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HIGH-ORDER RETRACTIONS ON MATRIX MANIFOLDS
USING PROJECTED POLYNOMIALS∗

EVAN S. GAWLIK† AND MELVIN LEOK†

Abstract. We derive a family of high-order, structure-preserving approximations of the Rie-
mannian exponential map on several matrix manifolds, including the group of unitary matrices, the
Grassmannian manifold, and the Stiefel manifold. Our derivation is inspired by the observation that
if Ω is a skew-Hermitian matrix and t is a sufficiently small scalar, then there exists a polynomial of
degree n in tΩ (namely, a Bessel polynomial) whose polar decomposition delivers an approximation
of etΩ with error O(t2n+1). We prove this fact and then leverage it to derive high-order approxi-
mations of the Riemannian exponential map on the Grassmannian and Stiefel manifolds. Along the
way, we derive related results concerning the supercloseness of the geometric and arithmetic means
of unitary matrices.
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1. Introduction. Approximating the Riemannian or Lie-theoretic exponential
map on a matrix manifold is a task that is of importance in a variety of applications,
including numerical integration on Lie groups [21, 27, 22, 5], optimization on mani-
folds [2, 10, 4, 34], interpolation of manifold-valued data [41, 42, 19, 16], rigid body
simulation [5, 30], fluid simulation [17], and computer vision [44, 33, 13]. Often, spe-
cial attention is paid to preserving the structure of the exponential map [6], which,
for instance, should return a unitary matrix when the input Ω is skew-Hermitian.
In this paper, we construct structure-preserving approximations to the Riemannian
exponential map on matrix manifolds using projected polynomials—polynomial func-
tions of matrices which, when projected onto a suitable set, deliver approximations
to the Riemannian exponential with a desired order of accuracy. These projected
polynomials can be thought of as high-order generalizations of the “projection-like
retractions” considered in [3]. The matrix manifolds we consider are

1. The group of unitary m×m matrices.
2. The Grassmannian manifold Gr(p,m), which consists of all p-dimensional

linear subspaces of Cm, where m ≥ p.
3. The Stiefel manifold St(p,m) = {Y ∈ Cm×p | Y ∗Y = I}, where m ≥ p.

The projector we use to accomplish this task is the map which sends a full-rank
matrix A ∈ Cm×p (m ≥ p) to the nearest matrix with orthonormal columns. The
latter matrix is precisely the factor U in the polar decomposition A = UH, where
U ∈ Cm×p has orthonormal columns and H ∈ Cp×p is Hermitian positive-definite [11,
Theorem 1]. In the case of the Grassmannian manifold, the QR decomposition can
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be used in place of the polar decomposition, leading to methods with very low com-
putational cost.

Interestingly, in the case of the unitary group and the Grassmannian manifold, su-
perconvergent approximations of the exponential are constructible with this approach.
By this we mean that it is possible to construct polynomials of degree n that, upon pro-
jection, deliver approximations to the exponential with error of order n+ 2 or higher.
The appropriate choices of polynomials turn out to be intimately related to the Bessel
polynomials, a well-known orthogonal sequence of polynomials [31], and the resulting
approximations have error of order 2n+ 1; see Theorems 1 and 3 and Corollary 4.

One of the major advantages of this approach is that it delivers approximations
to the exponential on the unitary group, the Grassmannian manifold, and the Stiefel
manifold that, to machine precision, have orthonormal columns. This is of obvious
importance for the unitary group and the Stiefel manifold, and it is even desirable
on the Grassmannian manifold, where it is common in computations to represent
elements of the Grassmannian—p-dimensional subspaces of Cm—as m × p matrices
whose columns form orthonormal bases for those subspaces [10].

Furthermore, when the polar decomposition is adopted as the projector, projected
polynomials have the advantage that they can be computed using only rudimentary
operations on matrices: matrix addition, multiplication, and inversion. This follows
from the fact that the polar decomposition can be computed iteratively [24, Chap-
ter 8]. Rudimentary algorithms for calculating the exponential on the Grassmannian
and Stiefel manifolds are particularly desirable, since the most competitive existing
algorithms for accomplishing this task involve singular value and/or eigenvalue decom-
positions [10, Theorem 2.1, Corollary 2.2, and Theorem 2.3], a feature that renders
existing algorithms less ideally suited for parallel computation than projected polyno-
mials. (See, for instance, [39] for a discussion of the merits of the polar decomposition
in parallel computations.)

In spite of these advantages, it is worth noting that not all of the constructions
in this paper lead to algorithms that outshine their competitors. Diagonal Padé ap-
proximations of the exponential deliver, to machine precision, unitary approximations
of eΩ when Ω is skew-Hermitian [27, p. 314]. It is clear that the projected polyno-
mials we present below (in Theorem 1) for approximating eΩ are more expensive to
compute, at least when the comparison is restricted to approximations of eΩ with
equal order of accuracy. On the Stiefel manifold, projected polynomials have a differ-
ent weakness: they cannot be made superconvergent; see Theorem 5. The setting in
which projected polynomials appear to shine the brightest is the Grassmannian man-
ifold Gr(p,m), where they provide superconvergent, orthonormal approximations to
the Riemannian exponential with algorithmic complexity O(mp2); see Theorem 3 and
Corollary 4. To our knowledge, these are the first such approximations (other than
the lowest-order versions) to appear in the literature on the Grassmannian manifold.

Structure-preserving approximations of the exponential map on matrix manifolds
have a long history, particularly for matrix manifolds that form Lie groups. On Lie
groups, techniques involving rational approximation [27, p. 314], splitting [6, 45],
canonical coordinates of the second kind [7], and the generalized polar decompo-
sition [28] have been studied, and many of these strategies lead to high-order ap-
proximations. For more general matrix manifolds like the Grassmannian and Stiefel
manifolds, attention has been primarily restricted to methods for calculating the ex-
ponential exactly [10, 1, 2] or approximating it to low order [2, 3, 29, 12, 46]. In
this context, structure-preserving approximations of the exponential are commonly
referred to as retractions [2, Definition 4.1.1].
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High-order retractions on the Grassmannian and Stiefel manifolds have received
very little attention, but there are good reasons to pursue them. For instance, numer-
ical integrators for differential equations on naturally reductive homogeneous spaces
(of which the Grassmannian and Stiefel manifolds are examples) often make use of
the exact Riemmannian exponential map [37]. It is natural to consider the possibility
of improving their efficiency by using a retraction of sufficiently high order in lieu of
the exact exponential, as we illustrate in section 4.4. Even if an integrator is of a
low enough order that a first-order retraction suffices, a higher-order retraction may
enable the use of larger time steps. For examples of differential equations of interest
on the Grassmannian and Stiefel manifolds, see [21, section IV.9]. Another applica-
tion of high-order retractions arises in optimization, where exact evaluation of the
Riemannian Hessian of a function defined on a matrix manifold requires the use of
a retraction with second-order accuracy or higher, at least if one is interested in its
value away from critical points [2, p. 107]. Finally, existing algorithms for calculating
the exponential on the Grassmannian and Stiefel manifolds exactly [10, Theorem 2.1,
Corollary 2.2, and Theorem 2.3] are relatively expensive, which raises the question
of whether more efficient options, perhaps with nonzero but controllable error, are
available. On the Grassmannian manifold, the answer seems to be yes, at least for
small-normed input; see Corollary 4.

In other applications, such as the interpolation of manifold-valued data, the ben-
efits of high-order retractions are less obvious. For example, the order of accuracy
and equivariance properties of interpolation and subdivision schemes for Riemannian
manifold-valued data are often insensitive to the choice of retraction [19] [20, The-
orem 5.6]. However, their smoothness properties can be retraction dependent, and
in certain subdivision schemes, high-order retractions are necessary to achieve high
regularity [40, 9]. It can also be argued that, for data taking values in a Riemannian
symmetric space, high-order retractions more closely respect an intrinsic symmetry
of the exponential map than low-order retractions. Indeed, the exact exponential
map ExpY at a point Y in a Riemannian symmetric space M sends any tangent vec-
tor H to sXY , the image of Y under an involutive isometry sX : M → M having
X = ExpY

H
2 as a fixed point. On the Grassmannian, the implication is that ExpYH

is the reflection of the subspace Y about the subspace ExpY
H
2 . Retractions generally

violate this symmetry to an extent that is dictated by their order of accuracy.
Organization. This paper is organized as follows. In section 2, we give statements

of our results, deferring their proofs to section 3. Our main results are Theorems 1, 3,
and 5, which detail families of approximants to the exponential on the unitary group,
the Grassmannian manifold, and the Stiefel manifold, respectively. A fourth notewor-
thy result is Corollary 4, which provides a computationally inexpensive variant of the
approximants in Theorem 3. We also detail two related results, Proposition 6 and
Theorem 7, that concern the supercloseness of the geometric and arithmetic means of
unitary matrices. In section 3, we prove each of the results just mentioned. In section
4, we describe algorithms for calculating our proposed approximations, discuss their
computational costs, and demonstrate their convergence rates numerically.

2. Statement of results. In this section, we give statements of our results.
Proofs are detailed in section 3.

2.1. Exponentiation on the unitary group. Our first result deals with the
approximation of the exponential of a skew-Hermitian matrix Ω ∈ Cm×m with pro-
jected polynomials. To motivate the forthcoming theorem, consider the Taylor poly-
nomial qn(tΩ) of degree n for etΩ:
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qn(tΩ) =

n∑
k=0

(tΩ)k

k!
.

This quantity, in general, is not a unitary matrix, even though the matrix it aims to
approximate, etΩ, is unitary. If t is sufficiently small (small enough so that qn(tΩ) is
nonsingular), then qn(tΩ) can be made unitary by computing the polar decomposition
qn(tΩ) = UH, where U ∈ Cm×m is unitary and H ∈ Cm×m is Hermitian positive-
definite. The matrix U is easily seen to be an unitary approximation to etΩ with error
at worst O(tn+1), owing to the fact that

‖U − qn(tΩ)‖ ≤ ‖V − qn(tΩ)‖

for every unitary matrix V ∈ Cm×m, where ‖ · ‖ denotes the Frobenius norm [11,
Theorem 1].

Below we address the question of whether a better approximation to etΩ can be
constructed by computing the unitary factor in the polar decomposition of

qn(tΩ) =

n∑
k=0

akt
kΩk

for suitably chosen coefficients ak. We show that if the coefficients ak are chosen
carefully, then an approximation with error of order t2n+1 can be constructed. The
choice of coefficients ak corresponds to the selection of a Bessel polynomial of degree
n in tΩ. In what follows, we use P to denote the map which sends a full-rank matrix
A ∈ Cm×p (m ≥ p) to the factor P(A) = U in its polar decomposition A = UH, where
U ∈ Cm×p has orthonormal columns and H ∈ Cp×p is Hermitian positive-definite [24,
Theorem 8.1].

Theorem 1. Let Ω ∈ Cm×m be skew-Hermitian, and let n ≥ 0 be an integer.
Define

(1) Θn(z) =

n∑
k=0

(
n

k

)
(2n− k)!

(2n)!
(2z)k.

Then
P(Θn(tΩ)) = etΩ +O(t2n+1).

In fact, we will show that the polar decomposition of Θn(tΩ) delivers the highest
order approximation of etΩ among all polynomials in tΩ of degree n, up to rescaling.
That is, if rn(tΩ) is any other polynomial in tΩ of degree n satisfying rn(0) = I, then

P(rn(tΩ)) = etΩ +O(tk)

for some 1 ≤ k ≤ 2n.
The polynomials (1) are scaled versions of Bessel polynomials [31]. More precisely,

we have

Θn(z) =
2nn!

(2n)!
θn(z),

where

θn(z) =

n∑
k=0

(n+ k)!

(n− k)!k!

zn−k

2k
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denotes the reverse Bessel polynomial of degree n. The first few polynomials Θn(z)
are given by

Θ0(z) = 1,

Θ1(z) = 1 + z,

Θ2(z) = 1 + z +
1

3
z2,

Θ3(z) = 1 + z +
2

5
z2 +

1

15
z3,

Θ4(z) = 1 + z +
3

7
z2 +

2

21
z3 +

1

105
z4.

Note that, rather surprisingly, Θn(z) agrees with ez only to first order for every n ≥ 1.

2.2. Exponentiation on the Grassmannian. We now consider the task of ap-
proximating the Riemannian exponential map on the Grassmannian manifoldGr(p,m),
which consists of all p-dimensional subspaces of Cm, where m ≥ p. We begin by re-
viewing the geometry of Gr(p,m), with an emphasis on computational aspects.

In computations, it is convenient to represent each subspace V ∈ Gr(p,m) with a
matrix Y ∈ Cm×p having orthonormal columns that span V. The choice of Y is not
unique, so we are of course thinking of Y as a representative of an equivalence class of
m× p matrices sharing the same column space. With this identification, the tangent
space to Gr(p,m) at Y is given by

TYGr(p,m) = {Y⊥K | K ∈ C(m−p)×p},

where Y⊥ ∈ Cm×(m−p) is any matrix such that ( Y Y⊥ ) is unitary [10, p. 15]. With
respect to the canonical metric on Gr(p,m), the Riemannian exponential ExpGr

Y :
TYGr(p,m) → Gr(p,m) at Y ∈ Cm×p in the direction H = Y⊥K ∈ Cm×p is given
by [10, p. 10]

(2) ExpGr
Y H =

(
Y Y⊥

)
exp

(
0 −K∗
K 0

)(
I
0

)
.

The goal of this subsection is to construct computationally inexpensive approx-
imations of ExpGr

Y H. In order to be competitive with existing methods, such ap-
proximations must have computational complexity O(mp2) or better, owing to the
following well-known result [10, Theorem 2.3].

Theorem 2 ([10, Theorem 2.3]). Let H = UΣV ∗ be the thin singular value de-
composition of H, i.e., U ∈ Cm×p has orthonormal columns, Σ ∈ Cp×p is diagonal
with nonnegative entries, and V ∈ Cp×p is unitary. Then

(3) ExpGr
Y H = Y V cos(Σ)V ∗ + U sin(Σ)V ∗.

The preceding theorem reveals that ExpGr
Y H can be computed exactly with

O(mp2) operations, since this is the cost of computing the thin singular value de-
composition of H ∈ Cm×p. With this in mind, we aim to derive approximations of
ExpGr

Y H with smaller or comparable computational complexity.
Since the matrix Z := ( 0 −K∗

K 0
) appearing in (2) is skew-Hermitian, an obvi-

ous option is to approximate expZ in (2) with a projected polynomial P(Θn(Z)) in
accordance with section 2.1. This leads to approximants of the form
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(4) ExpGr
Y (tH) =

(
Y Y⊥

)
P(Θn(tZ))

(
I
0

)
+O(t2n+1),

which, unfortunately, have computational complexity O(m3). Remarkably, we show
in Lemma 15 below that

(5) P(Θn(tZ))

(
I
0

)
= P

(
Θn(tZ)

(
I
0

))
if t is sufficiently small (small enough so that Θn(tZ) is nonsingular). This is signif-
icant, since the right-hand side of this equality involves the polar decomposition of
an m × p matrix Θn(tZ)( I

0 ), which can be computed in O(mp2) operations. A few
more algebraic manipulations (detailed in section 3.4) lead to the following scheme
for approximating the exponential on the Grassmannian in O(mp2) operations.

Theorem 3. Let Y ∈ Cm×p have orthonormal columns, and let H ∈ TYGr(p,m).
Then, for any n ≥ 0,

ExpGr
Y (tH) = P

(
Y αn(t2H∗H) + tHβn(t2H∗H)

)
+O

(
t2n+1

)
,

where

αn(z) =

bn/2c∑
j=0

a2j(−z)j ,

βn(z) =

b(n−1)/2c∑
j=0

a2j+1(−z)j ,

and

ak =

(
n

k

)
(2n− k)!

(2n)!
2k, k = 0, 1, . . . , n.

The first few nontrivial approximants provided by Theorem 3 read

ExpGr
Y (tH) = P (Y + tH) +O(t3),(6)

ExpGr
Y (tH) = P

(
Y

(
I − 1

3
t2H∗H

)
+ tH

)
+O(t5),(7)

ExpGr
Y (tH) = P

(
Y

(
I − 2

5
t2H∗H

)
+ tH

(
I − 1

15
t2H∗H

))
+O(t7),(8)

ExpGr
Y (tH) = P

(
Y

(
I − 3

7
t2H∗H +

1

105
t4(H∗H)2

)
+tH

(
I − 2

21
t2H∗H

))
+O(t9).

(9)

Note that, rather interestingly, the commonly used retraction P(Y + tH) (see, for
instance, [1]) is in fact an approximation of ExpGr

Y (tH) with error O(t3), despite its
appearance.
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Note also that the approximants provided by Theorem 3 are rotationally equiv-
ariant. That is, if V ∈ Cm×m is a unitary matrix, Ỹ = V Y , and H̃ = V H, then
H̃∗H̃ = H∗V ∗V H = H∗H and hence

P
(
Ỹ αn(t2H̃∗H̃) + tH̃βn(t2H̃∗H̃)

)
= P

(
V
(
Y αn(t2H∗H) + tHβn(t2H∗H)

))
= V P

(
Y αn(t2H∗H) + tHβn(t2H∗H)

)
,(10)

where the last line follows from the fact that

(11) P(V A) = V P(A)

for every full-rank A ∈ Cm×p (m ≥ p) and every unitary V ∈ Cm×m.
Replacing the polar decomposition with the QR decomposition. An extraordinary

feature of Theorem 3 is that it applies, with slight modification, even if the map P
is replaced by the map Q which sends a full-rank matrix A ∈ Cm×p (m ≥ p) to
the factor Q in the QR decomposition A = QR, where Q ∈ Cm×p has orthonormal
columns and R ∈ Cp×p is upper triangular. (The map Q is denoted qf in [2].) This
follows from the fact that the columns of A, P(A), and Q(A) span the same space,
so P(A) and Q(A) represent the same element of the Grassmannian manifold.

The only modification of Theorem 3 needed to make this idea precise is to use a
genuine distance on the Grassmannian, such as

(12) distGr(X,Y ) = min
V,W∈Cp×p

V ∗V =W∗W=I

‖XV − YW‖,

to measure the distance between subspaces [10, p. 30]. We then have the following
corollary.

Corollary 4. Let Y ∈ Cm×p have orthonormal columns, and let H ∈ TYGr(p,m).
Then, for any n ≥ 0,

distGr(Q
(
Y αn(t2H∗H) + tHβn(t2H∗H)

)
, ExpGr

Y (tH)) = O(t2n+1),

where αn and βn are given in the statement of Theorem 3.

This corollary is quite powerful, since the factor Q in the QR decomposition
of a (real) m × p matrix can be stably computed in 4mp2 − 4

3p
3 operations [18, p.

232] (or fewer if stability considerations are relaxed; see section 4.3), rendering the
approximations Q

(
Y αn(t2H∗H) + tHβn(t2H∗H)

)
very cheap to compute. Note also

that these approximations are rotationally equivariant, by an argument similar to the
one leading up to (10).

2.3. Exponentiation on the Stiefel manifold. The next manifold we con-
sider is the Stiefel manifold

St(p,m) = {Y ∈ Cm×p | Y ∗Y = I}.

Unlike the Grassmannian, here we do not regard matrices Y ∈ Cm×p as represen-
tatives of equivalence classes; each Y ∈ Cm×p corresponds to a distinct element of
St(p,m). The tangent space to St(p,m) at Y ∈ St(p,m) is given by

TY St(p,m) = {Y Ω + Y⊥K | Ω = −Ω∗ ∈ Cp×p,K ∈ C(m−p)×p},

where Y⊥ ∈ Cm×(m−p) is any matrix such that ( Y Y⊥ ) is unitary [10, equation (2.5)].
With respect to the canonical metric on St(p,m) [10, section 2.4], the Riemannian
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exponential ExpSt
Y : TY St(p,m) → St(p,m) at Y ∈ Cm×p in the direction H =

Y Ω + Y⊥K ∈ Cm×p is given by [10, equation (2.42)]

(13) ExpSt
Y H =

(
Y Y⊥

)
exp

(
Ω −K∗
K 0

)(
I
0

)
.

As an aside, we remark that a different exponential map is obtained if one endows
St(p,m) with the metric inherited from the embedding of St(p,m) in Euclidean
space [10, section 2.2]. We do not consider the latter exponential map in this pa-
per.

There exist algorithms for calculating (13) in O(mp2) operations, the simplest
of which involves calculating the QR decomposition of a certain m × p matrix and
then exponentiating a 2p×2p skew-Hermitian matrix [10, Corollary 2.2]. In principle,
diagonal Padé approximants can be used to approximate the latter exponential, lead-
ing to high-order retractions with complexity O(mp2). Alternatively, the exponential
appearing in (13) can be approximated directly, and, in the case of the lowest order
diagonal Padé approximant, an algorithm with complexity O(mp2) can be derived
with the help of the Sherman–Morrison–Woodbury formula [46, section 3.1]. Our aim
below is to derive a competitive algorithm for approximating (13) to high order using
projected polynomials.

Before doing so, it is important to note that the right-hand side of (13) reduces
to more familiar expressions in two special cases. First, when Y ∗H = Ω = 0, the
right-hand side of (13) coincides with the right-hand side of (2), the Riemmannian
exponential on the Grassmannian. On the other hand, if m = p and Y = I, then
K and Y⊥ are empty matrices and the right-hand side of (13) reduces to eΩ, the
exponential of a skew-Hermitian matrix. Thus, in an effort to generalize Theorems 1
and 3, we seek to approximate (13) with projected polynomials that reduce to the
ones appearing in Theorems 1 and 3 in those special cases.

In view of Theorem 3 and the identities Y ∗H = Ω and H∗H = −Ω2 +K∗K, it is
natural to consider approximations of (13) of the form

(14) ExpSt
Y (tH) ≈ P(Y q(t2H∗H, tY ∗H) + tHr(t2H∗H, tY ∗H)),

where q(x, y) and r(x, y) are polynomials in the (noncommuting) variables x and y.
In order to ensure that these approximations recover those appearing in Theorems 1
and 3, we insist that
(2.3.i) q(x, 0) = αn(x).
(2.3.ii) r(x, 0) = βn(x).

(2.3.iii) q(−x2, x) and r(−x2, x) are polynomials of degree at most n and n − 1,
respectively, satisfying

q(−x2, x) + xr(−x2, x) = Θn(x).

The latter constraint ensures that when m = p (so that H = Y Ω and Y Y ∗ = I),
P(Y q(t2H∗H, tY ∗H) + tHr(t2H∗H, tY ∗H)) = Y P(Θn(tΩ)). See section 3.5 for de-
tails.

It turns out that such approximations can be constructed, but they lack the
superconvergence enjoyed by the approximations in Theorems 1 and 3 (unless Ω =
0 or m = p). The difficulty becomes apparent if one compares P(Y + tH) with
ExpSt

Y (tH) for generic Y ∈ St(p,m) and H = Y Ω + Y⊥K ∈ TY St(p,m). As t → 0,
one observes numerically that P(Y + tH) = ExpSt

Y (tH) + O(t2) (unless Ω = 0 or
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m = p).1 This contrasts starkly with the situation in Theorems 1 and 3, where
the polar decomposition of the first-order Taylor approximant of the exponential had
superconvergent error O(t3). The following theorem confirms this observation and
provides a couple of higher-order approximations of (13). In it, we use ‖ · ‖ to denote
the Frobenius norm.

Theorem 5. Let Y ∈ St(p,m) and H ∈ TY St(p,m). Define

γ1(x, y) = 1, δ1(x, y) = 1,

γ2(x, y) = 1− 1

3
x− 1

2
y2, δ2(x, y) = 1 +

1

2
y,

γ3(x, y) = 1− 2

5
x− 1

2
y2 − 1

6
y3 − 1

6
xy, δ3(x, y) = 1− 1

15
x+

1

2
y.

For n = 1, 2, 3, we have

(15) ExpSt
Y (tH) = P

(
Y γn(t2H∗H, tY ∗H) + tHδn(t2H∗H, tY ∗H)

)
+ E,

where

(16) E =

{
O(t2n+1) if Y ∗H = 0 or m = p,

O(tn+1) otherwise.

In addition, for every polynomial q(x, y) and r(x, y) satisfying (2.3.i)–(2.3.iii) (1 ≤
n ≤ 3), there exists p, m, Y ∈ St(p,m), H ∈ TY St(p,m), C > 0, and t0 > 0 such
that

(17)
∥∥ExpSt

Y (tH)− P
(
Y q(t2H∗H, tY ∗H) + tHr(t2H∗H, tY ∗H)

)∥∥ ≥ Ctn+1

for every t ≤ t0.

Written more explicitly, the approximants provided by Theorem 5 read

ExpSt
Y (tH) ≈ P(Y + tH),

(18)

ExpSt
Y (tH) ≈ P

(
Y

(
I − 1

3
t2H∗H − 1

2
t2(Y ∗H)2

)
+ tH

(
I +

1

2
tY ∗H

))
,

(19)

ExpSt
Y (tH) ≈ P

(
Y

(
I + t2

(
−2

5
H∗H − 1

2
(Y ∗H)2

)
+ t3

(
−1

6
H∗HY ∗H − 1

6
(Y ∗H)3

))
+tH

(
I +

1

2
tY ∗H − 1

15
t2H∗H

))
.(20)

All of these are rotationally equivariant by an argument similar to the one leading up
to (10).

Observe that when Y ∗H = Ω = 0, the right-hand sides of (18)–(20) reduce
to those in (7) and (8), respectively. Likewise, when m = p (so that H = Y Ω and

1The astute reader may notice that this appears to contradict Theorem 4.9 of [3], which states,
among other things, that projective retractions (see [3, Example 4.5]) are automatically second order.
However, it is not the exponential map (13) that P(Y + tH) approximates to second order. Rather,
it is the exponential map associated with the metric inherited from the embedding of St(p,m) in
Cm×p.
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Y Y ∗ = I), they reduce to Y P(Θ1(tH)), Y P(Θ2(tH)), and Y P(Θ3(tH)), respectively,
which are precisely the approximations of Y etΩ provided by Theorem 1. See section
3.5 for details.

In view of the complexity of (19) and (20), we do not believe that a general
formula (valid for all n) can be conveniently written down for polynomials q(x, y) and
r(x, y) satisfying (2.3.i)–(2.3.iii) that deliver approximations of (13) of the form (14)
with error of optimal order. (As a matter of fact, the polynomials γ3(x, y) and δ3(x, y)
are not even uniquely determined by these conditions.) However, the proofs presented
in section 3.5 demonstrate how one can construct such polynomials.

Note that if the conditions (2.3.i)–(2.3.iii) are relaxed, then it is straightforward
to construct approximations of (13) with error O(tn+1): Simply truncate the Taylor
series for exp( Ω −K∗

K 0
), insert the result into (13), and express the result in terms of

Y and H using the identities H = Y Ω + Y⊥K, Y ∗H = Ω, and H∗H = −Ω2 +K∗K.
If desired, the result can be orthonormalized with the map P, retaining the order
of accuracy of the approximation. For this reason, Theorem 5 is less powerful than
Theorems 1 and 3, and it underscores the complexity of the Stiefel manifold relative
to the Grassmannian and the unitary group. For more evidence of the computational
difficulties inherent to the Stiefel manifold, we refer the reader to [10].

2.4. Geometric and arithmetic means of unitary matrices. We conclude
this section by stating two results that concern the supercloseness of certain means of
unitary matrices. At the surface, these results might not appear to be closely related
to Theorems 1, 3, 5, but in fact they follow from the same general theory.

Our first result reveals that the polar decomposition of the (componentwise) linear
interpolant of two unitary matrices U1 and U2 is superclose to the geodesic joining U1

and U2.

Proposition 6. Let U1 ∈ Cm×m be unitary, let Ω ∈ Cm×m be skew-Hermitian,
and let U2 = U1e

tΩ. Assume that (1 − s)U1 + sU2 is nonsingular for each s ∈ [0, 1].
Then

P((1− s)U1 + sU2) = U1e
stΩ +O(t3)

for every s ∈ [0, 1/2)∪(1/2, 1]. When s = 1/2, the equality P((1−s)U1+sU2) = U1e
stΩ

holds exactly.

The case s = 1/2 in the preceding lemma recovers the well-known observation
(see [25, Theorem 4.7] and [35, equation (3.14)]) that the unitary factor U = P( 1

2 (U1+
U2)) in the polar decomposition of 1

2 (U1 + U2) is given by

U = U1e
1
2 log(U∗1 U2) = U1(U∗1U2)1/2

whenever U1 and U2 are (nonantipodal) members of the unitary group.
Our second result of this subsection generalizes the preceding proposition in the

following way. Let

A(U1, . . . , Un;w) = arg min
V ∈Cm×m,
V ∗V =I

n∑
i=1

wi‖V − Ui‖2

denote the weighted arithmetic mean [35, Definition 5.1] of unitary matrices U1, . . . , Un

∈ Cm×m, where w ∈ Rn is a vector of weights summing to 1. Let



HIGH-ORDER RETRACTIONS ON MATRIX MANIFOLDS 811

G(U1, . . . , Un;w) = arg min
V ∈Cm×m,
V ∗V =I

n∑
i=1

wi dist(V,Ui)
2

denote their weighted geometric mean [35, Definition 5.2], where

dist(U, V ) =
1√
2
‖ log(U∗V )‖

denotes the geodesic distance on the unitary group [35, equation (2.6)]. It can be
shown [15, Proposition 4] that A(U1, . . . , Un;w) exists whenever

∑n
i=1 wiUi is nonsin-

gular, and is given explicitly by

(21) A(U1, . . . , Un;w) = P

(
n∑

i=1

wiUi

)
.

On the other hand, G(U1, . . . , Un;w) is characterized implicitly by the condition [35,
p. 14]

(22)

n∑
i=1

wi log(G(U1, . . . , Un;w)∗Ui) = 0.

The following theorem reveals that if the data U1, . . . , Un are nearby, then their
weighted arithmetic and geometric means are superclose.

Theorem 7. Let Ui : [0, T ]→ Cm×m, i = 1, 2, . . . , n, be continuous functions on
[0, T ] such that Ui(t) is unitary for each t ∈ [0, T ]. Suppose that

(23) dist(Ui(t), Uj(t)) = O(t)

for every i, j = 1, 2, . . . , n. Then, for any w ∈ Rn with entries summing to 1,

A(U1(t), . . . , Un(t);w) = G(U1(t), . . . , Un(t);w) +O(t3).

Note that (23) implies that U1(0) = U2(0) = · · · = Un(0).

3. Proofs. In this section, we prove Theorems 1, 3, 5, and 7 and Proposition 6.
Our proofs are structured as follows. In section 3.1, we consider the general problem
of estimating

(24) ‖P(A)− Ũ‖,

where A ∈ Cm×p (m ≥ p) is a full-rank matrix and Ũ ∈ Cm×p has orthonormal
columns. We show in Lemma 9 that this quantity can be estimated by measuring (i)

the extent to which Ũ∗A fails to be Hermitian and (ii) the discrepancy between the

range of A and the range of Ũ . We then leverage this lemma to prove Theorem 1 in
section 3.2, Theorem 3 in section 3.4, Theorem 5 in section 3.5, and Theorem 6 and
Proposition 7 in section 3.6.

It turns out that one of the theorems proved below, Theorem 1, admits an alterna-
tive proof that does not rely on Lemma 9. This alternative proof, which relies instead
on a relationship between projected polynomials and Padé approximation, is shorter
than the one we present in section 3.2, so we detail it in section 3.3 for completeness.
We have chosen to retain both proofs in this paper for several reasons. The proof
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in section 3.2, despite being longer, highlights the versatility of Lemma 9, a lemma
whose wide-ranging applicability is, in our opinion, one of the key contributions of this
paper. The proof in section 3.2 is also more elementary, in a certain sense, than that
in section 3.3, since the former relies merely on well-known perturbation estimates for
the polar decomposition, whereas the latter relies on Padé approximation theory and
certain results concerning the commutativity of functions of matrices.

3.1. Perturbations of the polar decomposition. We begin our examination
of (24) by studying the sensitivity of the polar decomposition to perturbations. In
what follows, we continue to use ‖ · ‖ to denote the Frobenius norm. We denote the
ith largest singular value of a matrix A ∈ Cm×p by σi(A). If m = p and A has real
eigenvalues, we denote them by λ1(A) ≥ λ2(A) ≥ · · · ≥ λp(A).

We denote by sym(A) = 1
2 (A+A∗) and skew(A) = 1

2 (A−A∗) the Hermitian and
skew-Hermitian parts of a square matrix A, respectively. Note that since ‖A‖ = ‖A∗‖,
we have ‖sym(A)‖ ≤ ‖A‖ and ‖skew(A)‖ ≤ ‖A‖ for any square matrix A.

We will make use of the following additional properties of the Frobenius norm. For
any A ∈ Cm×p, any B ∈ Cm×p, any C ∈ Cp×p, and any U ∈ Cm×p with orthonormal
columns:
(3.1.i) ‖A∗B‖ ≤ ‖A∗‖σ1(B) = ‖A‖σ1(B) [24, equation (B.7)].
(3.1.ii) ‖U∗A‖ ≤ ‖A‖ (this follows from (3.1.i)).

(3.1.iii) ‖UC‖ = ‖C‖ [24, Problem B.7].
We first recall a result concerning the stability of the polar decomposition under

perturbations. A proof is given in [32].

Lemma 8 ([32, Theorem 2.4]). Let A, Ã ∈ Cm×p (m ≥ p) be full-rank ma-

trices with polar decompositions A = UH and Ã = ŨH̃, where U, Ũ ∈ Cm×p have
orthonormal columns and H, H̃ ∈ Cp×p are Hermitian positive-definite. Then

‖U − Ũ‖ ≤ 2

σp(A) + σp(Ã)
‖A− Ã‖.

Next, we consider a full-rank matrix A ∈ Cm×p with polar decomposition A =
UH, and we use the preceding lemma to show that the distance from U to any other
matrix Ũ ∈ Cm×p (sufficiently close to A) with orthonormal columns is controlled

by two properties: (i) the extent to which Ũ∗A fails to be Hermitian, and (ii) the

discrepancy between the range of A and the range of Ũ .

Lemma 9. Let A ∈ Cm×p (m ≥ p) be a full-rank matrix with polar decomposition
A = UH, where U = P(A) ∈ Cm×p has orthonormal columns and H ∈ Cp×p is Her-

mitian positive-definite. Then, for any matrix Ũ ∈ Cm×p with orthonormal columns
satisfying λp(sym(Ũ∗A)) > 0, we have

max
{

2‖skew(Ũ∗A)‖, ‖(I − Ũ Ũ∗)A‖
}

2σ1(A)
(25)

≤ ‖U − Ũ‖ ≤
2
(
‖skew(Ũ∗A)‖+ ‖(I − Ũ Ũ∗)A‖

)
σp(A) + σp(sym(Ũ∗A))

.

Proof. Define H̃ = sym(Ũ∗A) and Ã = ŨH̃. By assumption, H̃ is positive
definite. Observe that

A− Ã = (Ũ Ũ∗ + I − Ũ Ũ∗)A− Ũsym(Ũ∗A)

= Ũskew(Ũ∗A) + (I − Ũ Ũ∗)A,
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so

‖A− Ã‖ ≤ ‖Ũskew(Ũ∗A)‖+ ‖(I − Ũ Ũ∗)A‖

= ‖skew(Ũ∗A)‖+ ‖(I − Ũ Ũ∗)A‖

by (3.1.iii). The right-hand inequality in (25) then follows from Lemma 8 upon noting

that Ã and sym(Ũ∗A) have the same singular values.
To prove the left-hand inequality in (25), observe that since H = U∗A is Hermi-

tian,

skew(Ũ∗A) = skew
(

(Ũ∗ − U∗)A
)
.

Thus, using (3.1.i),

‖skew(Ũ∗A)‖ ≤ ‖(Ũ∗ − U∗)A‖

≤ ‖Ũ∗ − U∗‖σ1(A)

= ‖Ũ − U‖σ1(A).(26)

On the other hand, since UU∗A = UH = A, we have

(I − Ũ Ũ∗)A = (UU∗ − Ũ Ũ∗)A

= (U − Ũ)U∗A+ Ũ(U − Ũ)∗A.

Thus, using (3.1.i), (3.1.iii), and the fact that σ1(U∗A) = σ1(A), it follows that

‖(I − Ũ Ũ∗)A‖ ≤ ‖U − Ũ‖σ1(U∗A) + ‖(U − Ũ)∗A‖

≤ ‖U − Ũ‖σ1(A) + ‖U − Ũ‖σ1(A)

= 2‖U − Ũ‖σ1(A).(27)

Combining (26) and (27) proves the left-hand inequality in (25).

Note that the condition λp(sym(Ũ∗A)) > 0 in Lemma 9 is satisfied, for instance,

whenever ‖A− Ũ‖ < 1. Indeed, if ‖A− Ũ‖ < 1 and H̃ = sym(Ũ∗A), then the relation

H̃ − I = sym
(
Ũ∗(A− Ũ)

)
implies ‖H̃ − I‖ ≤ ‖Ũ∗(A − Ũ)‖. Thus, using (3.1.ii), the smallest eigenvalue of H̃
satisfies

λp(H̃) = 1 + λp(H̃ − I)

≥ 1− ‖H̃ − I‖

≥ 1− ‖Ũ∗(A− Ũ)‖

≥ 1− ‖A− Ũ‖
> 0.

The following less sharp version of Lemma 9, applicable in the square case (m =
p), will be useful in the upcoming sections.

Lemma 10. Let A, U , and Ũ be as in Lemma 9. If A is square (i.e., m = p),
then

‖A‖−1‖skew(Ũ∗A)‖ ≤ ‖U − Ũ‖ ≤ 2‖A−1‖‖skew(Ũ∗A)‖.
Proof. Use (25) together with the fact that σ1(A) ≤ ‖A‖, σp(A)−1 ≤ ‖A−1‖, and

Ũ Ũ∗ = I when Ũ is square.
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3.2. Exponentiation on the unitary group. We now prove Theorem 1. Fix
an integer n ≥ 0 and consider a polynomial of the form

qn(z) =

n∑
k=0

akz
k,

with a0 = 1 and ak ∈ C, k = 1, 2, . . . , n. We aim to find coefficients ak making
P(qn(tΩ)) − etΩ small for any skew-Hermitian matrix Ω. Applying Lemma 10 with

A = qn(tΩ) and Ũ = etΩ gives

‖qn(tΩ)‖−1‖skew(e−tΩqn(tΩ))‖ ≤ ‖P(qn(tΩ))− etΩ‖(28)

≤ 2‖qn(tΩ)−1‖‖skew(e−tΩqn(tΩ))‖,

provided that t is sufficiently small (small enough that qn(tΩ) has full rank and
sym(e−tΩqn(tΩ)) is positive definite).

This inequality is of great utility, since ‖qn(tΩ)‖−1 and ‖qn(tΩ)−1‖ are each O(1)
as t→ 0, and

skew(e−tΩqn(tΩ)) =
1

2

(
e−tΩqn(tΩ)− qn(−tΩ)etΩ

)
can be expanded in powers of t. Namely,

e−tΩqn(tΩ)− qn(−tΩ)etΩ =

∞∑
j=0

(−1)j
(tΩ)j

j!

n∑
k=0

ak(tΩ)k −
n∑

k=0

(−1)kak(tΩ)k
∞∑
j=0

(tΩ)j

j!

=

∞∑
l=0

blt
lΩl,

where

bl =

min(l,n)∑
k=0

1

(l − k)!

(
(−1)l−k + (−1)k+1

)
ak

=

{∑min(l,n)
k=0

2(−1)k+1

(l−k)! ak, l odd,

0, l even.

The quantity e−tΩqn(tΩ) − qn(−tΩ)etΩ is thus of the highest order in t when the n
coefficients ak, k = 1, 2, . . . , n, are chosen to make bl = 0 for l = 1, 3, 5, . . . , 2n − 1.
This is achieved when

(29) ak =

(
n

k

)
(2n− k)!

(2n)!
2k, k = 1, 2, . . . , n,

as the following lemma shows.

Lemma 11. With a0 = 1 and ak given by (29) for 1 ≤ k ≤ n, we have

(30)

min(l,n)∑
k=0

2(−1)k+1

(l − k)!
ak = 0, l = 1, 3, 5, . . . , 2n− 1,

and

(31)

n∑
k=0

2(−1)k+1

(2n+ 1− k)!
ak = − 2

(2n)!

∫ 1

0

zn(z − 2)n dz.

In particular, b2n+1 6= 0.
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Proof. Substitution gives

min(l,n)∑
k=0

2(−1)k+1

(l − k)!
ak =

min(l,n)∑
k=0

(−2)k+1

(
n

k

)
(2n− k)!

(2n)!(l − k)!

=


−2(n!)2

l!(2n)!

min(l,n)∑
k=0

(−2)k
(
l

k

)(
2n− k
n

)
, l = 1, 3, 5, . . . , 2n− 1,

−2

(2n)!

n∑
k=0

(−2)k

2n+ 1− k

(
n

k

)
, l = 2n+ 1,

so it suffices to show that

(32)

min(l,n)∑
k=0

(−2)k
(
l

k

)(
2n− k
n

)
= 0, l = 1, 3, 5, . . . , 2n− 1

and

(33)

n∑
k=0

(−2)k

2n+ 1− k

(
n

k

)
=

∫ 1

0

zn(z − 2)n dz.

To prove (32), fix l ∈ {1, 3, 5, . . . , 2n− 1} and consider the polynomial

r(z) =

2n∑
k=0

rkz
k = (1 + z)2n−l(z − 1)l.

The coefficient of zn in this polynomial is precisely

(34) rn =

min(l,n)∑
k=0

(−2)k
(
l

k

)(
2n− k
n

)
.

Indeed,

r(z) = (1 + z)2n−l(z − 1)l

= (1 + z)2n−2l
(
−2(1 + z) + (1 + z)2

)l
= (1 + z)2n−2l

l∑
k=0

(
l

k

)
(−2)k(1 + z)k(1 + z)2(l−k)

=

l∑
k=0

(
l

k

)
(−2)k(1 + z)2n−k

=

l∑
k=0

(
l

k

)
(−2)k

2n−k∑
j=0

(
2n− k
j

)
zj ,

and taking j = n in the inner summation above gives (34). Now observe that r(z)
satisfies the symmetry

r(z) = (−1)lz2nr(z−1).

From this it follows that the coefficients rk satisfy rk = (−1)lr2n−k, k = 0, 1, . . . , 2n.
In particular, rn = (−1)lrn, so rn = 0 when l is odd. This proves (32).
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To prove (33), observe that∫ 1

0

zn(z − 2)n dz =

∫ 1

0

n∑
k=0

(
n

k

)
(−2)kz2n−k dz

=

n∑
k=0

(
n

k

)
(−2)k

2n+ 1− k
.

Note that this integral is nonzero, since zn(z − 2)n is strictly positive on (0, 1) when
n is even, and strictly negative on (0, 1) when n is odd.

This completes the proof of Theorem 1, since by the inequality (28), the unitary
factor in the polar decomposition of the polynomial

∑n
k=0 akt

kΩk with coefficients
given by (29) delivers an approximation of etΩ with error of order t2n+1.

Uniqueness of the solution (29) to (30) is a consequence of the following lemma.

Lemma 12. Fixing a0 = 1, the linear system (30) in the n unknowns a1, a2, . . . , an
is nonsingular.

Proof. Upon rearrangement, (30) reads

Mx = y,

where x, y ∈ Cn and M ∈ Cn×n have entries given by

xi = ai, i = 1, 2, . . . , n,

yi =
2

(2i− 1)!
, i = 1, 2, . . . , n,

Mij =

{
2(−1)j+1

(2i−1−j)! if j ≤ min(2i− 1, n),

0 otherwise.

An inductive argument shows that the determinant of M is equal to

detM =
(−1)b

n
2 c(−2)n∏n−1

k=1(2k − 1)!!
,

where l!! =
∏dl/2e−1

j=0 (l − 2j) denotes the double factorial. In particular, detM 6= 0,
showing that M is nonsingular.

3.3. Connections with Padé approximation. We now present an alternative
proof of Theorem 1 that relies not on Lemma 9, but rather on a connection between
P(Θn(tΩ)) and the diagonal Padé approximant of e2tΩ.

Our alternative proof will make use of the fact that if A ∈ Cm×p (m ≥ p) has full
rank, then

(35) P(A) = A(A∗A)−1/2,

where C−1/2 denotes inverse of the principal square root of a square matrix C with
no nonpositive real eigenvalues [24, Theorem 8.1].

It will also make use of the following facts: If f and g are two scalar-valued
functions defined on the spectrum of a diagonalizable matrix A, then f(A) and g(A)
are well defined [24, section 1.2], f(A) commutes with g(A) [24, Theorem 1.13(e)],
and the spectrum of f(A) is the image of the spectrum of A under f [24, Theorem
1.13(d)].
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Lemma 13. Let qn(z) be a polynomial of degree n ≥ 0 with qn(0) 6= 0, and let
Ω ∈ Cm×m be skew-Hermitian. For each t sufficiently small (small enough so that
qn(tΩ) is nonsingular), we have

P(qn(tΩ))2 = qn(tΩ)qn(−tΩ)−1.

Furthermore, P(qn(tΩ)) commutes with etΩ.

Proof. Since Ω is skew-Hermitian, qn(tΩ)∗ = qn(−tΩ). Hence, by (35),

P(qn(tΩ)) = qn(tΩ) [qn(−tΩ)qn(tΩ)]
−1/2

.

This shows that P(qn(tΩ)) = f(tΩ), where f(z) = qn(z)(qn(−z)qn(z))−1/2. If qn(tΩ)
is nonsingular, then f is defined on the spectrum of tΩ. Indeed, if λ is an eigenvalue
of tΩ, then qn(λ), being an eigenvalue of qn(tΩ), is nonzero, and qn(−λ), being an
eigenvalue of qn(−tΩ) = qn(tΩ)∗, is nonzero. Thus, P(qn(tΩ)) commutes with any
function of tΩ defined on the spectrum of tΩ, including etΩ. By similar reasoning,

[qn(−tΩ)qn(tΩ)]
−1/2

commutes with qn(tΩ), so

P(qn(tΩ))2 = qn(tΩ) [qn(−tΩ)qn(tΩ)]
−1/2

qn(tΩ) [qn(−tΩ)qn(tΩ)]
−1/2

= qn(tΩ)2 [qn(−tΩ)qn(tΩ)]
−1

= qn(tΩ)qn(−tΩ)−1.

The preceding lemma implies that if t is sufficiently small, then

(P(qn(tΩ)) + etΩ)(P(qn(tΩ))− etΩ) = qn(tΩ)qn(−tΩ)−1 − e2tΩ.

Fixing qn(0) = 1, the matrix P(qn(tΩ)) + etΩ approaches 2I as t→ 0. It follows that
there exist positive constants C1, C2, and t0 such that

C1‖qn(tΩ)qn(−tΩ)−1 − e2tΩ‖ ≤ ‖P(qn(tΩ))− etΩ‖ ≤ C2‖qn(tΩ)qn(−tΩ)−1 − e2tΩ‖

for every t ≤ t0. The polynomial qn for which qn(tΩ)qn(−tΩ)−1−e2tΩ is of the highest
order in t is the numerator in the degree-n diagonal Padé approximant of e2tΩ, which
is precisely Θn(tΩ) [27, p. 314].

3.4. Exponentiation on the Grassmannian. We now prove Theorem 3. The
proof will consist of two parts. First, we prove the identity (5) by exploiting the block
structure of the matrix Z = ( 0 −K∗

K 0
). Then, we insert the right-hand side of (5)

into (4) and expand the result to obtain Theorem 3.
Throughout this subsection, we make use of the identities

(36) Z2j =

(
(−K∗K)j 0

0 (−KK∗)j
)

and

(37) Z2j+1 =

(
0 −K∗(−KK∗)j

K(−K∗K)j 0

)
,

which hold for every nonnegative integer j.
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Lemma 14. Let r(z) = c0 + c1z + c2z
2 + · · · + cnz

n be a polynomial, let K ∈
C(m−p)×p, and let Z = ( 0 −K∗

K 0
). Then

r(Z)∗r(Z) =

(
B∗B 0

0 C∗C

)
,

where B = r(Z)( I
0 ) and C = r(Z)( 0

I ).

Proof. The diagonal blocks of r(Z)∗r(Z) are automatically given by B∗B and
C∗C, so it suffices to show that the off-diagonal blocks of r(Z)∗r(Z) vanish. To this
end, observe that the skew-Hermiticity of Z implies r(Z)∗r(Z) = r(−Z)r(Z). But
r(Z)∗r(Z) is Hermitian, so taking the Hermitian part of both sides gives r(Z)∗r(Z) =
sym (r(−Z)r(Z)). Since sym(Zj) = 0 for odd j, it follows that r(Z)∗r(Z) is a linear
combination of even powers of Z, all of which are block diagonal by (36).

Lemma 15. Let r(z) = c0 + c1z + c2z
2 + · · · + cnz

n be a polynomial, let K ∈
C(m−p)×p, and let Z = ( 0 −K∗

K 0
). If r(Z) has full rank, then

P(r(Z))

(
I
0

)
= P

(
r(Z)

(
I
0

))
.

Proof. In the notation of Lemma 14,

P(r(Z)) = r(Z) (r(Z)∗r(Z))
−1/2

= r(Z)

(
(B∗B)−1/2 0

0 (C∗C)−1/2

)
,

so

P(r(Z))

(
I
0

)
= r(Z)

(
(B∗B)−1/2

0

)
.

On the other hand,

P
(
r(Z)

(
I
0

))
= r(Z)

(
I
0

)((
I 0

)
r(Z)∗r(Z)

(
I
0

))−1/2

= r(Z)

(
I
0

)
(B∗B)−1/2

= r(Z)

(
(B∗B)−1/2

0

)
as well.

The preceding lemma establishes the identity (5). We now study the quantity
Θn(tZ)( I

0 ) in more detail.

Lemma 16. Let αn(z) and βn(z) be as in Theorem 3, let K ∈ C(m−p)×p, and let
Z = ( 0 −K∗

K 0
). Then

Θn(tZ)

(
I
0

)
=

(
αn(t2K∗K)
tKβn(t2K∗K)

)
.
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Proof. Using (36)–(37), we have

Θn(tZ)

(
I
0

)
=

bn/2c∑
j=0

a2j(tZ)2j +

b(n−1)/2c∑
j=0

a2j+1(tZ)2j+1

(I
0

)

=

bn/2c∑
j=0

a2j

(
(−t2K∗K)j

0

)
+

b(n−1)/2c∑
j=0

a2j+1

(
0

tK(−t2K∗K)j

)

=

(
αn(t2K∗K)

0

)
+

(
0

tKβn(t2K∗K)

)
=

(
αn(t2K∗K)
tKβn(t2K∗K)

)
.

We are now in a position to prove Theorem 3 by substituting the preceding results
into (4). Combining Lemmas 15 and 16, we have

(
Y Y⊥

)
P(Θn(tZ))

(
I
0

)
=
(
Y Y⊥

)
P
(

αn(t2K∗K)
tKβn(t2K∗K)

)
= P

((
Y Y⊥

)( αn(t2K∗K)
tKβn(t2K∗K)

))
= P

(
Y αn(t2K∗K) + tY⊥Kβn(t2K∗K)

)
= P

(
Y αn(t2H∗H) + tHβn(t2H∗H)

)
,

where the second line follows from (11), and the last line follows from the fact that
H = Y⊥K, and Y⊥ has orthonormal columns. This, together with (4), completes the
proof of Theorem 3.

3.5. Exponentiation on the Stiefel manifold. We now turn to the proof of
Theorem 5. Let q(x, y) and r(x, y) be polynomials in noncommutating variables x
and y, and define

A = Y q
(
t2H∗H, tY ∗H

)
+ tHr

(
t2H∗H, tY ∗H

)
.

For the moment we assume only that q(0, 0) = 1, but later we will make the additional
assumptions (2.3.i)–(2.3.iii) (the first of which implies q(0, 0) = 1). Using the identities
Y = ( Y Y⊥ )( I

0 ), H = Y Ω + Y⊥K = ( Y Y⊥ )( Ω
K ), H∗H = K∗K − Ω2, and Y ∗H = Ω,

we can write

A =
(
Y Y⊥

)((I
0

)
q
(
t2(K∗K − Ω2), tΩ

)
+

(
tΩ
tK

)
r
(
t2(K∗K − Ω2), tΩ

))
=
(
Y Y⊥

)(q + tΩr
tKr

)
,

where we have suppressed the arguments to q and r in the last line to reduce clutter.
Now let Z = ( Ω −K∗

K 0
) and define

Ũ =
(
Y Y⊥

)
etZ
(
I
0

)
= ExpSt

Y (tH).
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We aim to bound

‖P(A)− Ũ‖ = ‖P
(
Y q
(
t2H∗H, tY ∗H

)
+ tHr

(
t2H∗H, tY ∗H

))
− ExpSt

Y (tH)‖

using Lemma 9. Since A
∣∣
t=0

= ( Y Y⊥ ) is unitary, it follows that σi(A) = O(1)

as t → 0 for each i = 1, 2, . . . , p. Thus, it is enough to bound ‖skew(Ũ∗A)‖ and

‖(I − Ũ Ũ∗)A‖. We begin with a lemma.

Lemma 17. We have

‖skew(Ũ∗A)‖ =

∥∥∥∥skew

((
I 0

)
e−tZ

(
q + tΩr
tKr

))∥∥∥∥ ,
‖(I − Ũ Ũ∗)A‖ =

∥∥∥∥(0 0
0 I

)
e−tZ

(
q + tΩr
tKr

)∥∥∥∥ .
Proof. The first equality follows from a direct calculation, using the fact that Z

is skew-Hermitian and ( Y Y⊥ ) is unitary. For the second, observe that

(I − Ũ Ũ∗)A =

[
I −

(
Y Y⊥

)
etZ
(
I
0

)(
I 0

)
e−tZ

(
Y ∗

Y ∗⊥

)] (
Y Y⊥

)(q + tΩr
tKr

)
=
(
Y Y⊥

)
etZ
(

0 0
0 I

)
e−tZ

(
Y ∗

Y ∗⊥

)(
Y Y⊥

)(q + tΩr
tKr

)
=
(
Y Y⊥

)
etZ
(

0 0
0 I

)
e−tZ

(
q + tΩr
tKr

)
.

The result follows from the fact that the Frobenius norm is unitarily invariant, and
( Y Y⊥ ) and etZ are unitary.

The preceding lemma reveals that the order of accuracy of the approximation (14)
can be determined by studying the quantity

(38) e−tZ
(
q + tΩr
tKr

)
= e−tZ

(
q
(
t2(K∗K − Ω2), tΩ

)
+ tΩr

(
t2(K∗K − Ω2), tΩ

)
tKr

(
t2(K∗K − Ω2), tΩ

) )
.

Let us carry out this task in order to determine, as an illustration, the highest-order
approximation of the form (14) that can be achieved using polynomials q(x, y) and
r(x, y) satisfying (2.3.i)–(2.3.iii) with n = 2. The cases n = 1 and n = 3 are handled
similarly; we leave those details to the reader. Collectively, these arguments will prove
Theorem 5.

It is a simple exercise to show that when n = 2, the only polynomials q(x, y) and
r(x, y) satisfying (2.3.i)–(2.3.iii) are of the form

q(x, y) = 1− 1

3
x+ cy2,

r(x, y) = 1− cy,

where c is a constant. Substituting into (38), writing e−tZ =
∑∞

k=0
(−tZ)k

k! , and
multiplying, one finds after a tedious calculation that

e−tZ
(
q + tΩr
tKr

)
=

(
I + 1

6 t
2(K∗K − Ω2)−

(
c+ 1

3

)
t3K∗KΩ

−
(
c+ 1

2

)
t2KΩ

)
+O(t4).
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Hence, by Lemma 17 and the symmetry of K∗K and Ω2, we have

‖skew(Ũ∗A)‖ =

∣∣∣∣c+
1

3

∣∣∣∣ t3‖K∗KΩ‖+O(t4),

‖(I − Ũ Ũ∗)A‖ =

∣∣∣∣c+
1

2

∣∣∣∣ t2‖KΩ‖+O(t4).

The optimal choice of c is c = − 1
2 , giving

q(x, y) = 1− 1

3
x− 1

2
y2 = γ2(x, y),

r(x, y) = 1 +
1

2
y = δ2(x, y),

and

‖skew(Ũ∗A)‖ =
1

6
t3‖K∗KΩ‖+O(t4),

‖(I − Ũ Ũ∗)A‖ = O(t4).

It follows that

ExpSt
Y (tH) = P

(
Y γ2(t2H∗H, tY ∗H) + tHδ2(t2H∗H, tY ∗H)

)
+O(t3).

Clearly, no other choice of c will improve this approximant’s order of accuracy, prov-
ing (17) for n = 2.

If it happens that Y ∗H = Ω = 0, then (2) and (13) coincide, and (2.3.i)–(2.3.ii)
and Theorem 3 imply

P
(
Y γ2(t2H∗H, 0) + tHδ2(t2H∗H, 0)

)
= P

(
Y α2(t2H∗H) + tHβ2(t2H∗H)

)
= ExpGr

Y (tH) +O(t5)

= ExpSt
Y (tH) +O(t5).

Likewise, ifm = p, so thatH = Y Ω, Y Y ∗ = I, and ExpSt
Y (tH) = Y etΩ, then (2.3.iii), (11),

and Theorem 1 imply

P
(
Y γ2(t2H∗H, tY ∗H) + tHδ2(t2H∗H, tY ∗H))

= P
(
Y γ2(−t2Ω2, tΩ) + tY Ωδ2(−t2Ω2, tΩ)

)
= P (YΘ2(tΩ))

= Y P (Θ2(tΩ))

= Y etΩ +O(t5)

= ExpSt
Y (tH) +O(t5).

These observations prove (15)–(17) for the case n = 2. The proof of Theorem 5 is
completed by performing analogous arguments for the cases n = 1 and n = 3.

3.6. Geometric and arithmetic means of unitary matrices. We now prove
Proposition 6 and Theorem 7.
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Proof of Proposition 6. Without loss of generality, consider the case in which
U1 = I, so that

(1− s)U1 + sU2 = (1− s)I + setΩ.

By Lemma 10, it suffices to examine the norm of

skew
(
e−stΩ

(
(1− s)I + setΩ

))
.

The series expansion of e−stΩ
(
(1− s)I + setΩ

)
reads

e−stΩ
(
(1− s)I + setΩ

)
=

∞∑
k=0

(1− s)sk(−1)k + s(1− s)k

k!
(tΩ)k.

Since Ω is skew-Hermitian, skew(Ωk) = 0 for every even k, showing that

skew
(
e−stΩ

(
(1− s)I + setΩ

))
=

∞∑
k=1,
k odd

−(1− s)sk + s(1− s)k

k!
(tΩ)k.

When s = 1/2, each term in the series vanishes, giving

skew
(
e−stΩ

(
(1− s)I + setΩ

)) ∣∣
s=1/2

= 0.

When s 6= 1/2, the first nonvanishing term is of order t3, showing that

skew
(
e−stΩ

(
(1− s)I + setΩ

))
= O(t3).

The result follows by applying Lemma 10.

Proof of Theorem 7. Let

A(t) =

n∑
i=1

wiUi(t)

and
Ũ(t) = G(U1(t), . . . , Un(t);w).

Observe that if A(t) = U(t)H(t) is the polar decomposition of A(t), then, by (21),

U(t) = A(U1(t), . . . , Un(t);w).

Moreover, using the fact that
∑n

i=1 wi = 1 and U1(0) = U2(0) = · · · = Un(0), we have
A(0) = U1(0). The latter matrix is unitary, so ‖A(t)‖ = O(1).

Now let Ωi(t) = 1
t log(Ũ(t)∗Ui(t)) for each i, so that

Ũ(t)∗Ui(t) = etΩi(t).

Note that Ωi(t) = O(1) by (23). In addition, by (22),

n∑
i=1

wiΩi(t) = 0.
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Suppressing the dependencies on t for ease of reading, it follows that

Ũ∗A =

n∑
i=1

wiŨ
∗Ui

=

n∑
i=1

wie
tΩi

=

n∑
i=1

wiI +

n∑
i=1

witΩi +

n∑
i=1

wi

(
etΩi − I − tΩi

)
= I +

n∑
i=1

wi

(
etΩi − I − tΩi

)
.

The skew-Hermitian part of Ũ∗A is thus given by

skew(Ũ∗A) =

n∑
i=1

wi

(
etΩi − e−tΩi

2
− tΩi

)
.

Since
etΩi − e−tΩi

2
− tΩi = O(t3)

and ‖A‖ = O(1), it follows from Lemma 10 that

U − Ũ = O(t3),

i.e.,

A(U1(t), . . . , Un(t);w) = G(U1(t), . . . , Un(t);w) +O(t3).

4. Numerical examples. In this section, we discuss how the projected poly-
nomials proposed in Theorems 1, 3, and 5 can be efficiently computed, focusing on
iterative methods for computing the polar decomposition (and, in the case of the
Grassmannian, standard methods for the QR decomposition). We then present nu-
merical examples that illustrate their order of accuracy and their usefulness in a
practical application: numerical integration of differential equations on manifolds.

4.1. Iterative methods for computing the polar decomposition. The cost
of computing a projected polynomial is largely dominated by the cost of evaluating
the map P. This map can be computed efficiently via a number of different iterative
methods. The most widely known, applicable when m = p, is the Newton iteration

(39) Xk+1 =
1

2
(Xk +X−∗k ), X0 = A.

The iterates Xk so defined converge quadratically to the unitary factor P(A) = U in
the polar decomposition A = UH for any nonsingular square matrix A [24, Theorem
8.12]. A closely related iteration, applicable when m ≥ p, is given by

(40) Xk+1 = 2Xk(I +X∗kXk)−1, X0 = A.

These iterates converge quadratically to P(A) for any full-rank A ∈ Cm×p (m ≥ p) [24,
Corollary 8.14(b)]. Finally, the Newton–Schulz iteration

(41) Xk+1 =
1

2
Xk(3I −X∗kXk), X0 = A
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Fig. 1. Errors in approximating the Riemannian exponential map on the unitary group, Grass-
mannian, and Stiefel manifold using the projected polynomials of Theorems 1, 3, and 5. (a) Rel-
ative errors ‖P(Θn(tΩ)) − etΩ‖/‖etΩ‖ versus t0/t for n = 1, 2, 3, where t0 = 0.1 and Ω is a ran-
dom 1000× 1000 skew-Hermitian matrix. (b) Relative errors ‖P(Y αn(t2H∗H) + tHβn(t2H∗H))−
ExpGr

Y (tH)‖/‖ExpGr
Y (tH)‖ versus t0/t for n = 1, 2, 3, where t0 = 0.1, Y is a random 2000 × 400

matrix with orthonormal columns, and H is a random 2000 × 400 matrix satisfying Y ∗H = 0.
(c) Relative errors ‖P(Y γn(t2H∗H, tY ∗H)+tHδn(t2H∗H, tY ∗H))−ExpSt

Y (tH)‖/‖ExpSt
Y (tH)‖ ver-

sus t0/t for n = 1, 2, 3, where t0 = 0.1, Y is a random 2000×400 matrix with orthonormal columns,
and H is a random 2000× 400 matrix satisfying Y ∗H = −H∗Y .

provides an inverse-free iteration whose iterates Xk converge quadratically to P(A)
for any A ∈ Cm×p (m ≥ p) whose singular values all lie in the interval (0,

√
3) [24,

Problem 8.20]. For further information, including other iterations for computing
P(A), see [24, Chapter 8].

4.2. Numerical convergence. We tested the accuracy of the projected poly-
nomials detailed in Theorems 1, 3, and 5 by applying them to randomly generated
inputs. To calculate P, we used (39) for square matrices and (40) for rectangular
matrices. The results of the tests, detailed in Figure 1, corroborate the convergence
rates predicted by the theory.

4.3. Replacing the polar decomposition with the QR decomposition. In
the case of the Grassmannian, Corollary 4 allows the use of the QR decomposition in
the place of P. Since Q and P map any full-rank matrix to representatives of a single
element of the Grassmannian, the numerical experiments in Figure 1(b) corroborate
Theorem 3 and Corollary 4 simultaneously.

The costs (to leading order in m and p, assuming all matrices are real) of com-
puting the projected polynomials of Corollary 4 of degree n = 1, 2, 3, 4 are recorded
in Table 1. The flop counts in columns 2–5 of the first row are based on the costs
of computing the QR decomposition of an m× p matrix using Householder reflectors
(4mp2 − 4

3p
3 flops [18, p. 232]), and, when necessary, calculating H∗H (mp2 flops,

exploiting symmetry), squaring H∗H (p3 flops, exploiting symmetry), and performing
one or more multiplications of an m×p matrix times a p×p matrix (2mp2 flops each).
Table 1 also reports the cost of computing the exponential map on the Grassman-
nian exactly using (3). This flop count assumes a preliminary QR factorization of
H using Householder reflectors is performed. That is, Q ∈ Rm×p and R ∈ Rp×p are
computed such that H = QR (4mp2 − 4

3p
3 flops), the SVD R = URΣV ∗ is computed

(22p3 flops using the Golub–Reinsch algorithm [24, Appendix C]), the p × p matrix
V cos(Σ)V ∗ is formed (p3 flops, exploiting symmetry), the p× p matrix UR sin(Σ)V ∗

is formed (2p3 flops), Y is multiplied by V cos(Σ)V ∗ (2mp2 flops), and Q is multiplied
by UR sin(Σ)V ∗ (2mp2 flops). Row 1 reveals that the projected polynomials of degree
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Table 1
Floating point operations required to compute ExpGr

Y (tH) exactly using (3) (column 1) and
approximately using the projected polynomials of Corollary 4 of degree n = 1, 2, 3, 4 (columns 2–5).
The first row assumes the QR decomposition is computed using Householder reflectors, while the
second row assumes it is computed using the modified Gram–Schmidt algorithm.

Exact n = 1 n = 2 n = 3 n = 4

House. 8mp2 + 71
3
p3 4mp2 − 4

3
p3 7mp2 − 4

3
p3 9mp2 − 4

3
p3 9mp2 − 1

3
p3

MGS - 2mp2 5mp2 7mp2 7mp2 + p3

1 and 2 are cheaper to evaluate than the exact exponential for all m and p. The
projected polynomials of degree 3 and 4 are cheaper whenever m < 25p and m < 24p,
respectively.

Note that since Y αn(t2H∗H) + tHβn(t2H∗H) → Y as t → 0, the columns
of Y αn(t2H∗H) + tHβn(t2H∗H) are nearly orthonormal for small t. Hence, for
sufficiently small t, there is little danger in computing the QR decomposition of
Y αn(t2H∗H) + tHβn(t2H∗H) using less stable, more efficient algorithms like the
modified Gram–Schmidt algorithm (2mp2 flops [18, p. 232]). The flop counts that
result from this modification are recorded in the second row of Table 1. (No entry is
recorded in the first column of the second row, since the application of the modified
Gram–Schmidt algorithm to the matrix H is inadvisable in the absence of a priori
knowledge about H [18, p. 232].) With this strategy, the projected polynomials of
degree 1, 2, 3, and 4 are cheaper to evaluate than the exact exponential for all m and
p.

4.4. Numerical integration on the Grassmannian. To illustrate the utility
of projected polynomials, consider the following differential equation on Gr(p,m)
discussed in [21, section IV.9.2]:

Ẏ = (I − Y Y ∗)AY.

Here, A ∈ Cm×m is a Hermitian positive-definite matrix which we will take to be
tridiagonal with Aii = 2, Ai,i−1 = −1, and Ai,i+1 = −1 for each i. If Y (0) has
orthonormal columns, then Y (t) has orthonormal columns for all t and satisfies

Ẏ = F (Y )Y, F (Y ) = −2 skew(Y Y ∗A).

This can be integrated numerically using, for instance, the following fourth-order
commutator-free method ([8, equation (7)], [36, section 3.3.1]):

(42)

Y0 = Yh(tk),

H1 = 1
2F (Y0)Y0, Y1 = ExpGr

Y0
(hH1),

H2 = 1
2F (Y1)Y0, Y2 = ExpGr

Y0
(hH2),

H3 = (F (Y2)− 1
2F (Y0))Y1, Y3 = ExpGr

Y1
(hH3),

H4 = ( 1
4F (Y0) + 1

6F (Y1) + 1
6F (Y2)− 1

12F (Y3))Y0, Y4 = ExpGr
Y0

(hH4),

H5 = (− 1
12F (Y0) + 1

6F (Y1) + 1
6F (Y2) + 1

4F (Y3))Y4, Y5 = ExpGr
Y4

(hH5),

Yh(tk+1) = Y5.

Here, h is a time step, tk = kh, and Yh(tk) ≈ Y (tk) is the discrete solution. Table 2
reports the errors distGr(Yh(T ), Y (T )) at time T = 1 with Y (0) = (I, 0)∗, m =
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Table 2
Errors distGr(Yh(T ), Y (T )) committed by the numerical integrator (42) at time T = 1 with

Y (0) = (I, 0)∗, m = 300, p = 50, and h = 2−`/50, ` = 0, 1, 2, 3, using three strategies: calculating
each exponential ExpGr

Yi
(hHj) exactly using (3), approximating it with (43), and approximating it

with (44).

Exponentiation w/ (3) Exponentiation w/ (43) Exponentiation w/ (44)

` Error Order Error Order Error Order

0 1.457 · 10−7 3.344 · 10−5 1.459 · 10−7

1 9.336 · 10−9 3.965 8.340 · 10−6 2.003 9.346 · 10−9 3.965
2 5.907 · 10−10 3.982 2.084 · 10−6 2.001 5.913 · 10−10 3.982
3 3.714 · 10−11 3.991 5.209 · 10−7 2.000 3.719 · 10−11 3.991

300, p = 50, and h = 2−`/50, ` = 0, 1, 2, 3, using three strategies: calculating each
exponential ExpGr

Yi
(hHj) exactly using (3), approximating it with

(43) ExpGr
Yi

(hHj) ≈ Q (Yi + hHj) ,

and approximating it with

(44) ExpGr
Yi

(hHj) ≈ Q
(
Yi
(
I − 1

3h
2H∗jHj

)
+ hHj

)
.

The “exact” solution Y (T ) was obtained using the MATLAB function ode45 with
tight tolerances, and distGr was evaluated by solving the appropriate least squares
problem in (12). In all of the experiments, Yh(T ) had orthonormal columns to machine
precision. As shown in Table 2, fourth-order accuracy was observed when using (3)
and (44), but not when using (43). This is because the use of (43) introduces errors
of order h3 at each evaluation of ExpYi

(hHj), whereas (44) introduces errors of order
h5 at each evaluation of ExpYi

(hHj) (by Corollary 4).

5. Conclusion. This paper has presented a family of high-order retractions on
the unitary group, the Grassmannian manifold, and the Stiefel manifold. All of these
retractions were constructed by projecting certain matrix polynomials onto the set of
matrices with orthonormal columns using the polar decomposition, or, in the case of
the Grassmannian, using either the polar decomposition or the QR decomposition.
There are several interesting applications and extensions of this strategy that seem
worthwhile to pursue. On quadratic Lie groups other than the unitary group, one
might consider adopting the same strategy, replacing the polar decomposition with
the generalized polar decomposition [38, 26]. It might also be worthwhile to consider
projecting rational functions, rather than polynomials, to achieve higher accuracy for
comparable cost. It may also be possible to leverage these retractions, together with
methods for computing their derivatives [14], to construct high-order approximations
of parallel transport operators on matrix manifolds; see [2, section 8.1.2].

It is worth noting that many of the constructions in this paper might generalize
nicely to infinite dimensions. For instance, replacing the matrices Y and H in Theo-
rem 3 with quasi-matrices in the sense of [43], one obtains a method for approximating
geodesics between finite-dimensional function spaces, with H∗H playing the role of a
Gramian, and with P interpreted as the map sending an ordered basis of functions to
the nearest ordered, orthonormal basis of functions.

Acknowledgments. We wish to thank the developers of the noncommutative
algebra package NCAlgebra [23], which we used to carry out some of the calculations



HIGH-ORDER RETRACTIONS ON MATRIX MANIFOLDS 827

that appeared or were mentioned in section 3.5. We also thank the reviewers for
giving us valuable suggestions and encouraging us to add sections 4.3 and 4.4.

REFERENCES

[1] P.-A. Absil, R. Mahony, and R. Sepulchre, Riemannian geometry of Grassmann manifolds
with a view on algorithmic computation, Acta Appl. Math., 80 (2004), pp. 199–220.

[2] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds,
Princeton University Press, Princeton, NJ, 2009.

[3] P.-A. Absil and J. Malick, Projection-like retractions on matrix manifolds, SIAM J. Optim.,
22 (2012), pp. 135–158.

[4] R. L. Adler, J.-P. Dedieu, J. Y. Margulies, M. Martens, and M. Shub, Newton’s method
on Riemannian manifolds and a geometric model for the human spine, IMA J. Numer.
Anal., 22 (2002), pp. 359–390.

[5] N. Bou-Rabee and J. E. Marsden, Hamilton–Pontryagin integrators on Lie groups part I: In-
troduction and structure-preserving properties, Found. Comput. Math., 9 (2009), pp. 197–
219.

[6] E. Celledoni and A. Iserles, Approximating the exponential from a Lie algebra to a Lie
group, Mathematics of Computation, 69 (2000), pp. 1457–1480.

[7] E. Celledoni and A. Iserles, Methods for the approximation of the matrix exponential in a
Lie-algebraic setting, IMA J. Numer. Anal., 21 (2001), pp. 463–488.

[8] E. Celledoni, A. Marthinsen, and B. Owren, Commutator-free Lie group methods, Future
Generation Computer Systems, 19 (2003), pp. 341–352.

[9] T. Duchamp, G. Xie, and T. Yu, Single basepoint subdivision schemes for manifold-
valued data: Time-symmetry without space-symmetry, Found. Comput. Math., 13 (2013),
pp. 693–728.

[10] A. Edelman, T. A. Arias, and S. T. Smith, The geometry of algorithms with orthogonality
constraints, SIAM J. Matrix Anal. Appl., 20 (1998), pp. 303–353.

[11] K. Fan and A. J. Hoffman, Some metric inequalities in the space of matrices, Proc. Amer.
Math. Soc., 6 (1955), pp. 111–116.

[12] S. Fiori, T. Kaneko, and T. Tanaka, Tangent-bundle maps on the Grassmann manifold:
Application to empirical arithmetic averaging, IEEE Trans. Signal Process., 63 (2015),
pp. 155–168.

[13] K. A. Gallivan, A. Srivastava, X. Liu, and P. Van Dooren, Efficient algorithms for infer-
ences on Grassmann manifolds, in 2003 IEEE Workshop on Statistical Signal Processing,
IEEE, Piscataway, NJ, 2003, pp. 315–318.

[14] E. S. Gawlik and M. Leok, Iterative computation of the Fréchet derivative of the polar
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