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FINITE ELEMENT APPROXIMATION OF SCALAR

CURVATURE IN ARBITRARY DIMENSION

EVAN S. GAWLIK AND MICHAEL NEUNTEUFEL

Abstract. We analyze finite element discretizations of scalar curvature in

dimension N ≥ 2. Our analysis focuses on piecewise polynomial interpolants
of a smooth Riemannian metric g on a simplicial triangulation of a polyhedral

domain Ω ⊂ RN having maximum element diameter h. We show that if such

an interpolant gh has polynomial degree r ≥ 0 and possesses single-valued
tangential-tangential components on codimension-1 simplices, then it admits

a natural notion of (densitized) scalar curvature that converges in the H−2(Ω)-

norm to the (densitized) scalar curvature of g at a rate of O(hr+1) as h → 0,
provided that either N = 2 or r ≥ 1. As a special case, our result implies

the convergence in H−2(Ω) of the widely used “angle defect” approximation

of Gaussian curvature on two-dimensional triangulations, without stringent
assumptions on the interpolated metric gh. We present numerical experiments

that indicate that our analytical estimates are sharp.

1. Introduction

Many partial differential equations that arise in mathematical physics and geo-
metric analysis involve the Riemann curvature tensor and its contractions. The
scalar curvature R, which is obtained from two contractions of the Riemann cur-
vature tensor, is particularly important; it serves as the integrand in the Einstein-
Hilbert functional from general relativity, and it appears in the governing equation
for two-dimensional Ricci flow. To approximate solutions to PDEs involving the
scalar curvature, it is necessary to discretize the nonlinear differential operator that
sends a Riemannian metric tensor to its scalar curvature. The goal of this paper is
to construct and analyze such discretizations in arbitrary dimension N ≥ 2.

We are specifically interested in the setting where a smooth Riemannian metric
tensor g on a polyhedral domain Ω ⊂ RN is approximated by a piecewise polynomial
Regge metric gh on a simplicial triangulation T of Ω having maximum element
diameter h. We assume that all of the simplices in T are flat, and for simplicity we
do not consider a general manifold Ω. Here, a metric is called a Regge metric on T
if it is piecewise smooth and its tangential-tangential components are single-valued
on every codimension-1 simplex in T . When such a metric is piecewise polynomial,
it belongs to a finite element space called the Regge finite element space [12, 14,
26]. Regge metrics are not classically differentiable, so our first task will be to
assign meaning to the scalar curvature of gh. Our definition, which is a natural
generalization of one that is now well-established in dimension N = 2, treats the
scalar curvature of gh as a distribution and regards it as an approximation of the
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densitized scalar curvature of g, i.e. the scalar curvature R times the volume form
ω. For piecewise constant Regge metrics, our definition reduces to the classical
definition of the distributional densitized curvature on piecewise flat spaces [9, 28].
It is a linear combination of Dirac delta distributions supported on (N−2)-simplices
S, weighted by the angle defect at S: 2π minus the sum of the dihedral angles
incident at S. For piecewise polynomial Regge metrics of higher degree, it includes
additional contributions involving the scalar curvature in the interior of each N -
simplex and the jump in the mean curvature across each (N − 1)-simplex.

We study the convergence of the distributional densitized scalar curvature of gh
to the densitized scalar curvature of g under refinement of the triangulation. We
show in Theorem 4.1 that in the H−2(Ω)-norm, this convergence takes place at
a rate of O(hr+1) when gh is an optimal-order interpolant of g that is piecewise
polynomial of degree r ≥ 0, provided that either N = 2 or r ≥ 1. Our numerical
experiments in Section 5 suggest that these estimates are sharp in general.

To put this convergence result into context, let us summarize some existing
convergence results in the literature on finite element approximation of the scalar
curvature. We first need to assemble some notation.

Notation. In what follows, W s,p(Ω) denotes the Sobolev-Slobodeckij space of dif-
ferentiability index s ∈ [0,∞) and integrability index p ∈ [1,∞], and ∥ · ∥W s,p(Ω)

and | · |W s,p(Ω) denote the associated norm and semi-norm, which we always take
with respect to the Euclidean metric. (If we need norms with respect to a non-
Euclidean metric g, as we do in Section 4, we will make the g-dependence explicit
in the notation.) We denote Lp(Ω) = W 0,p(Ω) and Hs(Ω) = W s,2(Ω). For k ∈ N,
we denote H−k(Ω) = (Hk

0 (Ω))
′, where Hk

0 (Ω) denotes the space of functions in
Hk(Ω) whose derivatives of order 0 through k− 1 have vanishing trace on ∂Ω, and
the prime denotes the dual space.

If g is a smooth Riemannian metric and gh is a Regge metric, then R(g) de-
notes the scalar curvature of g, (Rω)(g) denotes the densitized scalar curvature
of g, (Rω)dist(gh) denotes the distributional densitized scalar curvature of gh (de-

fined below in Definition 3.1), and R
(q)
h (gh) denotes the orthogonal projection of

(Rω)dist(gh) onto the Lagrange finite element space of degree q with respect to the
inner product

∫
Ω
uvω(gh) on scalar functions u and v. Here, ω(gh) denotes the

volume form associated with gh.
We also use the terms optimal-order interpolant, canonical interpolant, and geo-

desic interpolant below. The first of these is a catch-all term for any piecewise poly-
nomial interpolant gh of g that belongs to the Regge finite element space and enjoys
error estimates of optimal order in W s,p(T )-norms on N -simplices T ; see Defini-
tion 4.2. The canonical interpolant is a specific interpolant (which is optimal-order)
detailed in [26, Chapter 2]. The geodesic interpolant of g is the unique piecewise
constant Regge metric gh with the property that the length of every edge in T ,
as measured by gh, agrees with the geodesic distance between the corresponding
vertices in T , as measured by g.

Summary of existing results. We can now summarize some existing results
about the approximation of g’s curvature by gh’s distributional curvature. Through-
out what follows, the letter r denotes the polynomial degree of gh.

(1) Cheeger, Müller, and Schrader [9, Equation (5.7) and Theorem 5.1] proved
that if r = 0 and gh is the geodesic interpolant of g, then (Rω)dist(gh)
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converges to (Rω)(g) in the (setwise) sense of measures at a rate of O(h)
in dimension N = 2 and O(h1/2) in dimension N ≥ 3.

(2) Gawlik [18, Theorem 4.1] proved that if r ≥ 1, N = 2, and gh is any

optimal-order interpolant of g, then R
(q)
h (gh) converges to R(g) at a rate

of O(hr) in the H−1(Ω)-norm and at a rate of O(hr−k−1) in the broken
Hk(Ω)-norm, k = 0, 1, 2, . . . , r − 2, provided that q ≥ max{1, r − 2}. (The
H−1(Ω)-estimate in [18, Theorem 4.1] is stated using a slightly different
norm that is g-dependent but equivalent to ∥ · ∥H−1(Ω).)

(3) Berchenko-Kogan and Gawlik [4, Corollary 6.2] proved that if r ≥ 1,
N = 2, and gh is any optimal-order interpolant of g, then (Rω)dist(gh)
converges to (Rω)(g) at a rate of O(hr) in the norm ∥u∥V ′,h = supv∈V,v ̸=0

⟨u, v⟩V ′,V /∥v∥V,h, where

(1.1) V = {v ∈ H1
0 (Ω) | v|T ∈ H2(T )∀T ∈ T N}

and ∥v∥V,h = |v|H1(Ω) +
(∑

T∈T N h2T |v|2H2(T )

)1/2
. Here, hT denotes the

diameter of T , and T N denotes the set of N -simplices in T .
(4) Gopalakrishnan, Neunteufel, Schöberl, and Wardetzky [22, Theorem 6.5

and Corollary 6.6] proved that if r ≥ 0, N = 2, and gh is the canonical

interpolant of g, then R
(r+1)
h (gh) converges to R(g) at a rate of O(hr+1)

in the H−1(Ω)-norm and at a rate of O(hr−k) in the broken Hk(Ω)-norm,
k = 0, 1, 2, . . . , r − 1.

New results. As one can see from above, our analysis in this paper covers two
important cases that have not yet been addressed in the literature:

(1) We prove a convergence result in the case where N ≥ 3 and r ≥ 1. This
opens the door to the use of piecewise polynomial Regge metrics to approx-
imate scalar curvature in high dimensions.

(2) We prove a convergence result in the case where N = 2, r = 0, and gh is an
arbitrary optimal-order interpolant of g. This has been a longstanding gap
in the literature on Gaussian curvature approximation. Previous efforts to
address the case where N = 2 and r = 0 have relied on subtle properties
of the geodesic interpolant [9] and the canonical interpolant [22]. Our re-
sults establish the validity of Gaussian curvature approximations involving
the angle defect without stringent assumptions on the interpolated metric
tensor gh.

Note that our analysis predicts no convergence at all in the H−2(Ω)-norm when
N ≥ 3 and r = 0. Our numerical experiments suggest that this result is sharp for
general optimal-order interpolants. However, for the canonical interpolant, numeri-
cal experiments suggest that (Rω)dist(gh) converges to (Rω)(g) in theH−2(Ω)-norm
at a rate of O(h) when N ≥ 3 and r = 0. We intend to study this superconvergence
phenomenon exhibited by the canonical interpolant in future work.

Structure of the paper. Our strategy for proving convergence of (Rω)dist(gh)
to (Rω)(g) consists of two steps. First, in Sections 2-3, we study the evolution of
(Rω)dist(gh) under deformations of the metric, leading to an integral formula for
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the error (Rω)dist(gh)− (Rω)(g) which reads
(1.2)

⟨(Rω)dist(gh)− (Rω)(g), v⟩V ′,V =

∫ 1

0

bh(g̃(t);σ, v)− ah(g̃(t);σ, v) dt, ∀v ∈ V.

Here, g̃(t) = (1 − t)g + tgh, σ = ∂
∂t g̃(t) = gh − g, V is the space defined in (1.1),

and bh(g̃(t); ·, ·) and ah(g̃(t); ·, ·) are certain metric-dependent bilinear forms. In
Section 4, we use techniques from finite element theory to estimate the right-hand
side of (1.2), leading to Theorem 4.1.

The approach above is similar to the one used in dimension N = 2 in [4, 18,
22], but there are a few important differences. First, we work with an integral
formula for the error (Rω)dist(gh)− (Rω)(g) rather than an integral formula for the
curvature itself. Previous analyses in [4, 18, 22] hinged on formulas of the latter
type. Loosely speaking, in this paper we compute the evolution of the error along
a one-parameter family of Regge metrics starting at g and ending at gh, whereas
the papers [4, 18, 22] compute the evolution of the curvature along a pair of one-
parameter families of metrics: one family that starts at the Euclidean metric δ and
ends at gh, and one that starts at δ and ends at g. The approach based on evolving
the error appears to be better suited for proving optimal error estimates.

Another key aspect of our analysis is our use of the H−2(Ω)-norm to measure
the error. This norm is weaker than the ones used in [4, 18, 22], and it appears
to be more natural for measuring the error in the curvature. For example, for
piecewise constant Regge metrics in dimension N = 2, we show that convergence
of (Rω)dist(gh) to (Rω)(g) holds in the H−2(Ω)-norm for any optimal-order in-
terpolant of g, but numerical experiments suggest that it fails to hold in stronger
norms when gh is not the canonical interpolant of g. A key tool that we use to
prove convergence in H−2(Ω) is the near-equivalence of a certain pair of metric-
dependent, mesh-dependent norms on V ; see Proposition 4.5. This equivalence
is similar to one that Walker [32, Theorems 4.1 and 4.3] proved for an analogous
family of mesh-dependent norms on triangulated surfaces.

Additional comments. The formula (1.2) is not only useful for the error analysis,
but it is also interesting in its own right. It has a differential counterpart (see
Theorem 3.6) that reads

(1.3)
d

dt
⟨(Rω)dist(g̃(t)), v⟩V ′,V = bh(g̃(t);σ, v)− ah(g̃(t);σ, v), ∀v ∈ V,

which mimics the formula

(1.4)
d

dt

∫
Ω

Rvω =

∫
Ω

(div div Sσ)vω −
∫
Ω

⟨G, σ⟩vω, ∀v ∈ V

that holds for a family of smooth Riemannian metrics g(t) with densitized scalar
curvature Rω and Einstein tensor G = Ric− 1

2Rg. Here, Sσ = σ − gTrσ, and div
is the covariant divergence operator; see below for more notational details.

The correspondence between (1.3) and (1.4) becomes even more transparent
when one inspects the formulas for bh and ah (see Theorem 3.6). The bilinear
form bh(g̃; ·, ·) is (up to the appearance of S) a non-Euclidean, N -dimensional gen-
eralization of a bilinear form that appears in the Hellan-Herrmann-Johnson finite
element method [1–3, 5–7, 10, 27]. It can be regarded as the integral of div div Sσ
against v, where div div is interpreted in a distributional sense. This link with the
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Hellan-Herrmann-Johnson method has previously been noted and used in dimen-
sion N = 2 [4, 18, 22].

The bilinear form ah(g̃; ·, ·), which is only nonzero in dimension N ≥ 3, appears
to play the role of

∫
Ω
⟨G, σ⟩vω, which is also only nonzero in dimension N ≥ 3.

It gives rise to a natural way of defining the Einstein tensor in a distributional
sense for Regge metrics. We discuss this more in Section 3.2. Among other things,
we point out that the formula for ah contains a term involving the jump in the
trace-reversed second fundamental form across codimension-1 simplices; the same
quantity arises in studies of singular sources in general relativity, where it encodes
the well-known Israel junction conditions across a hypersurface on which stress-
energy is concentrated [25].

There are a few other connections between our calculations and ones that appear
in the physics literature. The variation of the Gibbons-Hawking-York boundary
term in general relativity [20, 33] is one example. It has many parallels to our
calculations in Section 2.2, and one can undoubtedly find formulas like (2.2) in
the literature after reconciling notations. We still give a full derivation of such
formulas, not only to familiarize the reader with our notation, but also to provide
careful derivations that refrain from discarding total derivatives (which integrate
to zero on manifolds without boundary, but not in general) and minimize the use
of local coordinate calculations where possible.

2. Evolution of geometric quantities

In this section, we consider anN -dimensional oriented manifoldM equipped with
a smooth Riemannian metric g, and we study the evolution of various geometric
quantities under deformations of g.

We adopt the following notation in this section. The Levi-Civita connection
associated with g is denoted ∇. If σ is a (p, q)-tensor field, then its covariant deriv-
ative is the (p, q + 1)-tensor field ∇σ, and its covariant derivative in the direction
of a vector field X is the (p, q)-tensor field ∇Xσ. Its trace Trσ is the contraction of
σ along the first two indices, using g to raise or lower indices as needed. We denote
div σ = Tr∇σ and ∆σ = div∇σ. The g-inner product of two (p, q)-tensor fields σ
and ρ is denoted ⟨σ, ρ⟩.

The volume form associated with g is denoted ω. The Ricci tensor and the scalar
curvature of g are denoted Ric and R, respectively. When we wish to emphasize
their dependence on g, we write ω(g), Ric(g), R(g), etc.

If D is an embedded submanifold of M , then we denote by ωD the induced
volume form on D. If σ is a tensor field on M , then σ|D denotes the pullback of
σ under the inclusion D ↪→ M . Later we will introduce some additional notation
related to embedded submanifolds of codimension 1, like the mean curvature H
and second fundamental form II; see Section 2.2.

We denote the exterior derivative of a differential form α by dα. If α is a one-
form, then α♯ denotes the vector field obtained by raising indices with g. If f is a
scalar field, then we sometimes interpret the one-form ∇f = df as the vector field
(df)♯ without explicitly writing it.

Later, in Section 4, we will append a subscript g to many quantities like ∇ and
⟨·, ·⟩ to emphasize their dependence on g. In that section only, an absent subscript
will generally signal that the quantity in question is computed with respect to the
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Euclidean metric, which we denote by δ. We say more about this notational shift
in Section 4.

2.1. Evolution of the densitized scalar curvature. First we study the evolu-
tion of the densitized scalar curvature Rω under deformations of the metric.

Proposition 2.1. Let g(t) be a family of smooth Riemannian metrics with time
derivative ∂

∂tg =: σ. We have

∂

∂t
(Rω) = (div div Sσ)ω − ⟨G, σ⟩ω,

where G = Ric− 1
2Rg denotes the Einstein tensor associated with g and

Sσ = σ − gTrσ.

Proof. We compute
∂

∂t
(Rω) = Ṙω +Rω̇

and invoke the well-known formulas [17, Lemma 2]

Ṙ = div div σ −∆Trσ − ⟨Ric, σ⟩

and [11, Equation 2.4]

ω̇ =
1

2
(Trσ)ω.

Since ∆Trσ = div div(gTrσ) and Trσ = ⟨g, σ⟩, the result follows. □

2.2. Evolution of the mean curvature. Next we study the evolution of the
mean curvature H of a hypersurface F . We assume that the tangent bundle of F
is trivial, so that there exists a smooth, g-orthonormal frame field τ1, τ2, . . . , τN−1

on F . (If this is not the case, then one can simply fix a point p ∈ F and focus on
a neighborhood of p on which the tangent bundle is trivial.) We let n be the unit
normal to F so that n, τ1, τ2, . . . , τN−1 forms a right-handed g-orthonormal frame
(in the ambient manifold) at each point on F . If the metric g varies smoothly in
time, then we assume that the vectors n, τ1, τ2, . . . , τN−1 also vary smoothly in time
and remain g-orthonormal at all times.

We use the notation

II(X,Y ) = g(∇Xn, Y ) = −g(n,∇XY )

for the second fundamental form on F . Our sign convention is such that Tr II = H,
and H is positive for a sphere with an outward normal vector. We also let ∇F

and divF denote the surface gradient and surface divergence operators on F , which
have the following meanings. For a scalar field v,

∇F v = ∇v − n∇nv =

N−1∑
i=1

τi∇τiv,

and for a one-form α,

divF α = Tr (∇α|F ) =
N−1∑
i=1

(∇τiα)(τi).
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Note that in the formula ∇F v = ∇v−n∇nv, we have regarded ∇v as a vector field
rather than a one-form. Recall that the surface divergence operator satisfies the
identity

(2.1)

∫
F

(divF α)ωF =

∫
∂F

α(νF )ω∂F +

∫
F

Hα(n)ωF ,

where νF is the outward unit normal to ∂F and H is the mean curvature of F . See,
for example, [8, Lemma 3.3] or [23, Equation (A.9)] for a derivation.

Proposition 2.2. Let g(t) be a family of smooth Riemannian metrics with time
derivative ∂

∂tg =: σ. Let F be a time-independent hypersurface with mean curvature
H and induced volume form ωF . Then

(2.2)
∂

∂t
(HωF ) = −1

2

(〈
II, σ|F

〉
+ (div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)

)
ωF ,

where

II(X,Y ) = II(X,Y )−Hg(X,Y )

is the trace-reversed second fundamental form.

Remark 2.3. In dimension N = 2, the formula (2.2) simplifies considerably. Letting
τ and n denote the unit tangent and unit normal to F , we have ∇τn = Hτ ,
−∇ττ = Hn, and II(τ, τ) = g(∇τn, τ) −Hg(τ, τ) = H −H = 0, so II vanishes. In
addition,

divF (σ(n, ·))−Hσ(n, n) = ∇τ (σ(n, ·)) (τ)−Hσ(n, n)

= ∇τ (σ(n, τ))− σ(n,∇ττ)−Hσ(n, n)

= ∇τ (σ(n, τ)) .

Thus, in two dimensions,

∂

∂t
(HωF ) = −1

2
((div Sσ)(n) +∇τ (σ(n, τ)))ωF .

To prove Proposition 2.2, we write

(2.3) Ḣ = −
N−1∑
i=1

∂

∂t
g(n,∇τiτi)

and use the following lemmas.

Lemma 2.4. For any time-dependent vector fields X and Y ,

∂

∂t
∇YX = ∇ẎX +∇Y Ẋ +

1

2
((∇Xσ)Y + (∇Y σ)X − (∇σ)(X,Y ))

♯
,

where (∇σ)(X,Y ) denotes the one-form Z 7→ (∇Zσ)(X,Y ), and (∇Xσ)Y denotes
the one-form Z 7→ (∇Xσ)(Y,Z).

Proof. In coordinates,

(∇YX)ℓ = Y j ∂X
ℓ

∂xj
+ Γℓ

ijY
jXi,
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where Γℓ
ij denote the Christoffel symbols of the second kind associated with g.

Thus,

∂

∂t
(∇YX)ℓ = Ẏ j ∂X

ℓ

∂xj
+ Γℓ

ij Ẏ
jXi + Y j ∂Ẋ

ℓ

∂xj
+ Γℓ

ijY
jẊi + Γ̇ℓ

ijY
jXi

= (∇ẎX)ℓ + (∇Y Ẋ)ℓ + Γ̇ℓ
ijY

jXi.

Next, we recall the following formula for the rate of change of the Christoffel symbols
under a metric deformation [11, Equation 2.23]:

Γ̇ℓ
ij =

1

2
gℓm ((∇iσ)jm + (∇jσ)im − (∇mσ)ij) .

It follows that

Γ̇ℓ
ijY

jXi =
1

2
gℓm

(
(∇Xσ)jmY

j + (∇Y σ)imX
i − (∇mσ)ijY

jXi
)

=
1

2
[((∇Xσ)Y + (∇Y σ)X − (∇σ)(X,Y ))]

ℓ
.

Hence,

∂

∂t
(∇YX)ℓ = (∇ẎX)ℓ + (∇Y Ẋ)ℓ +

1

2
((∇Xσ)Y + (∇Y σ)X − (∇σ)(X,Y ))

ℓ
.

□

Lemma 2.5. For any time-dependent vector field X,

∂

∂t
g(n,X) =

1

2
σ(n, n)g(n,X) + g(n, Ẋ).

Proof. Writing X = ng(n,X) +
∑N−1

i=1 τig(τi, X), we compute

∂

∂t
g(n,X) = σ(n,X) + g(ṅ,X) + g(n, Ẋ)

= σ(n, n)g(n,X) +

N−1∑
i=1

σ(n, τi)g(τi, X) + g(ṅ, n)g(n,X)

+

N−1∑
i=1

g(ṅ, τi)g(τi, X) + g(n, Ẋ)

= (σ(n, n) + g(ṅ, n)) g(n,X) +

N−1∑
i=1

(σ(n, τi) + g(ṅ, τi)) g(τi, X) + g(n, Ẋ).

For each i = 1, 2, . . . , N − 1, we have

0 =
∂

∂t
g(n, τi) = σ(n, τi) + g(ṅ, τi) + g(n, τ̇i)

= σ(n, τi) + g(ṅ, τi)

since τ̇i is g-orthogonal to n. Likewise,

0 =
∂

∂t
g(n, n) = σ(n, n) + 2g(n, ṅ),

so the result follows. □
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We are now ready to compute the time derivative of the mean curvature H. By
Lemma 2.5, we have

Ḣ = −
N−1∑
i=1

∂

∂t
g(n,∇τiτi)

= −
N−1∑
i=1

[
1

2
σ(n, n)g(n,∇τiτi) + g

(
n,

∂

∂t
∇τiτi

)]

=
1

2
Hσ(n, n)−

N−1∑
i=1

g

(
n,

∂

∂t
∇τiτi

)
.(2.4)

Using Lemma 2.4 and the symmetry of the second fundamental form, we can write
the second term as

g

(
n,

∂

∂t
∇τiτi

)
= g(n,∇τ̇iτi) + g(n,∇τi τ̇i) + (∇τiσ)(n, τi)−

1

2
(∇nσ)(τi, τi)

= 2g(n,∇τ̇iτi) + (∇τiσ)(n, τi)−
1

2
(∇nσ)(τi, τi).

The first term above, when summed over i, can be simplified as follows. We write

τ̇i =
∑N−1

j=1 τjg(τj , τ̇i) and use the linearity of ∇XY in X to compute

2

N−1∑
i=1

g(n,∇τ̇iτi) = 2

N−1∑
i=1

N−1∑
j=1

g(n,∇τjτi)g(τj , τ̇i)

=

N−1∑
i=1

N−1∑
j=1

g(n,∇τjτi) (g(τj , τ̇i) + g(τ̇j , τi))

= −
N−1∑
i=1

N−1∑
j=1

g(n,∇τjτi)σ(τj , τi)

= ⟨II, σ|F ⟩.

Above, we used the symmetry of the second fundamental form to pass from the
first line to the second, and we used the identity

0 =
∂

∂t
g(τj , τi) = σ(τj , τi) + g(τj , τ̇i) + g(τ̇j , τi)

to pass from the second line to the third. Inserting these results into (2.4), we get

Ḣ =
1

2
Hσ(n, n)− ⟨II, σ|F ⟩+

N−1∑
i=1

[
1

2
(∇nσ)(τi, τi)− (∇τiσ)(n, τi)

]
.(2.5)

Lemma 2.6. We have
(2.6)
N−1∑
i=1

[
1

2
(∇nσ)(τi, τi)− (∇τiσ)(n, τi)

]
=

1

2

(
⟨II, σ|F ⟩ − (div Sσ)(n)− divF (σ(n, ·))

)
.
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Proof. The identity 0 = ∇τi (g(n, n)) = 2g(n,∇τin) shows that ∇τin is in the span

of {τj}N−1
j=1 , so the first term on the right-hand side of (2.6) satisfies

⟨II, σ|F ⟩ =
N−1∑
i=1

N−1∑
j=1

σ(τj , τi)g(τj ,∇τin)

=

N−1∑
i=1

σ(∇τin, τi).(2.7)

The second term on the right-hand side of (2.6) can be computed as follows. Re-
calling that Sσ = σ − gTrσ, we have

(div Sσ)(n) = ∇n(Sσ)(n, n) +
N−1∑
i=1

∇τi(Sσ)(n, τi)

= (∇nσ)(n, n)−∇n(gTrσ)(n, n) +

N−1∑
i=1

[(∇τiσ)(n, τi)−∇τi(gTrσ)(n, τi)]

= (∇nσ)(n, n)− g(n, n)∇n Trσ +

N−1∑
i=1

[(∇τiσ)(n, τi)− g(n, τi)∇τi Trσ]

= (∇nσ)(n, n)−∇n Trσ +

N−1∑
i=1

(∇τiσ)(n, τi).

Since the trace commutes with covariant differentiation,

∇n Trσ = Tr∇nσ = (∇nσ)(n, n) +

N−1∑
i=1

(∇nσ)(τi, τi).

Thus,

(2.8) (div Sσ)(n) =
N−1∑
i=1

[(∇τiσ)(n, τi)− (∇nσ)(τi, τi)] .

The third term on the right-hand side of (2.6) is given by

divF (σ(n, ·)) =
N−1∑
i=1

∇τi (σ(n, ·)) (τi)

=

N−1∑
i=1

[∇τi (σ(n, τi))− σ(n,∇τiτi)] .(2.9)

Combining (2.7), (2.8), and (2.9), we see that

1

2

(
⟨II, σ|F ⟩ − (div Sσ)(n)− divF (σ(n, ·))

)
=

1

2

N−1∑
i=1

[σ(∇τin, τi)− (∇τiσ)(n, τi) + (∇nσ)(τi, τi)−∇τi (σ(n, τi)) + σ(n,∇τiτi)]

=
1

2

N−1∑
i=1

[(∇nσ)(τi, τi)− 2(∇τiσ)(n, τi)] .

□
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Combining Lemma 2.6 with (2.5), we get

(2.10) Ḣ =
1

2

(
−⟨II, σ|F ⟩ − (div Sσ)(n)− divF (σ(n, ·)) +Hσ(n, n)

)
.

Proposition 2.2 now follows from the identities

∂

∂t
(HωF ) = ḢωF +Hω̇F = ḢωF +

1

2
H Tr (σ|F )ωF

and

⟨II, σ|F ⟩ −H Tr (σ|F ) = ⟨II, σ|F ⟩.

2.3. Evolution of angles. Next we study the evolution of angles under deforma-
tions of the metric.

Lemma 2.7. Let g(t) be a family of smooth Riemannian metrics with time de-
rivative ∂

∂tg =: σ. Let (n̄(t), τ̄(t)) be a pair of g(t)-orthonormal vectors, and
let (n(t), τ(t)) be another pair of g(t)-orthonormal vectors lying in the span of
(n̄(t), τ̄(t)). Let θ(t) be the angle for which

τ = τ̄ cos θ + n̄ sin θ,

n = −τ̄ sin θ + n̄ cos θ.

Assume that these vectors vary smoothly in time, and assume that n(t) (respec-
tively, n̄(t)) is at all times g(t)-orthogonal to a time-independent hypersurface F
(respectively, F̄ ). Then, at all times for which θ ∈ (0, π), we have

(2.11)
∂

∂t
θ =

1

2
σ(n, τ)− 1

2
σ(n̄, τ̄).

Proof. Differentiating the relation cos θ = g(n̄, n) yields

−θ̇ sin θ = ∂

∂t
(g(n̄, n)) .

In particular, at any time s, we can write

−θ̇(s) sin θ(s) = ∂

∂t

∣∣∣∣
t=s

(g(t)(n̄(t), n(s))) +
∂

∂t

∣∣∣∣
t=s

(g(t)(n̄(s), n(t)))

−σ(s)(n̄(s), n(s)).

Using Lemma 2.5 and suppressing the evaluations at t = s, we get

−θ̇ sin θ = 1

2
σ(n̄, n̄)g(n̄, n) +

1

2
σ(n, n)g(n, n̄)− σ(n̄, n)

=
1

2
σ(n̄, n̄ cos θ − n) +

1

2
σ(n cos θ − n̄, n)

=
1

2
σ(n̄, τ̄ sin θ) +

1

2
σ(−τ sin θ, n).

If θ ∈ (0, π) at time t = s, then we can divide by sin θ to get (2.11). □
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3. Distributional densitized scalar curvature

Let T be a simplicial triangulation of a polyhedral domain Ω ⊂ RN . We assume
that the simplices in T are flat, and we make no assumptions about the topology of
Ω. We use T k to denote the set of all k-simplices in T . We also use T̊ k to denote
the subset of T k consisting of k-simplices that are not contained in the boundary
of Ω. We call such simplices interior simplices. We call (N − 1)-simplices faces.

Let g be a Regge metric on T . Recall that this means that g|T is a smooth
Riemannian metric on each T ∈ T N , and the induced metric g|F is single-valued

on each F ∈ T̊ N−1 (and consequently the induced metric is single-valued on all
lower-dimensional simplices in T ).

On each T ∈ T N , we denote by RT the scalar curvature of g|T . On an interior

face F ∈ T̊ N−1 that lies on the boundary of two N -simplices T+ and T−, the
second fundamental form on F , as measured by g|T+ , generally differs from that
measured by g|T− . We denote by JIIKF the jump in the second fundamental form
across F . More precisely,

JIIKF (X,Y ) = g|T+ (∇Xn
+, Y ) + g|T− (∇Xn

−, Y )

for any vectors X,Y tangent to F , where n± points outward from T±, has unit
length with respect to g|T± , and is g|T± -orthogonal to F . We adopt similar no-
tation for the jumps in other quantities across F . For instance, JHKF denotes the
jump in the mean curvature across F . We sometimes drop the subscript F when
there is no danger of confusion. If F is contained in ∂Ω, then we define the jump
in a scalar field v across F to be simply JvKF = v|F .

On each S ∈ T̊ N−2, the angle defect along S is

ΘS = 2π −
∑

T∈T N

T⊃S

θST ,

where θST denotes the dihedral angle formed by the two faces of T that contain S,
as measured by g|T . Generally this angle may vary along S. If F+ and F− are
the two faces of T that contain S, and if n± denotes the unit normal to F± with
respect to g|T pointing outward from T , then

cos θST = − g|T (n+, n−).

Let
V = {v ∈ H1

0 (Ω) | ∀T ∈ T N , v|T ∈ H2(T )}.
Note that if v ∈ V , then v admits a single-valued trace on every simplex in T of
dimension ≥ N − 3.

Definition 3.1. Let g be a Regge metric. The distributional densitized scalar
curvature of g is the linear functional (Rω)dist(g) ∈ V ′ defined by

⟨(Rω)dist(g), v⟩V ′,V

=
∑

T∈T N

∫
T

RT vωT + 2
∑

F∈T̊ N−1

∫
F

JHKF vωF + 2
∑

S∈T̊ N−2

∫
S

ΘSvωS , ∀v ∈ V.

(3.1)

This definition generalizes Definition 3.1 of [4], where the distributional curvature
two-form (i.e. the Gaussian curvature times the volume form) is defined for Regge
metrics in dimension N = 2. Note that the factors of 2 appearing in all but the
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first term in (3.1) are consistent with the fact that in dimension N = 2, the scalar
curvature R is twice the Gaussian curvature.

One can heuristically motivate Definition 3.1 in much the same way that one
motivates its two-dimensional counterpart. When g is piecewise constant, Defini-
tion 3.1 recovers the classical notion [28] that the distributional densitized scalar
curvature is a linear combination of Dirac delta distributions supported on (N−2)-
simplices, with weights given by angle defects. When g is not piecewise constant,
additional terms appear which account for the nonzero (classically defined) curva-
ture of g in the interior of each N -simplex T and the jump in the mean curvature
across each interior face F . The jump in the mean curvature across F can be un-
derstood by recalling that the scalar curvature R at a point p ∈ F can be expressed
as (two times) a sum of sectional curvatures of N(N −1)/2 tangent planes that are
mutually g-orthogonal at p, (N − 1)(N − 2)/2 of which are tangent to F at p and
N − 1 of which are g-orthogonal to F at p. The sectional curvatures corresponding
to planes tangent to F are nonsingular, owing to the tangential-tangential continu-
ity of g. The remaining N − 1 sectional curvatures are singular, and by considering
an N -dimensional region that encloses a portion of F and has small thickness in the
direction that is g-orthogonal of F , one can use the Gauss-Bonnet theorem (along
two-dimensional slices) to approximate the (volume-)integrated sum of these sec-
tional curvatures by the (surface-)integrated jump in the mean curvature across F .
(In this calculation, one must bear in mind that sectional curvatures and Gaussian
curvatures are related via the Gauss-Codazzi equations.) See the discussion after
Definition 3.1 in [4], as well as [31], for more insight in dimension N = 2. See
also [13, 15] for a justification of Definition 3.1 in the case where g is piecewise
constant and N ≥ 2.

In the sequel, we will consistently use the letters T , F , and S to refer to simplices
of dimension N , N − 1, and N − 2, respectively. We will therefore write

∑
T ,
∑

F ,
and

∑
S in place of

∑
T∈T N ,

∑
F∈T N−1 , and

∑
S∈T N−2 , respectively. When we

wish to sum over interior simplices of a given dimension, we put a ring on top of

the summation symbol. Thus, for example,
∑̊

F is shorthand for
∑

F∈T̊ N−1 .

3.1. Evolution of the distributional scalar curvature. We are interested in
how (3.1) changes under deformations of the metric. To this end, consider a one-
parameter family of Regge metrics g(t) with time derivative

σ =
∂

∂t
g.

Our goal will be to compute

d

dt
⟨(Rω)dist(g(t)), v⟩V ′,V

with v ∈ V arbitrary.
According to Propositions 2.1 and 2.2, the derivatives of the first two terms on

the right-hand side of (3.1) satisfy

d

dt

∫
T

RT vωT =

∫
T

(div div Sσ − ⟨G, σ⟩) vωT
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and

2
d

dt

∫
F

JHKF vωF = −
∫
F

r〈
II, σ|F

〉
+ (div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)

z
vωF .

(3.2)

For the third term on the right-hand side of (3.1), we use the following lemma.

Lemma 3.2. Along any interior (N − 2)-simplex S, we have

∂

∂t
(ΘSωS) =

1

2

(∑
F⊃S

Jσ(n, τ)KF +ΘS Tr(σ|S)

)
ωS ,

where the sum is over all (N − 1)-simplices F that contain S, n is the unit normal
to F with respect to g, and τ is the unit vector with respect to g that points into F
from S and is g-orthogonal to both S and n. Here, our convention is that if F is
shared by two N -simplices T+ and T−, then

Jσ(n, τ)KF = σ+(n+, τ) + σ−(n−, τ),

where σ± = σ|T± and n± points outward from T±.

Remark 3.3. Note that n generally differs on either side of F , whereas τ does not,
because g has single-valued tangential-tangential components along F .

Proof. We compute

Θ̇S = −
∑
T⊃S

θ̇ST

and use Lemma 2.7 to differentiate each angle θST . The resulting expression for
Θ̇S involves differences between σ(n, τ) evaluated on consecutive pairs of faces F
emanating from S. This sum can be rearranged to give

(3.3) Θ̇S =
1

2

∑
F⊃S

Jσ(n, τ)KF .

We thus get

∂

∂t
(ΘSωS) = Θ̇SωS +ΘSω̇S

=
1

2

∑
F⊃S

Jσ(n, τ)KFωS +
1

2
ΘS Tr (σ|S)ωS .

□

It follows from the above lemma that

2
d

dt

∫
S

ΘSvωS =

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS +

∫
S

ΘS Tr(σ|S)vωS

=

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS +

∫
S

⟨ΘSg|S , σ|S⟩ vωS .
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Collecting our results, we obtain

d

dt
⟨(Rω)dist(g(t)), v⟩V ′,V

=
∑
T

∫
T

(div div Sσ)vωT −
∑̊
F

∫
F

r
(div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)

z
F vωF

+
∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS −
∑
T

∫
T

⟨G, σ⟩vωT −
∑̊
F

∫
F

〈
JIIKF , σ|F

〉
vωF

(3.4)

+
∑̊
S

∫
S

⟨ΘSg|S , σ|S⟩ vωS .

We will now use integration by parts to rewrite the first three terms in a way
that involves no derivatives of σ.

Lemma 3.4. For any v ∈ V , we have∑
T

∫
T

(div div Sσ)vωT −
∑̊
F

∫
F

r
(div Sσ)(n) + divF (σ(n, ·))−Hσ(n, n)

z
F vωF

+
∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS =
∑
T

∫
T

⟨Sσ,∇∇v⟩ω −
∑
F

∫
F

Sσ(n, n)J∇nvKωF .

Proof. We have

∑
T

∫
T

⟨Sσ,∇∇v⟩ω −
∑
F

∫
F

Sσ(n, n)J∇nvKωF

(3.5)

=
∑
T

(∫
T

⟨Sσ,∇∇v⟩ω −
∫
∂T

Sσ(n, n)∇nv ω∂T

)
=
∑
T

(∫
∂T

Sσ(n,∇v)ω∂T −
∫
T

(div Sσ)(∇v)ω −
∫
∂T

Sσ(n, n)∇nv ω∂T

)
=
∑
T

(∫
∂T

Sσ(n,∇v)ω∂T −
∫
∂T

(div Sσ)(n)vω∂T +

∫
T

(div div Sσ)vω

−
∫
∂T

Sσ(n, n)∇nv ω∂T

)
.(3.6)

Note that here we are regarding ∇v as a vector field rather than a one-form. On
each N -simplex T , we can write

∫
∂T

Sσ(n,∇v)ω∂T −
∫
∂T

Sσ(n, n)∇nv ω∂T as a sum
of integrals over faces F ⊂ ∂T :∫

∂T

Sσ(n,∇v)ω∂T −
∫
∂T

Sσ(n, n)∇nv ω∂T =
∑

F⊂∂T

∫
F

Sσ(n,∇v − n∇nv)ωF

=
∑

F⊂∂T

∫
F

Sσ(n,∇F v)ωF

=
∑

F⊂∂T

∫
F

σ(n,∇F v)ωF .
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In the last line above, we used the fact that ∇F v is g-orthogonal to n, so

Sσ(n,∇F v) = σ(n,∇F v)− g(n,∇F v) Trσ = σ(n,∇F v).

Each integral over F can be integrated by parts as follows. We have

σ(n,∇F v) = divF (σ(n, ·)v)− divF (σ(n, ·)) v,

so the identity (2.1) applied to α = σ(n, ·)v implies that∫
F

σ(n,∇F v)ωF =

∫
∂F

σ(n, νF )vω∂F −
∫
F

(
divF (σ(n, ·))−Hσ(n, n)

)
vωF .

Now we insert this result into (3.6) to get∑
T

∫
T

⟨Sσ,∇∇v⟩ω −
∑
F

∫
F

Sσ(n, n)J∇nvKωF

=
∑
T

( ∑
F⊂∂T

∫
∂F

σ(n, νF )vω∂F −
∑

F⊂∂T

∫
F

(
divF (σ(n, ·))−Hσ(n, n)

)
vωF

−
∫
∂T

(div Sσ)(n)vω∂T +

∫
T

(div div Sσ)vω
)
.

The first term can be re-expressed as a sum over interior (N − 2)-simplices S using
our notation from Lemma 3.2, and the next two terms can be re-expressed in terms
of jumps across interior faces F . (Integrals over (N − 2)-simplices S ⊂ ∂Ω and
(N − 1)-simplices F ⊂ ∂Ω vanish because v = 0 on ∂Ω.) The result is∑
T

∫
T

⟨Sσ,∇∇v⟩ω −
∑
F

∫
F

Sσ(n, n)J∇nvKωF =
∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF vωS

−
∑̊
F

∫
F

r
divF (σ(n, ·))−Hσ(n, n) + (div Sσ)(n)

z
vωF +

∑
T

∫
T

(div div Sσ)vω.

□

Remark 3.5. Many of the above calculations are similar to the ones in [4, Proposi-
tion 4.2], except that here we are in dimension N rather than 2.

We can now state the main result of this subsection.

Theorem 3.6. Let g(t) be a family of Regge metrics with time derivative ∂
∂tg =: σ.

For every v ∈ V , we have

(3.7)
d

dt
⟨(Rω)dist(g(t)), v⟩V ′,V = bh(g;σ, v)− ah(g;σ, v),

where

bh(g;σ, v) =
∑
T

∫
T

⟨Sσ,∇∇v⟩ωT −
∑
F

∫
F

Sσ(n, n)J∇nvKFωF ,

ah(g;σ, v) =
∑
T

∫
T

⟨G, σ⟩vωT +
∑̊
F

∫
F

〈
JIIKF , σ|F

〉
vωF −

∑̊
S

∫
S

⟨ΘSg|S , σ|S⟩ vωS .

Proof. Combine (3.4) with Lemma 3.4. □
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3.2. Distributional densitized Einstein tensor. We now pause to make a few
remarks about the bilinear forms ah(g; ·, ·) and bh(g; ·, ·) appearing in Theorem 3.6.
These remarks will play no role in our analysis, but they help to elucidate the
content of Theorem 3.6. The reader can safely skip ahead to Section 4 if desired.

Numerical analysts will likely recognize the bilinear form bh(g; ·, ·) appearing in
Theorem 3.6. As we mentioned in Section 1, it is (up to the appearance of S)
a non-Euclidean, N -dimensional generalization of a bilinear form that appears in
the Hellan-Herrmann-Johnson finite element method [1–3, 5–7, 10, 27]. It can be
regarded as the integral of div div Sσ against v, where div div is interpreted in a
distributional sense.

The bilinear form ah(g; ·, ·) can be understood by comparing Theorem 3.6 with
Proposition 2.1, which, when integrated against a continuous function v, states that
for a family of smooth Riemannian metrics g(t) with scalar curvature R,

(3.8)
d

dt

∫
Ω

Rvω =

∫
Ω

(div div Sσ)vω −
∫
Ω

⟨G, σ⟩vω,

where σ = ∂
∂tg and G = Ric− 1

2Rg is the Einstein tensor associated with g. A
comparison of (3.8) with (3.7) suggests that for a Regge metric g, the bilinear form
ah(g;σ, v) should be regarded as a distributional counterpart of

∫
Ω
⟨G, σ⟩vω.

This motivates the following definition. Fix a number s > 1, and let Σ denote the
space of square-integrable symmetric (0, 2)-tensor fields σ with the following prop-
erties: the restriction of σ to each T ∈ T N belongs to Hs(T ), and the tangential-

tangential components of σ along any face F ∈ T̊ N−1 are single-valued. Note that
these conditions imply that the tangential-tangential components of σ along any
S ∈ T̊ N−2 are well-defined and single-valued as well.

Definition 3.7. Let g be a Regge metric. The distributional densitized Einstein
tensor associated with g is the linear functional (Gω)dist(g) ∈ Σ′ defined by

⟨(Gω)dist(g), σ⟩Σ′,Σ

=
∑
T

∫
T

⟨G, σ⟩ωT +
∑̊
F

∫
F

〈
JIIKF , σ|F

〉
ωF −

∑̊
S

∫
S

⟨ΘSg|S , σ|S⟩ωS , ∀σ ∈ Σ.

Remark 3.8. In dimension N = 2, we have (Gω)dist(g) = 0 for any Regge metric g,
because G vanishes within each triangle, ĪI vanishes on each edge, and the restriction
of σ to each vertex vanishes.

Remark 3.9. The appearance of the trace-reversed second fundamental form II in
Definition 3.7 is quite natural. The same quantity arises in studies of singular
sources in general relativity, with the jump in II encoding the well-known Israel junc-
tion conditions across a hypersurface on which stress-energy is concentrated [25].
To elaborate, consider the problem of solving the Einstein field equations G = TδF ,
where δF is a Dirac delta distribution supported on a codimension-1 hypersurface
F that partitions spacetime into two regions, and T is a given symmetric (0, 2)-
tensor field on F . It can be shown that solving this problem amounts to finding a
metric tensor g for which G = 0 in the two regions on either side of F , g|F is the
same on both sides of F , and JIIKF = T on F [19, 25] [24, Equation (16.19)]. The
equation JIIKF = T is sometimes called the Lanczos equation. Taken together, the
aforementioned conditions on g|F and JIIKF constitute the Israel junction conditions
(or Israel-Darmois junction conditions).
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Remark 3.10. If we define a map (div div S)dist : Σ → V ′ by

⟨(div div S)distσ, v⟩V ′,V = bh(g;σ, v), ∀v ∈ V,

then, by construction, we have

d

dt

∣∣∣∣
t=0

⟨(Rω)dist(g + tσ), v⟩V ′,V = ⟨(div div S)distσ, v⟩V ′,V − ⟨(Gω)dist(g), vσ⟩Σ′,Σ

for every piecewise smooth σ ∈ Σ and every smooth function v with compact
support in Ω. In particular, suppose that Ω has no boundary (e.g., suppose that Ω
is an N -dimensional cube and we identify its opposing faces). Then bh(g;σ, 1) = 0
and

d

dt

∣∣∣∣
t=0

⟨(Rω)dist(g + tσ), 1⟩V ′,V = −⟨(Gω)dist(g), σ⟩Σ′,Σ

for every piecewise smooth σ ∈ Σ. This implies that a Regge metric g is a stationary
point of ⟨(Rω)dist(g), 1⟩Σ′,Σ if its distributional densitized Einstein tensor vanishes:
(Gω)dist(g) = 0.

The functional ⟨(Rω)dist(g), 1⟩Σ′,Σ is a counterpart of the Einstein-Hilbert func-
tional

∫
Ω
Rω from general relativity, whose stationary points are solutions to the

(vacuum) Einstein field equations G = 0. It reduces to the Regge action from Regge
calculus when g is piecewise constant. That is,

⟨(Rω)dist(g), 1⟩Σ′,Σ = 2
∑̊
S

ΘSVS , if g is piecewise constant,

where VS =
∫
S
ωS denotes the volume of S. If g varies with t and remains piecewise

constant for all t, then

d

dt
2
∑̊
S

ΘSVS = 2
∑̊
S

Θ̇SVS + 2
∑̊
S

ΘS V̇S ,

and one checks that (on a domain without boundary)

2
∑̊
S

Θ̇SVS = bh(g;σ, 1) = 0

and

2
∑̊
S

ΘS V̇S = −ah(g;σ, 1) = −⟨(Gω)dist(g), σ⟩Σ′,Σ,

where σ = ∂
∂tg. The fact that

∑̊
SΘ̇SVS = 0 for any piecewise constant Regge

metric g (on a domain without boundary) was proved in Regge’s classic paper [28]
using very different techniques.

Remark 3.11. If g is a Regge metric and σ = gv for some smooth function v with
compact support in Ω, then:

(1) On each N -simplex T , we have

⟨G, σ⟩ = ⟨G, g⟩v = (TrG)v = −
(
N − 2

2

)
Rv.

(2) On either side of each interior (N − 1)-simplex F , we have:〈
II, σ|F

〉
= ⟨II, g|F ⟩ v − ⟨g|F , g|F ⟩Hv
= Hv − (N − 1)Hv

= −(N − 2)Hv.
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(3) On each interior (N − 2)-simplex S, we have

⟨ΘSg|S , σ|S⟩ = ΘSvTr(g|S) = (N − 2)ΘSv.

This shows that

⟨(Gω)dist(g), gv⟩Σ′,Σ

= −
(
N − 2

2

)(∑
T

∫
T

RT vωT + 2
∑̊
F

∫
F

JHKF vωF + 2
∑̊
S

∫
S

ΘSvωS

)

= −
(
N − 2

2

)
⟨(Rω)dist(g), v⟩V ′,V

for every smooth function v with compact support in Ω. One can interpret this as
saying that the trace of (Gω)dist(g) is −

(
N−2
2

)
(Rω)dist(g).

Remark 3.12. If g is a piecewise constant Regge metric and σ ∈ Σ is piecewise
constant, then

⟨(Gω)dist(g), σ⟩Σ′,Σ = −
∑̊
S

∫
S

ΘS Tr(σ|S)ωS .

If we linearize around the Euclidean metric g = δ, then we see from (3.3) that

d

dt

∣∣∣∣
t=0

⟨(Gω)dist(δ + tρ), σ⟩Σ′,Σ = −
∑̊
S

∫
S

Θ̇S Tr(σ|S)ωS

= −1

2

∑̊
S

∫
S

∑
F⊃S

Jρ(n, τ)KF Tr(σ|S)ωS

for every piecewise constant ρ, σ ∈ Σ. (Note that there are no additional terms on
the right-hand side because ΘS = 0 at t = 0.) Hence, if Ω has no boundary, then

d2

dt2

∣∣∣∣
t=0

⟨(Rω)dist(δ + tσ), 1⟩V ′,V = − d

dt

∣∣∣∣
t=0

⟨(Gω)dist(δ + tσ), σ⟩Σ′,Σ

=
1

2

∑̊
S

∫
S

∑
F⊃S

Jσ(n, τ)KF Tr(σ|S)ωS

for every piecewise constant σ ∈ Σ. This is equivalent to Christiansen’s formula [14,
Theorem 2 and Equations (25-26)] for the second variation of the Regge action
around the Euclidean metric in dimension N = 3. (There, the Regge action is
taken to be 1

2 ⟨(Rω)dist(g), 1⟩V ′,V rather than ⟨(Rω)dist(g), 1⟩V ′,V .)

4. Convergence

In this section, we prove a convergence result for the distributional densitized
scalar curvature in the norm

(4.1) ∥u∥H−2(Ω) = sup
v∈H2

0 (Ω),
v ̸=0

⟨u, v⟩H−2(Ω),H2
0 (Ω)

∥v∥H2(Ω)
.

Our convergence result will be applicable to a family {gh}h>0 of Regge metrics
defined on a shape-regular family {Th}h>0 of triangulations of Ω parametrized by
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h = maxT∈T N
h
hT , where hT = diam(T ). Shape-regularity means that there exists

a constant C0 independent of h such that

max
T∈T N

h

hT
ρT

≤ C0

for all h > 0, where ρT denotes the inradius of T .

Theorem 4.1. Let Ω ⊂ RN be a polyhedral domain equipped with a smooth Rie-
mannian metric g. Let {gh}h>0 be a family of Regge metrics defined on a shape-
regular family {Th}h>0 of triangulations of Ω. Assume that limh→0 ∥gh−g∥L∞(Ω) =
0 and C1 := suph>0 maxT∈T N

h
∥gh∥W 1,∞(T ) <∞. The following statements hold:

(i) If N = 2, then there exist positive constants C and h0 such that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω)

≤ C
(
1 + max

T
h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
×

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T )

)1/2
(4.2)

for all h ≤ h0. The constants C and h0 depend on ∥g∥W 1,∞(Ω), ∥g−1∥L∞(Ω),
C0, and C1.

(ii) If N ≥ 3, assume additionally that C2 := suph>0 maxT∈T N
h

|gh|W 2,∞(T ) <

∞. Then there exist positive constants C and h0 such that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω)

≤ C
(
1 + max

T
h−2
T ∥gh − g∥L∞(T ) +max

T
h−1
T |gh − g|W 1,∞(T )

)
×

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T ) +
∑
T

h4T |gh − g|2H2(T )

)1/2
(4.3)

for all h ≤ h0. The constants C and h0 depend on N , ∥g∥W 1,∞(Ω),

∥g−1∥L∞(Ω), C0, C1, and C2.

The above theorem leads immediately to error estimates of optimal order for
piecewise polynomial interpolants of g having degree r ≥ 0, provided that either
N = 2 or r ≥ 1. To make this statement precise, we introduce a definition. Recall
that the Regge finite element space of degree r ≥ 0 consists of symmetric (0, 2)-
tensor fields on Ω that are piecewise polynomial of degree at most r and possess
single-valued tangential-tangential components on interior (N − 1)-simplices.

Definition 4.2. Let Ih be a map that sends smooth symmetric (0, 2)-tensor fields
on Ω to the Regge finite element space of degree r ≥ 0. We say that Ih is an optimal-
order interpolation operator of degree r if there exists a number m ∈ {0, 1, . . . , N}
and a constant C3 = C3(N, r, hT /ρT , t, s) such that for every p ∈ [1,∞], every
s ∈ (m/p, r+1], every t ∈ [0, s], and every symmetric (0, 2)-tensor field g possessing
W s,p(Ω)-regularity, Ihg exists (upon continuously extending Ih) and satisfies

(4.4) |Ihg − g|W t,p(T ) ≤ C3h
s−t
T |g|W s,p(T )
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for every T ∈ T N
h . We call the number m the codimension index of Ih. A Regge

metric gh is called an optimal-order interpolant of g having degree r and codimen-
sion index m if it is the image of a Riemannian metric g under an optimal-order
interpolation operator having degree r and codimension index m.

An example of an optimal-order interpolation operator is the canonical inter-
polation operator onto the degree-r Regge finite element space introduced in [26,
Chapter 2]. Its degrees of freedom involve integrals over simplices of codimension at
most N−1, so its action on a tensor field g is well-defined so long as g admits traces
on simplices of codimension at most N −1, i.e. g possesses W s,p(Ω)-regularity with
s > (N − 1)/p. Correspondingly, its codimension index is m = N − 1.

Corollary 4.3. Let Ω, g, and {Th}h>0 be as in Theorem 4.1. Let {gh}h>0 be a
family of optimal-order interpolants of g having degree r ≥ 0 and codimension index
m. If N ≥ 3, assume that r ≥ 1. Then there exist positive constants C and h0 such
that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) ≤ C

(∑
T

h
p(r+1)
T |g|pW r+1,p(T )

)1/p

for all h ≤ h0 and all p ∈ [2,∞] satisfying p > m
r+1 . (We interpret the right-hand

side as CmaxT h
r+1
T |g|W r+1,∞(T ) if p = ∞.) The constants C and h0 depend on

the same quantities listed in (i) (if N = 2) and (ii) (if N ≥ 3), as well as on Ω, r,
and (if N ≥ 3) |g|W 2,∞(Ω).

Remark 4.4. The corollary above continues to hold if we allow slightly more general
interpolants in Definition 4.2. For example, it holds if (4.4) is replaced by

(4.5) |Ihg − g|W t,p(T ) ≤ C3h
s−t
T

∑
T ′:T ′∩T ̸=∅

|g|W s,p(T ′),

where the sum is over all T ′ ∈ T N
h that share a subsimplex with T .

In what follows, we reuse the letter C to denote a positive constant that may
change at each occurrence and may depend on N , ∥g∥W 1,∞(Ω), ∥g−1∥L∞(Ω), C0,
and C1. Beginning in Lemma 4.8, we allow C to also depend on C2.

Our strategy for proving Theorem 4.1 will be to consider an evolving metric

g̃(t) = (1− t)g + tgh

with time derivative

σ =
∂

∂t
g̃(t) = gh − g.

Note that g̃(t), being piecewise smooth and tangential-tangential continuous, is a
Regge metric for all t ∈ [0, 1], and it happens to be a (globally) smooth Riemannian
metric at t = 0. Since g̃(0) = g and g̃(1) = gh, Theorem 3.6 implies that

⟨(Rω)dist(gh)− (Rω)(g), v⟩V ′,V =

∫ 1

0

bh(g̃(t);σ, v)− ah(g̃(t);σ, v) dt, ∀v ∈ V.

Thus, we can estimate (Rω)dist(gh) − (Rω)(g) by estimating the bilinear forms
bh(g̃(t); ·, ·) and ah(g̃(t); ·, ·).

To do this, we introduce some notation. Given any Regge metric g, we let∇g and
∇ denote the covariant derivatives with respect to g and δ, respectively. Similarly,
we append a subscript g to other operators like Tr, S, and div when they are taken
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with respect to g, and we omit the subscript when they are taken with respect
to δ. On the boundary of any N -simplex T , we let ng and n denote the outward
unit normal vectors with respect to g|T and δ, respectively. These two vectors are
related to one another in coordinates via

(4.6) ng =
1√

nT g−1n
g−1n,

where we are thinking of g as a matrix and n and ng as column vectors. We write
⟨·, ·⟩g for the g-inner product of two tensor fields. If D is a submanifold of Ω on
which the induced metric g|D is well-defined, and if ρ is a tensor field on D, then
we denote

∥ρ∥Lp(D,g) =

{(∫
D
|ρ|pg ωD(g)

)1/p
, if 1 ≤ p <∞,

supD |ρ|g, if p = ∞,

where ωD(g) is the induced volume form on D and |ρ|g = ⟨ρ, ρ⟩1/2g . We abbreviate
∥ · ∥Lp(D) = ∥ · ∥Lp(D,δ) and | · | = | · |δ.

We introduce two metric-dependent, mesh-dependent norms. For v ∈ V , we set

∥v∥22,h,g =
∑
T

∥∇g∇gv∥2L2(T,g) +
∑
F

h−1
F ∥Jdv(ng)K∥2L2(F,g) .

If σ is a symmetric (0, 2)-tensor field with the property that σ(ng, ng) is well-defined

and single-valued on every F ∈ T N−1
h , then we set

∥σ∥20,h,g =
∑
T

∥σ∥2L2(T,g) +
∑
F

hF ∥σ(ng, ng)∥2L2(F,g),

where hF is the Euclidean diameter of F . Note that the image under Sg of any
symmetric (0, 2)-tensor field possessing single-valued tangential-tangential compo-
nents along faces automatically possesses single-valued normal-normal components
along faces, because

Sgσ(ng, ng) = σ(ng, ng)− g(ng, ng) Trg σ = −Trg (σ|F ) .
Now we return to the setting of Theorem 4.1 and the discussion thereafter: g

is a smooth Riemannian metric, gh is a Regge metric, g̃(t) = (1 − t)g + tgh, and
σ = gh − g. We assume throughout what follows that limh→0 ∥gh − g∥L∞(Ω) = 0
and suph>0 maxT∈T N

h
∥gh∥W 1,∞(T ) <∞. These assumptions have some elementary

consequences that we record here for reference (see [18] for a derivation). For every
h sufficiently small, every t ∈ [0, 1], and every vector w with unit Euclidean length,

∥g̃∥L∞(Ω) + ∥g̃−1∥L∞(Ω) ≤ C,(4.7)

max
T

|g̃|W 1,∞(T ) ≤ C,(4.8)

C−1 ≤ inf
Ω
(wT g̃w) ≤ sup

Ω
(wT g̃w) ≤ C,(4.9)

where we are thinking of g̃ as a matrix and w as a column vector in the last line.
Note that the last line implies the existence of positive lower and upper bounds on
wT g̃−1w as well:

(4.10) C−1 ≤ inf
Ω
(wT g̃−1w) ≤ sup

Ω
(wT g̃−1w) ≤ C.

In addition, the inequalities ∥g̃∥L∞(Ω) ≤ C and ∥g̃−1∥L∞(Ω) ≤ C imply that

(4.11) C−1∥ρ∥Lp(D,g̃(t2)) ≤ ∥ρ∥Lp(D,g̃(t1)) ≤ C∥ρ∥Lp(D,g̃(t2))
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and

(4.12) C−1∥ρ∥Lp(D) ≤ ∥ρ∥Lp(D,g̃(t1)) ≤ C∥ρ∥Lp(D)

for every t1, t2 ∈ [0, 1], every admissible submanifold D, every p ∈ [1,∞], every
tensor field ρ having finite Lp(D)-norm, and every h sufficiently small. We select
h0 > 0 so that (4.7-4.12) hold for all h ≤ h0, and we tacitly use these inequalities
throughout our analysis.

We will show the following near-equivalence of the norms ∥ · ∥2,h,g̃ and ∥ · ∥2,h,g.

Proposition 4.5. For every v ∈ V , every h ≤ h0, and every t ∈ [0, 1],

∥v∥22,h,g̃ ≤ C

[
∥v∥22,h,g +

(
max
T

h−2
T ∥gh − g∥2L∞(T ) +max

T
|gh − g|2W 1,∞(T )

)
×
∑
T

(
∥dv∥2L2(T ) + h2T |dv|2H1(T )

)]
.

The proof of Proposition 4.5 relies on the following lemma.

Lemma 4.6. Let g1 and g2 be two symmetric positive definite matrices, and let n
be a unit vector. Let

ngi =
1√

nT g−1
i n

g−1
i n, i = 1, 2.

Then there exists a constant c depending on |g1|, |g2|, |g−1
1 |, |g−1

2 | such that

|ng1 − ng2 | ≤ c|g1 − g2|.

Proof. Using the identity

(4.13)
1√

nT g−1
1 n

− 1√
nT g−1

2 n
=

nT (g−1
2 − g−1

1 )n

nT g−1
1 n

√
nT g−1

2 n+ nT g−1
2 n

√
nT g−1

1 n
,

we can write

ng1 −ng2 =
nT (g−1

2 − g−1
1 )n

nT g−1
1 n

√
nT g−1

2 n+ nT g−1
2 n

√
nT g−1

1 n
g−1
1 n+

1√
nT g−1

2 n
(g−1

1 −g−1
2 )n.

Since g−1
1 − g−1

2 = g−1
1 (g2 − g1)g

−1
2 , the bound follows easily. □

Notice that in view of (4.6), Lemma 4.6 implies that

(4.14) ∥ng̃ − ng∥L∞(F ) ≤ C∥g̃ − g∥L∞(F )

on either side of any face F .
Now we are ready to begin proving Proposition 4.5. Consider the term∑
F h

−1
F ∥Jdv(ng̃)K∥2L2(F,g̃) that appears in the definition of ∥v∥22,h,g̃. Notice that

dv(ng̃) = dv(ng) + dv(ng̃ − ng),

and we can use the bound (4.14) to estimate

∥dv(ng̃ − ng)∥L2(F,g̃) ≤ C∥dv(ng̃ − ng)∥L2(F )

≤ C∥dv∥L2(F )∥ng̃ − ng∥L∞(F )

≤ C∥dv∥L2(F )∥g̃ − g∥L∞(F )

≤ C∥dv∥L2(F )∥gh − g∥L∞(F )
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on either side of F . Using the trace inequality

(4.15) ∥dv∥2L2(F ) ≤ C
(
h−1
T ∥dv∥2L2(T ) + hT |dv|2H1(T )

)
, F ⊂ T ∈ T N

h ,

it follows that∑
F

h−1
F ∥Jdv(ng̃)K∥2L2(F,g̃)

≤ C

(∑
F

h−1
F ∥Jdv(ng)K∥2L2(F,g)

+
∑
T

h−1
T

(
h−1
T ∥dv∥2L2(T ) + hT |dv|2H1(T )

)
∥gh − g∥2L∞(T )

)

= C

(∑
F

h−1
F ∥Jdv(ng)K∥2L2(F,g)

+
∑
T

(
h−2
T ∥gh − g∥2L∞(T )∥dv∥

2
L2(T ) + ∥gh − g∥2L∞(T )|dv|

2
H1(T )

))
,

where we have used (4.11), (4.15), and the bound hT ≤ ChF , which follows from
the shape-regularity of Th.

Next, consider the term
∑

T ∥∇g̃∇g̃v∥2L2(T,g̃) that appears in the definition of

∥v∥22,h,g̃. Notice that

(∇g̃∇g̃v)ij = (∇g∇gv)ij + (Γk
ij − Γ̃k

ij)
∂v

∂xk
,

where Γk
ij and Γ̃k

ij are the Christoffel symbols of the second kind associated with g
and g̃, respectively. We have

∥Γk
ij − Γ̃k

ij∥L∞(T ) ≤ C∥g̃ − g∥W 1,∞(T ) ≤ C∥gh − g∥W 1,∞(T ),

so

∥∇g̃∇g̃v∥L2(T,g̃) ≤ C∥∇g̃∇g̃v∥L2(T )

≤ C
(
∥∇g∇gv∥L2(T ) + ∥gh − g∥W 1,∞(T )∥dv∥L2(T )

)
≤ C

(
∥∇g∇gv∥L2(T,g) + ∥gh − g∥W 1,∞(T )∥dv∥L2(T )

)
.

It follows that

∥v∥22,h,g̃ ≤ C

[
∥v∥22,h,g +

(
max
T

h−2
T ∥gh − g∥2L∞(T ) +max

T
|gh − g|2W 1,∞(T )

)
×
∑
T

(
∥dv∥2L2(T ) + h2T |dv|2H1(T )

)]
.

This completes the proof of Proposition 4.5.
Our next step will be to estimate the bilinear form bh(g̃; ·, ·).
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Proposition 4.7. For every h ≤ h0, every t ∈ [0, 1], and every v ∈ H2
0 (Ω), we

have (with σ = gh − g)

|bh(g̃;σ, v)| ≤ C

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T )

)1/2

×
(
1 + max

T
h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
∥v∥H2(Ω).

Proof. In view of the definitions of ∥ · ∥0,h,g̃ and ∥ · ∥2,h,g̃, we have

(4.16) |bh(g̃;σ, v)| ≤ ∥Sg̃σ∥0,h,g̃∥v∥2,h,g̃.

Recalling that

∥Sg̃σ∥20,h,g̃ =
∑
T

∥Sg̃σ∥2L2(T,g̃) +
∑
F

hF ∥Sg̃σ(ng̃, ng̃)∥2L2(F,g̃),

we compute

⟨Sg̃σ, Sg̃σ⟩g̃ =
〈
σ − g̃⟨g̃, σ⟩g̃, σ − g̃⟨g̃, σ⟩g̃

〉
g̃

= ⟨σ, σ⟩g̃ − 2⟨g̃, σ⟩2g̃ + ⟨g̃, g̃⟩g̃⟨g̃, σ⟩2g̃
= ⟨σ, σ⟩g̃ + (N − 2)⟨g̃, σ⟩2g̃,

which leads to the bound

∥Sg̃σ∥L2(T,g̃) ≤ C∥σ∥L2(T,g̃) ≤ C∥σ∥L2(T ).

Also, by the trace inequality,

∥Sg̃σ(ng̃, ng̃)∥2L2(∂T,g̃) ≤ C∥Sg̃σ∥2L2(∂T,g̃)

≤ C∥σ∥2L2(∂T )

≤ C
(
h−1
T ∥σ∥2L2(T ) + hT |σ|2H1(T )

)
.

(Here we are measuring the L2(∂T, g̃)-norm of the full tensor Sg̃σ rather than its
restriction to the tangent bundle of ∂T .) Thus,

∥Sg̃σ∥20,h,g̃ ≤ C

(
∥σ∥2L2(Ω) +

∑
T

h2T |σ|2H1(T )

)

= C

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T )

)
.(4.17)

Consider now the term ∥v∥2,h,g̃ in (4.16). Proposition 4.5 implies that

∥v∥2,h,g̃

≤ C
(
∥v∥2,h,g +

(
max
T

h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
∥v∥H2(Ω)

)
since v ∈ H2

0 (Ω). Furthermore, since g is smooth and v ∈ H2
0 (Ω), we have

Jdv(ng)K = 0 on every interior face F and Jdv(ng)K = dv(ng) = 0 on every face
F ⊂ ∂Ω. Thus, ∥v∥22,h,g =

∑
T ∥∇g∇gv∥2L2(T,g) = ∥∇g∇gv∥2L2(Ω,g). Since

(∇g∇gv)ij = (∇∇v)ij − Γk
ij

∂v

∂xk
,
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we see that

∥v∥2,h,g = ∥∇g∇gv∥L2(Ω) ≤ C(|v|H2(Ω) + |v|H1(Ω)) ≤ C∥v∥H2(Ω).

Thus,
(4.18)

∥v∥2,h,g̃ ≤ C
(
1 + max

T
h−1
T ∥gh − g∥L∞(T ) +max

T
|gh − g|W 1,∞(T )

)
∥v∥H2(Ω).

Combining (4.16), (4.17), and (4.18) completes the proof. □

At this point, we have finished proving part (i) of Theorem 4.1. Indeed, in
dimension N = 2, ah vanishes, so we can write

|⟨(Rω)dist(gh)− (Rω)(g), v⟩V ′,V | ≤
∫ 1

0

|bh(g̃(t);σ, v)| dt

and apply Proposition 4.7 to deduce (4.2).
To prove part (ii) of Theorem 4.1, we suppose that N ≥ 3 and that

suph>0 maxT∈T N
h

|gh|W 2,∞(T ) <∞, and we proceed as follows. Recall that

ah(g̃;σ, v) =
∑
T

∫
T

⟨G(g̃), σ⟩g̃vωT (g̃) +
∑̊
F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

−
∑̊
S

∫
S

⟨ΘS(g̃)g̃|S , σ|S⟩g̃vωS(g̃),

(4.19)

where have made all dependencies on the metric explicit in the notation. We will
bound each of the three terms above, beginning with the first. Throughout what
follows, we continue to denote σ = gh − g, and we let v be an arbitrary member of
V .

Lemma 4.8. We have∣∣∣∣∣∑
T

∫
T

⟨G(g̃), σ⟩g̃ vωT (g̃)

∣∣∣∣∣ ≤ C∥gh − g∥L2(Ω)∥v∥L2(Ω).

Proof. Since we are now assuming that suph>0 maxT∈T N
h

∥gh∥W 2,∞(T ) < ∞, the

Einstein tensor associated with g̃ satisfies

∥G(g̃)∥L∞(T ) ≤ C

for every h ≤ h0, every t ∈ [0, 1], and every T ∈ T N
h . It follows that∣∣∣∣∫

T

⟨G(g̃), σ⟩g̃ vωT (g̃)

∣∣∣∣ ≤ ∥G(g̃)∥L∞(T,g̃)∥σ∥L2(T,g̃)∥v∥L2(T,g̃)

≤ C∥G(g̃)∥L∞(T )∥σ∥L2(T )∥v∥L2(T )

≤ C∥σ∥L2(T )∥v∥L2(T )

= C∥gh − g∥L2(T )∥v∥L2(T ).

Summing over all T ∈ T N
h completes the proof. □
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Lemma 4.9. We have∣∣∣∣∣∑̊
F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ ≤ Cmax
T

(
h−1
T ∥gh − g∥W 1,∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T )

)1/2(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T )

)1/2

.

Proof. Consider an interior (N − 1)-simplex F . By applying a Euclidean rotation
and translation to the coordinates, we may assume without loss of generality that
F lies in the plane xN = 0. In these coordinates, the second fundamental form
associated with g̃ is given by

IIij(g̃) = −g̃(ng̃,∇g̃,eiej)

= −g̃(ng̃, Γ̃k
ijek)

= −nℓg̃ g̃ℓkΓ̃k
ij , i, j = 1, 2, . . . , N − 1,

where e1, e2, . . . , eN are the Euclidean coordinate basis vectors. Since ng̃ =

g̃−1n/
√
nT g̃−1n and n points in the xN direction, we get

IIij(g̃) = − 1√
nT g̃−1n

Γ̃N
ij .

The jump in this quantity across F can be computed using the identity JabK =
JaK{b}+ {a}JbK, where {·} denotes the average across F , giving

−JIIij(g̃)K =

t
1√

nT g̃−1n

|{
Γ̃N
ij

}
+

{
1√

nT g̃−1n

}r
Γ̃N
ij

z
.

In view of (4.13), we have∥∥∥∥∥
t

1√
nT g̃−1n

|∥∥∥∥∥
L∞(F )

≤ C ∥Jg̃K∥L∞(F )

≤ C ∥Jgh − gK∥L∞(F )

≤ C
(
∥gh − g∥L∞(T1) + ∥gh − g∥L∞(T2)

)
,

where T1 and T2 are the two N -simplices that share the face F . Here, we used the
fact that g̃ = g + t(gh − g) and g is smooth. Similarly, we have∥∥∥rΓ̃N

ij

z∥∥∥
L∞(F )

≤ C∥Jg̃K∥W 1,∞(F )

≤ C∥Jgh − gK∥W 1,∞(F )

≤ C
(
∥gh − g∥W 1,∞(T1) + ∥gh − g∥W 1,∞(T2)

)
.(4.20)

Thus,

∥JII(g̃)K∥L∞(F ) ≤ C
(
∥gh − g∥W 1,∞(T1) + ∥gh − g∥W 1,∞(T2)

)
.

From this it follows easily that the same bound holds, possibly with a larger constant
C, for the trace-reversed tensor II(g̃) = II(g̃)−H(g̃)g̃:

∥JII(g̃)K∥L∞(F ) ≤ C
(
∥gh − g∥W 1,∞(T1) + ∥gh − g∥W 1,∞(T2)

)
.
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It follows that∣∣∣∣∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣
≤ ∥JII(g̃)K∥L∞(F,g̃)∥σ|F ∥L2(F,g̃)∥v∥L2(F,g̃)

≤ C∥JII(g̃)K∥L∞(F )∥σ|F ∥L2(F )∥v∥L2(F )

≤ C

(
2∑

i=1

∥gh − g∥W 1,∞(Ti)

)(
h−1
T1

∥σ∥2L2(T1)
+ hT1 |σ|2H1(T1)

)1/2
×
(
h−1
T1

∥v∥2L2(T1)
+ hT1

|v|2H1(T1)

)1/2
.

By the shape-regularity of Th, we have C−1 ≤ hT1
/hT2

≤ C for some constant C
independent of h and F , so∣∣∣∣∣∑̊

F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ ≤ Cmax
T

(
h−1
T ∥gh − g∥W 1,∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T )

)1/2(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T )

)1/2

.

□

Remark 4.10. If gh is piecewise constant, then in (4.20) we have the sharper bound

∥Jgh − gK∥W 1,∞(F ) = ∥Jgh − gK∥L∞(F ) ≤ C
(
∥gh − g∥L∞(T1) + ∥gh − g∥L∞(T2)

)
because ∂gh

∂xi = 0 and ∂g
∂xi is continuous for each i. This implies that for piecewise

constant gh, we can replace ∥gh − g∥W 1,∞(T ) by ∥gh − g∥L∞(T ) in Lemma 4.9,
yielding∣∣∣∣∣∑̊

F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ ≤ Cmax
T

(
h−1
T ∥gh − g∥L∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T )

)1/2(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T )

)1/2

.

Now we turn our attention toward the third integral in (4.19). In preparation
for this, we will first use the shape-regularity assumption to show that the dihedral
angles of every N -simplex in Th (measured in the Euclidean metric) are uniformly
bounded above and below.

Lemma 4.11. There exist constants θmin, θmax ∈ (0, π) such that for every h > 0
and every T ∈ T N

h , the dihedral angles in T (measured in the Euclidean metric) all
lie between θmin and θmax.

Proof. This fact is proved in dimension N = 3 in [21, Lemma 2.6]. We generalize
their proof to dimension N ≥ 3 as follows. Given N + 1 points x1, x2, . . . , xN+1

in general position in RN , let T = [x1, x2, . . . , xN+1] denote the N -simplex with
vertices x1, x2, . . . , xN+1. Consider two faces F1 = [x1, x3, x4, . . . , xN+1] and F2 =
[x2, x3, x4, . . . , xN+1] that intersect along the (N − 2)-dimensional subsimplex S =
[x3, x4, . . . , xN+1]. Throughout what follows, we work in the Euclidean metric. Let
A be the orthogonal projection of x1 onto the (N − 1)-dimensional hyperplane
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containing F2, and let B be the orthogonal projection of x1 onto the (N − 2)-
dimensional hyperplane containing S. Observe that both [x1, A] and [x1, B] are
orthogonal to S, since S ⊂ F2. Thus, the triangle [x1, A,B] is orthogonal to S.
This triangle is a right triangle with hypotenuse [x1, B], so the dihedral angle θST

along S satisfies

sin θST =
|[x1, A]|
|[x1, B]|

,

where |·| denotes the Euclidean volume (i.e. length in this case). Obviously, |[x1, B]|
is bounded above by hT , the diameter of T . In addition, |[x1, A]| is bounded from
below by 2 times ρT , the inradius of T . To see why, we generalize the argument
in [21, Proposition 2.3], bearing in mind that our definition of ρT differs from theirs
by a factor of 2. Consider the inscribed (N − 1)-sphere in T , whose center C
lies at a distance ρT from F2. Let D be the point where this inscribed sphere
touches F2, and let E be the point diametrically opposite to D on this sphere.
The line segment [D,E] is orthogonal to F2, so the volume of the N -simplex T ′ =
[E, x2, x3, x4, . . . , xN+1] satisfies

|T ′| = 1

N
|[D,E]||F2| =

2ρT
N

|F2|.

Since T ′ ⊂ T , we have

|T ′| ≤ |T | = 1

N
|[x1, A]||F2|,

so

2ρT ≤ |[x1, A]|.
Thus,

sin θST ≥ 2ρT
hT

.

The result follows from this bound and the shape-regularity of Th. □

Next we show that Lemma 4.11 remains valid when one measures angles with g
rather than the Euclidean metric δ.

Lemma 4.12. Upon reducing the value of h0 if necessary, there exist constants
θmin,g, θmax,g ∈ (0, π) such that for every h ≤ h0, every T ∈ T N

h , every (N − 2)-
simplex S ⊂ ∂T , and every point p ∈ S, the dihedral angle in T at p (measured by
g) lies between θmin,g and θmax,g.

Proof. If there were no such lower bound θmin,g > 0, then there would exist a

sequence of N -simplices T1 ∈ Th1
, T2 ∈ Th2

, . . . with faces F
(1)
1 , F

(2)
1 ⊂ T1,

F
(1)
2 , F

(2)
2 ⊂ T2, . . . and points p1 ∈ F

(1)
1 ∩ F (2)

1 , p2 ∈ F
(1)
2 ∩ F (2)

2 , . . . such that

∠ g|Ti
(pi)(F

(1)
i , F

(2)
i ) → 0

as i→ ∞, where ∠g(X,Y ) denotes the angle between X and Y as measured by g.
Using the compactness of the Grassmannian, this implies that, after extracting a
subsequence which we do not relabel,

∠δ(F
(1)
i , F

(2)
i ) → 0,

where ∠δ(X,Y ) denotes the angle between X and Y as measured by the Euclidean
metric δ. This contradicts the assumed positive lower bound on the Euclidean
dihedral angles. The existence of an upper bound θmax,g < π is proved similarly. □
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Now we are ready to estimate the third integral in (4.19).

Lemma 4.13. We have∣∣∣∣∣∑̊
S

∫
S

⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃)

∣∣∣∣∣ ≤ C
(
max
T

h−2
T ∥gh − g∥L∞(T )

)

×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T ) + h4T |gh − g|2H2(T )

)1/2

×

(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T ) + h4T |v|2H2(T )

)1/2

.

Proof. Fix an interior (N−2)-simplex S and an N -simplex T containing S. At any
point p along S, we have

cos θST (g)− cos θST (g̃) = g̃(n
(1)
g̃ , n

(2)
g̃ )− g(n(1)g , n(2)g )

= g̃(n
(1)
g̃ − n(1)g , n

(2)
g̃ − n(2)g ) + g̃(n

(1)
g̃ − n(1)g , n(2)g )

+ g̃(n(1)g , n
(2)
g̃ − n(2)g ) + g̃(n(1)g , n(2)g )− g(n(1)g , n(2)g ),

where n
(1)
g and n

(2)
g are suitably oriented unit normal vectors (with respect to g|T )

to the two faces of T containing S, and similarly for n
(1)
g̃ and n

(2)
g̃ . Using Lemma 4.6,

we see that at the point p,

| cos θST (g̃)− cos θST (g)| ≤ C|g̃ − g| ≤ C|gh − g|

for all h sufficiently small. Since there are constants θmin,g, θmax,g ∈ (0, π) such that
θmin,g ≤ θST (g) ≤ θmax,g, we get

|θST (g̃)− θST (g)| ≤ C|gh − g| ≤ C∥gh − g∥L∞(T ).

Summing over T ⊃ S and noting that
∑

T⊃S θST (g) = 2π, we get

(4.21) |ΘS(g̃)| = |ΘS(g̃)−ΘS(g)| ≤
∑
T⊃S

|θST (g̃)−θST (g)| ≤ C
∑
T⊃S

∥gh−g∥L∞(T ).

Now we are almost ready to estimate the integral
∫
S
⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃). We

first note that

∥v∥2L2(S) ≤ C
(
h−2
T ∥v∥2L2(T ) + |v|2H1(T ) + h2T |v|2H2(T )

)
,

which can be proved using a codimension-2 trace inequality and a scaling argument,
or by applying the codimension-1 trace inequality (4.15) twice (to v rather than
dv). If T1, T2, . . . , Tm are the N -simplices that share the (N − 2)-simplex S, then
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we have∣∣∣∣∫
S

⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃)

∣∣∣∣
≤ C∥ΘS(g̃)∥L∞(S,g̃)∥σ|S∥L2(S,g̃)∥v∥L2(S,g̃)

≤ C∥ΘS(g̃)∥L∞(S)∥σ|S∥L2(S)∥v∥L2(S)

≤ C

(
m∑
i=1

∥gh − g∥L∞(Ti)

)(
h−2
T1

∥σ∥2L2(T1)
+ |σ|2H1(T1)

+ h2T1
|σ|2H2(T1)

)1/2
×
(
h−2
T1

∥v∥2L2(T1)
+ |v|2H1(T1)

+ h2T1
|v|2H2(T1)

)1/2
.

The proof is completed by summing over all interior (N − 2)-simplices S and sub-
stituting σ = gh − g. □

Collecting our results, we can state a bound on the bilinear form ah(g̃; ·, ·).

Proposition 4.14. For every h ≤ h0, every t ∈ [0, 1], and every v ∈ V , we have
(with σ = gh − g)

|ah(g̃;σ, v)| ≤ C
(
1 + max

T
h−2
T ∥gh − g∥L∞(T ) +max

T
h−1
T |gh − g|W 1,∞(T )

)
×

(∑
T

∥gh − g∥2L2(T ) + h2T |gh − g|2H1(T ) + h4T |gh − g|2H2(T )

)1/2

×

(∑
T

∥v∥2L2(T ) + h2T |v|2H1(T ) + h4T |v|2H2(T )

)1/2

.

Proof. Combine Lemmas 4.8, 4.9, and 4.13. □

Upon combining Proposition 4.7 with Proposition 4.14, we see that

∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω)

≤ C
(
1 + max

T
h−2
T ∥gh − g∥L∞(T ) +max

T
h−1
T |gh − g|W 1,∞(T )

)
×

(
∥gh − g∥2L2(Ω) +

∑
T

h2T |gh − g|2H1(T ) +
∑
T

h4T |gh − g|2H2(T )

)1/2

.

This completes the proof of Theorem 4.1. Corollary 4.3 then follows from (4.4) and
the bounds

∥gh − g∥L2(Ω) ≤ |Ω|1/2−1/p∥gh − g∥Lp(Ω),(∑
T

h2T |gh − g|2H1(T )

)1/2

≤ |Ω|1/2−1/p

(∑
T

hpT |gh − g|pW 1,p(T )

)1/p

,

(∑
T

h4T |gh − g|2H2(T )

)1/2

≤ |Ω|1/2−1/p

(∑
T

h2pT |gh − g|pW 2,p(T )

)1/p

,

which hold for all p ∈ [2,∞] (with the obvious modifications for p = ∞).
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Remark 4.15. Notice that the analysis above yields

|bh(g̃;σ, v)| = O(hr+1), (by Proposition 4.7),(4.22) ∣∣∣∣∣∑
T

∫
T

⟨G(g̃), σ⟩g̃ vωT (g̃)

∣∣∣∣∣ = O(hr+1), (by Lemma 4.8),(4.23)

∣∣∣∣∣∑̊
F

∫
F

〈
JII(g̃)KF , σ|F

〉
g̃
vωF (g̃)

∣∣∣∣∣ =
{
O(h), if r = 0,

O(h2r), if r ≥ 1,

(by Remark 4.10),

(by Lemma 4.9),

(4.24)

∣∣∣∣∣∑̊
S

∫
S

⟨ΘS(g̃) g̃|S , σ|S⟩g̃ vωS(g̃)

∣∣∣∣∣ = O(h2r), (by Lemma 4.13)

(4.25)

for any optimal-order interpolant gh of g having degree r ≥ 0. Bearing in mind
that (4.23-4.25) vanish when N = 2, we see that the above estimates lead to an op-
timal error estimate ∥(Rω)dist(gh)− (Rω)(g)∥H−2(Ω) = O(hr+1) in all cases except
when N ≥ 3 and r = 0, where we obtain ∥(Rω)dist(gh) − (Rω)(g)∥H−2(Ω) = O(1)
because of (4.25). Numerical experiments suggest that these analytical results
are sharp for a general optimal-order interpolant, whereas for the canonical in-
terpolant the estimate (4.25) improves to O(h2(r+1)), yielding ∥(Rω)dist(gh) −
(Rω)(g)∥H−2(Ω) = O(h) when r = 0; cf. Figure 2.

5. Numerical examples

In this section we present numerical experiments in dimension N = 2, 3 to illus-
trate the predicted convergence rates. The examples were performed in the open
source finite element library NGSolve1 [29, 30], where the Regge finite elements
are available for arbitrary polynomial order. We construct an optimal-order inter-
polant gh of a given metric tensor g as follows. On each element T , the local L2

best-approximation ḡh|T of g|T is computed. Then the tangential-tangential degrees
of freedom shared by two or more neighboring elements are averaged to obtain a
globally tangential-tangential continuous interpolant gh. We verify in Appendix A
that this interpolant is an optimal-order interpolant in the sense of Remark 4.4 on
shape-regular, quasi-uniform triangulations.

To compute the H−2(Ω)-norm of the error f := (Rω)dist(gh)− (Rω)(g) we make
use of the fact that ∥f∥H−2(Ω) is equivalent to ∥u∥H2(Ω), where u ∈ H2

0 (Ω) solves

the biharmonic equation ∆2u = f . This equation will be solved numerically using
the (Euclidean) Hellan–Herrmann–Johnson method. To prevent the discretization
error from spoiling the real error, we use for uh two polynomial orders more than
for gh.

We consider in dimension N = 2 the numerical example proposed in [18], where
on the square Ω = (−1, 1)2 the smooth Riemannian metric tensor

g(x, y) :=

(
1 + (∂f∂x )

2 ∂f
∂x

∂f
∂y

∂f
∂x

∂f
∂y 1 + (∂f∂y )

2

)
with f(x, y) := 1

2 (x
2 + y2) − 1

12 (x
4 + y4) is defined. This metric corresponds to

the surface induced by the embedding
(
x, y
)
7→
(
x, y, f(x, y)

)
, and its exact scalar

1www.ngsolve.org
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curvature is given by

R(g)(x, y) =
162(1− x2)(1− y2)

(9 + x2(x2 − 3)2 + y2(y2 − 3)2)2
.

For a three-dimensional example we consider the cube Ω = (−1, 1)3 and the
Riemannian metric tensor induced by the embedding

(
x, y, z

)
7→
(
x, y, z, f(x, y, z)

)
,

where f(x, y, z) := 1
2 (x

2 + y2 + z2)− 1
12 (x

4 + y4 + z4). The scalar curvature is

R(g)(x, y, z) =

18((1−x2)(1−y2)(9+q(z))+(1−y2)(1−z2)(9+q(x))+(1−z2)(1−x2)(9+q(y)))
(9+q(x)+q(y)+q(z))2 ,

where q(x) = x2(x2 − 3)2.
We start with a structured mesh consisting of 2 · 22k triangles and 6 · 23k tetra-

hedra, respectively, in two and three dimensions with h̃ = maxT hT =
√
N 21−k

(and minimal edge length 21−k) for k = 0, 1, . . . . To avoid possible superconver-
gence due to mesh symmetries, we perturb each component of the inner mesh
vertices by a random number drawn from a uniform distribution in the range
[−h̃ 2−(2N+1)/2, h̃ 2−(2N+1)/2]. As depicted in Figure 1 (left) and listed in Table 1,
linear convergence is observed when N = 2 and gh has polynomial degree r = 0.
This is consistent with Theorem 4.1(i). For r = 1 and r = 2, higher convergence
rates are obtained as expected.

In the three-dimensional case, the same convergence rates as for N = 2 are
obtained, cf. Figure 1 (right) and Table 2. This indicates that Theorem 4.1(ii) is
sharp for r ≥ 1. For r = 0 we observe numerically linear convergence, which is
better than predicted by Theorem 4.1(ii). However, further investigation suggests
that the observed linear convergence for r = 0 is pre-asymptotic. Indeed, to test if
(4.25) is sharp, we compute the H−2(Ω)-norm of the linear functional

v 7→
∫ 1

0

∑̊
S

∫
S

⟨ΘS(g̃(t)) g̃(t)|S , σ|S⟩g̃(t) vωS(g̃(t)) dt,(5.1)

where we approximate the parameter integral by a Gauss quadrature of order seven.
As depicted in Figure 2, the norm of this functional for the optimal-order interpolant
gh with r = 0 stagnates at about 4 · 10−4, which is below the overall error of
4.296 · 10−3 for the finest grid; cf. Table 2. Therefore, the lack of convergence
predicted by Theorem 4.1(ii) is not yet visible in Figure 1. For r = 1, 2 the proven
rate of O(h2r) for (5.1) (see (4.25)) is clearly obtained. Interestingly, using the
canonical interpolant appears to increase the convergence rate of (5.1) to O(h2(r+1))
(i.e. an increase of two orders), as observed in Figure 2. Thus, it appears that the
canonical interpolant achieves convergence in the lowest-order case. We intend to
study this superconvergence phenomenon exhibited by the canonical interpolant in
future work.
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Figure 1. Convergence of the distributional scalar curvature in
the H−2(Ω)-norm for N = 2 (left) and N = 3 (right) with respect
to the number of degrees of freedom (ndof) of gh for r = 0, 1, 2.
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Figure 2. Convergence of (5.1) in the H−2(Ω)-norm with respect
to number of degrees of freedom (ndof) for an optimal-order inter-
polant and the canonical interpolant (c.i.) for r = 0, 1, 2 in dimen-
sion N = 3.

r = 0 r = 1 r = 2

h Error Order Error Order Error Order

2.828 · 10−0

1.534 · 10−0

8.584 · 10−1

4.609 · 10−1

2.417 · 10−1

1.251 · 10−1

6.260 · 10−2

3.198 · 10−2

2.237 · 10−1

1.945 · 10−1 0.23
6.220 · 10−2 1.96
2.336 · 10−2 1.57
9.434 · 10−3 1.41
4.457 · 10−3 1.14
2.181 · 10−3 1.03
1.067 · 10−3 1.06

8.613 · 10−2

8.448 · 10−2 0.03
4.565 · 10−2 1.06
1.335 · 10−2 1.98
3.689 · 10−3 1.99
9.205 · 10−4 2.11
2.280 · 10−4 2.02
5.777 · 10−5 2.04

2.720 · 10−2

1.364 · 10−2 1.13
2.213 · 10−3 3.13
3.615 · 10−4 2.91
4.189 · 10−5 3.34
5.504 · 10−6 3.08
7.028 · 10−7 2.97
8.784 · 10−8 3.1

Table 1. Same as Figure 1 (left), but in tabular form.
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r = 0 r = 1 r = 2

h Error Order Error Order Error Order
3.464 · 10−0

1.850 · 10−0

9.709 · 10−1

4.999 · 10−1

2.753 · 10−1

1.358 · 10−1

6.878 · 10−2

7.869 · 10−2

3.215 · 10−1 -2.24
1.132 · 10−1 1.62
4.152 · 10−2 1.51
1.838 · 10−2 1.37
8.733 · 10−3 1.05
4.296 · 10−3 1.04

1.359 · 10−1

6.613 · 10−2 1.15
2.912 · 10−2 1.27
8.633 · 10−3 1.83
2.391 · 10−3 2.15
6.194 · 10−4 1.91
1.579 · 10−4 2.01

1.871 · 10−2

4.133 · 10−2 -1.26
5.286 · 10−3 3.19
7.342 · 10−4 2.97
9.753 · 10−5 3.38
1.261 · 10−5 2.89
1.604 · 10−6 3.03

Table 2. Same as Figure 1 (right), but in tabular form.
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Appendix A. Optimal-order interpolation via averaging

Below we verify that the interpolant described in Section 5 is an optimal-order
interpolant in the sense of Remark 4.4, assuming that {Th}h>0 is shape-regular and
quasi-uniform. Recall that quasi-uniformity means that maxT∈T N

h
h/hT is bounded

above by a constant independent of h. In what follows, the letter C may depend on
this constant as well as on the parameters N , hT /ρT , r, s, and t appearing below.

Let ℓ(1), ℓ(2), . . . , ℓ(M) denote the canonical degrees of freedom for the Regge finite
element space of degree r ≥ 0 on Th [26, Equation (2.4b)]. Each linear functional
ℓ(i) is associated with a simplex D ∈ T k

h of dimension 1 ≤ k ≤ r+1 in the following

sense: ℓ(i) sends a symmetric (0, 2)-tensor field g to the integral of g|D against a
(symmetric tensor-valued) polynomial of degree ≤ r − k + 1 over D.

We enumerate these degrees of freedom with a local numbering system as follows.
On a given N -simplex T ∈ T N

h , the degrees of freedom associated with subsimplices
of T are denoted ℓT1 , ℓ

T
2 , . . . , ℓ

T
MT

. If T, T ′ ∈ T N
h are two N -simplices with nonempty

intersection, then it may happen that ℓTi and ℓT
′

j coincide for some i and j. We let

S(i, T ) denote the set of all pairs (j, T ′) for which ℓTi and ℓT
′

j coincide.

With the above local numbering system, let ψT
1 , ψ

T
2 , . . . , ψ

T
MT

denote the basis
for the degree-r Regge finite element space that is dual to the above degrees of
freedom. That is,

ℓTi (ψ
T ′

j ) =

{
1, if (j, T ′) ∈ S(i, T ),
0, otherwise.

Let us assume that the degrees of freedom and basis functions above are first defined
on a reference simplex and then transported to T via an affine transformation. A
scaling argument shows that [26, Lemma 2.11]

(A.1) ∥ψT
i ∥Lp(T ) ≤ Ch

N/p−2
T

and

(A.2) |ℓTi (g)| ≤ Ch
−N/p+2
T ∥g∥Lp(T )

for all g in the domain of ℓTi . Note that the −2 and the +2 appearing in the
exponents above arise because of the way that pullbacks of (0, 2)-tensor fields behave
under affine transformations; see [26, Lemma 2.11].

https://doi.org/10.55776/F65
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Let g be a symmetric (0, 2)-tensor field possessing W s,p(Ω)-regularity for every
p ∈ [1,∞] and every s > (N − 1)/p. The canonical interpolation operator Jh onto
the Regge finite element space is defined elementwise by

Jhg|T = J T
h (g|T ) =

MT∑
i=1

ℓTi (g)ψ
T
i .

Let ḡh denote the elementwise L2-projection of g onto the space of discontinuous
piecewise polynomial symmetric (0, 2)-tensor fields of degree at most r. Since Jh

is a projector, we have

ḡh|T = J T
h ( ḡh|T ) =

MT∑
i=1

ℓTi (ḡh)ψ
T
i .

The interpolant discussed in Section 5 is defined by

gh|T =

MT∑
i=1

 1

|S(i, T )|
∑

(j,T ′)∈S(i,T )

ℓT
′

j (ḡh)

ψT
i ,

where |S(i, T )| denotes the cardinality of S(i, T ).
To analyze the error gh − g, let p ∈ [1,∞], s ∈ ((N − 1)/p, r + 1], and t ∈ [0, s].

We have

|gh − g|W t,p(T ) ≤ |gh − Jhg|W t,p(T ) + |Jhg − g|W t,p(T ).

The second term satisfies [26, Theorem 2.5]

(A.3) |Jhg − g|W t,p(T ) ≤ Chs−t
T |g|W s,p(T ).

To bound the first term, we use the fact that

ℓTi (g) =
1

|S(i, T )|
∑

(j,T ′)∈S(i,T )

ℓT
′

j (g)

to write

(gh − Jhg)|T =

MT∑
i=1

1

|S(i, T )|
∑

(j,T ′)∈S(i,T )

ℓT
′

j (ḡh − g)ψT
i .

Using an inverse estimate, (A.1), (A.2), and a standard error estimate [16, Propo-
sition 1.135] for the elementwise L2-projector, we obtain

|gh − Jhg|W t,p(T ) ≤ Ch−t
T ∥gh − Jhg∥Lp(T )

≤ Ch−t
T

∑
T ′:T ′∩T ̸=∅

h
−N/p+2
T ′ ∥ḡh − g∥Lp(T ′)h

N/p−2
T

≤ Ch−t
T

∑
T ′:T ′∩T ̸=∅

∥ḡh − g∥Lp(T ′)

≤ Ch−t
T

∑
T ′:T ′∩T ̸=∅

hsT ′ |g|W s,p(T ′)

≤ Chs−t
T

∑
T ′:T ′∩T ̸=∅

|g|W s,p(T ′).(A.4)
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Here, we have repeatedly used the fact that the ratio hT /hT ′ is bounded uniformly
above and below by positive constants. Combining (A.3) and (A.4) shows that the
error gh − g satisfies (4.5).
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