for straight fractures, see

[2]).  A peculiar aspect of these simula-

tions is that at each time-step we need to

iterate over possible cracks to find one

that satisfies Griffith’s criterion, and the

Universal Mesh makes this a rather sim-

ple chore.  On a more general note, the

computation of the fluid motion on the

crack surfaces is one example of how to

take advantage of a Universal Mesh to

solve partial differential equations on a

manifold embedded in the mesh (not

necessarily meshed).

Figure 5:
Simulation of an initially curved hydraulic fracture in plane strain, with zero far-field
stresses and symmetry conditions on the left.  Each of the two snapshots shows the
Universal Mesh (top-right), the quadtree used to refine it as the fracture evolves 
(top-left), the elements perturbed to accommodate the crack in the reference 
configuration (in yellow, bottom-left), and the von Mises stress in the deformed 
configuration of the rock (enlarged), with the fluid inside the crack in pink 
(bottom-right).  At each loading step the Universal Mesh is deformed to exactly 
mesh the crack surface

“ The beauty of a
Universal Mesh
is that we now
know how to 
robustly deform
it to exactly
mesh a domain,
provided the 
conditions laid
out by the 
theorem are 
satisfied. ”
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Outlook

The beauty of a Universal Mesh is that 

we now know how to robustly deform it 

to exactly mesh a domain, provided the

conditions laid out by the theorem are 

satisfied. So far we have a theorem in

two-dimensions and for geometries 

without corners, so the story is just 

starting and a lot remains to be done.  

We have compelling reasons to believe

that similar ideas will work in three-

dimensions, and Figure 6 shows a pre-

liminary example.  For those who may

want to test them, we will soon have an

open source code available at our 

website: lavxm.stanford.edu. l

Figure 6:
Preliminary examples in three-dimensions.  The same Universal Mesh of tetrahedra
was deformed to exactly match the surfaces of a sphere and a baseball bat. 
The surface meshes shown in both objects are of good quality, and so are the 
elements in the interior, exposed here by removing all elements with some vertices
above the cut plane.  In the process, the exterior of each object has been meshed 
as well, and those meshes are displayed in the two central pictures
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