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SUPERCLOSENESS OF ORTHOGONAL PROJECTIONS ONTO NEARBY

FINITE ELEMENT SPACES

Evan S. Gawlik1 and Adrian J. Lew1, 2

Abstract. We derive upper bounds on the difference between the orthogonal projections of a
smooth function u onto two finite element spaces that are nearby, in the sense that the support
of every shape function belonging to one but not both of the spaces is contained in a common
region whose measure tends to zero under mesh refinement. The bounds apply, in particular, to the
setting in which the two finite element spaces consist of continuous functions that are elementwise
polynomials over shape-regular, quasi-uniform meshes that coincide except on a region of measure
O(hγ), where γ is a nonnegative scalar and h is the mesh spacing. The projector may be, for
example, the orthogonal projector with respect to the L2- or H1-inner product. In these and other
circumstances, the bounds are superconvergent under a few mild regularity assumptions. That is,
under mesh refinement, the two projections differ in norm by an amount that decays to zero at
a faster rate than the amounts by which each projection differs from u. We present numerical
examples to illustrate these superconvergent estimates and verify the necessity of the regularity
assumptions on u.
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1. Introduction

One of the hallmarks of the finite element method is its geometric flexibility: it permits the construction
of numerical approximations to solutions of partial differential equations using meshes that are designed
according to the practitioner’s discretion. When two meshes are used to solve the same problem, the norm
of the difference between the corresponding numerical solutions is, of course, no larger than the sum of the
norms of the differences between each numerical solution and the exact solution. This paper addresses the
question of whether or not a sharper estimate holds in the event that the two meshes coincide over a large
fraction of the domain.

Beyond its inherent mathematical appeal, the question raised above has important consequences in the
study of numerical solutions to time-dependent PDEs on meshes that change abruptly in time. Notable
examples are remeshing during finite element simulations of problems with moving boundaries, and adaptive
refinement during finite element simulations of problems on fixed (or moving) domains. The relevance of
the aforementioned question in this setting is elucidated in [1], where it is shown that if a parabolic PDE is
discretized in space with finite elements and the solution is transferred finitely many times between meshes
using a suitable projector, then it is possible to derive an upper bound on the error in the numerical solution
at a fixed time T > 0 that involves the norms of the jumps in rhu(t) across the remeshing times, where
rhu(t) denotes an elliptic projection of the exact solution u(t) onto the current finite element space. These
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jumps are precisely the differences between the finite element solutions of an elliptic PDE on two different
meshes.

Intuition. It is perhaps not surprising that two finite element solutions associated with nearly identical
meshes should differ by an amount that is small relative to their individual differences with the exact solution,
under suitable conditions on the finite element spaces and the PDE under consideration. To develop some
intuition, it is instructive to first consider the similarity between the interpolants of a smooth function u
onto two finite element spaces associated with nearby meshes.

To this end, consider two families of shape-regular, quasi-uniform meshes {Th}h≤h0
and {T +

h }h≤h0
of an

open, bounded, Lipschitz domain Ω ⊂ Rd, d ≥ 1. Assume that the two families are parametrized by a scalar
h that equals the maximum diameter of an element among all elements of Th and T +

h for every h ≤ h0, where

h0 is a positive scalar. Let Vh and V+
h be finite element spaces consisting of, for definiteness, continuous

functions that are elementwise polynomials of degree at most r−1 over Th and T +
h , respectively, where r > 1

is an integer.
For s ≥ 0 and p ∈ [1,∞], we denote by W s,p(Ω) the Sobolev space of differentiability s and integrability p,

equipped with the norm ‖ · ‖s,p and semi-norm | · |s,p. We sometimes write ‖ · ‖s,p,Ω and | · |s,p,Ω to emphasize
the domain under consideration. We denote Hs(Ω) = W s,2(Ω) for every s ≥ 1 and Lp(Ω) = W 0,p(Ω) for
every p ∈ [1,∞].

For finite element spaces of the aforementioned type, the nodal interpolants ihu ∈ Vh and i+h u ∈ V
+
h of a

function u ∈W r,η(Ω) ∩ C0(Ω) onto Vh and V+
h , respectively, satisfy the standard interpolation estimate

‖i+h u− u‖s,η + ‖ihu− u‖s,η ≤ Chr−s|u|r,η (1)

for any s ∈ {0, 1}, any η ∈ [2,∞], and every h ≤ h0 [2]. Here and throughout this paper, the letter C denotes
a constant that is not necessarily the same at each occurrence and is independent of h.

Using the triangle inequality and (1) with η = 2 gives an immediate upper bound on the L2- and H1-norms
of the difference between i+h u and ihu. Namely,

‖i+h u− ihu‖s,2 ≤ Ch
r−s|u|r,2 (2)

for any s ∈ {0, 1} and every h ≤ h0.
Suppose, however, that Th and T +

h are nearby in the following sense: the two meshes coincide except on

a region of measure O(hγ) for some scalar γ ≥ 0. In this scenario, ihu and i+h u agree everywhere except in
the region over which the meshes differ. Hence, by an application of Holder’s inequality (cf. Lemma 3.1),
the triangle inequality, and (1),

‖i+h u− ihu‖s,2 ≤ Ch
γ(1/2−1/η)‖i+h u− ihu‖s,η

≤ Chγ(1/2−1/η)
(
‖i+h u− u‖s,η + ‖u− ihu‖s,η

)
≤ Chr−s+γ(1/2−1/η)|u|r,η (3)

for any s ∈ {0, 1}, any η ∈ [2,∞], and every h ≤ h0.
A comparison of (3) with the naive estimate (2) reveals that ihu and i+h u are superclose in the L2- and H1-

norms when the corresponding meshes are nearby. The primary goal of this paper is to prove an analogous
superconvergent estimate when ihu and i+h u are replaced by the orthogonal projections rhu and r+

h u of u

onto Vh and V+
h , respectively, with respect to a coercive, continuous bilinear form a : V × V → R, where

V ⊆ Hs(Ω) and s is a nonnegative integer. As special cases, our results apply to L2-projections (the case
s = 0) and elliptic projections (the case s = 1) onto piecewise polynomial finite element spaces. Another
applicable case of interest is that in which the bilinear form a is of the form

a(u,w) =

∫
Ω

∇u · ∇w dx−
∫

Ω

(v · ∇u)w dx+ κ

∫
Ω

uw dx

with a constant κ > 0 and a vector field v : Ω → Rd. This bilinear form appears in the analysis of finite
element methods for the diffusion equation on a moving domain [1], with v playing the role of the velocity
of a moving mesh and κ an auxiliary constant introduced to ensure coercivity.
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It is not obvious that superconvergent estimates of the form (3) should hold in these settings, since the
projections of u onto Vh and V+

h need not agree on the region over which the meshes coincide. Nevertheless,
Corollaries 2.3 and 2.5 provide such estimates under suitable assumptions on the finite element spaces Vh and
V+
h and the bilinear form a. The proof uses the observation that, loosely speaking, a(r+

h u− rhu, r
+
h u− rhu)

is small if r+
h u− rhu is well-approximated by an element of V+

h ∩ Vh, since

a(r+
h u− rhu,wh) = a(r+

h u− u,wh) + a(u− rhu,wh) = 0

for any wh ∈ V+
h ∩ Vh. In particular, if ‖r+

h u− rhu− wh‖s,2 decays to zero more rapidly as h→ 0 than do

‖r+
h u− u‖s,2 and ‖rhu− u‖s,2, then a superconvergent estimate for ‖r+

h u− rhu‖s,2 follows from the relation

a(r+
h u− rhu, r

+
h u− rhu) = a(r+

h u− rhu, r
+
h u− rhu− wh)

together with the coercivity and continuity of a. We in fact prove a more general result that applies to the
case in which the projectors rh and r+

h are associated not only with different subspaces Vh and V+
h , but also

with different bilinear forms ah and a+
h that may depend on h.

Organization. This paper is organized as follows. In Section 2, we summarize our main results. We
begin with an abstract estimate (Theorem 2.1) for the Hs-norm of r+

h u− rhu. We then apply Theorem 2.1
to the setting of finite element spaces with nontrivial intersection in Theorem 2.2. Under some additional
assumptions on the finite element spaces, the bilinear forms, and the regularity of u, we deduce in Corol-
lary 2.3 a superconvergent estimate for ‖r+

h u − rhu‖s,2 that parallels (3). Next, we specialize to the case

in which s = 1 and ah and a+
h are bilinear forms associated with elliptic operators that possess smoothing

properties. We use a duality argument to prove a superconvergent estimate (Theorem 2.4 and Corollary 2.5)
for the L2-norm of r+

h u−rhu that is up to one order higher than the corresponding estimate in the H1-norm
given by Corollary 2.3.

In Section 3, we present proofs of the preceding results and provide a few remarks along the way.
In Section 4, we demonstrate the necessity of the regularity assumptions on u that are imposed in the

theorems by exhibiting an example of a pair of projectors rh and r+
h and a function u whose insufficient

regularity leads to a reduction in the rates of convergence of ‖r+
h u− rhu‖1,2 and ‖r+

h u− rhu‖0,2.
Finally, we give numerical examples to illustrate our positive theoretical results in Section 5.
Related work. The results presented in this paper bear resemblance to the well-studied phenomenon of

superconvergence in finite element theory, where the functions under comparison are typically the solution to
a PDE and the numerical solution to a finite element discretization of the same problem. The phenomenon
often manifests itself as an exceptional rate of convergence of the finite element solution to the exact solution
at isolated points in the domain, as in [3–8]. Related results involve exceptional rates of convergence of
the finite element solution to a discrete representative of the exact solution, such as its interpolant [9–15].
Finally, post-processing techniques can lead to modifications of a finite element solution that converge more
rapidly to the exact solution than the unprocessed finite element solution [4, 13, 16–20]. To our knowledge,
however, little attention has been paid to the supercloseness of finite element solutions associated with
differing meshes.

2. Statement of Results

Notation. Fixing a nonnegative integer s and an open, bounded, Lipschitz domain Ω ⊂ Rd, let V be a
closed subspace of Hs(Ω). Let ah : V × V → R and a+

h : V × V → R be bilinear forms that may depend on

a parameter h ≤ h0, where h0 is a positive scalar. We assume that ah and a+
h are continuous and coercive

uniformly in h. In other words, for every h ≤ h0 and every u,w ∈ V, the inequalities

ah(u, u) ≥ α‖u‖2s,2,
ah(u,w) ≤M‖u‖s,2‖w‖s,2

hold with constants α and M independent of h, and similarly for a+
h (with the same constants α and M).
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Let {Vh}0<h≤h0 and {V+
h }0<h≤h0 be two families of finite element subspaces of V. It is a consequence of

the Lax-Milgram theorem that the maps rh : V → Vh and r+
h : V → V+

h defined by the relations

ah(rhu− u,wh) = 0 ∀wh ∈ Vh

and
a+
h (r+

h u− u,w
+
h ) = 0 ∀w+

h ∈ V
+
h ,

respectively, are well-defined linear projectors.
For intuition, it is useful to think of Vh and V+

h as finite element spaces associated with a pair of meshes

Th and T +
h of Ω, with the parameter h denoting the maximum diameter of an element among all elements of

Th and T +
h . This level of concreteness, however, is not needed for a presentation of the results that follow.

Abstract estimate. Our first result is an abstract estimate for the Hs-norm of r+
h u− rhu. It provides

an alternative to the obvious upper bound

‖r+
h u− rhu‖s,2 ≤ ‖r

+
h u− u‖s,2 + ‖u− rhu‖s,2

that one obtains from the triangle inequality. Its utility will be made apparent shortly.

Theorem 2.1. Let a+
h and ah be uniformly coercive and continuous bilinear forms on V×V. Then for every

u ∈ V and every h ≤ h0,

‖r+
h u− rhu‖s,2 ≤ inf

eh∈Vh
e+h∈V

+
h

[M
α

∥∥r+
h u− rhu− (eh + e+

h )
∥∥
s,2

+
1√
α

( ∣∣a+
h (r+

h u− u, eh)
∣∣1/2 +

∣∣ah(rhu− u, e+
h )
∣∣1/2

+
∣∣a+
h (rhu− u, eh + e+

h )− ah(rhu− u, eh + e+
h )
∣∣1/2 )].

(4)

The preceding theorem provides a heuristic for estimating the Hs-norm of r+
h u− rhu. Namely, one seeks

functions eh ∈ Vh and e+
h ∈ V

+
h that are nearly (right-) orthogonal to r+

h u− u and rhu− u with respect to

a+
h (·, ·) and ah(·, ·), respectively, but whose sum is close to r+

h u − rhu. In general, near orthogonality and

closeness to r+
h u − rhu are competing interests. Exact orthogonality holds for eh, e

+
h ∈ V

+
h ∩ Vh, whereas

eh + e+
h can be made equal to r+

h u− rhu by choosing, for instance, e+
h = r+

h u and eh = −rhu. If a suitable

choice of eh and e+
h leads to adequate satisfaction of both interests simultaneously, and if a+

h is close to ah
(in the sense that the last term in (4) is small), then the prospects of producing a superconvergent bound
on ‖r+

h u− rhu‖s,2 are favorable.
Finite element spaces with nontrivial intersection. We now apply Theorem 2.1 to the case in

which the finite element spaces V+
h and Vh intersect nontrivially. The setting that we have in mind is that

in which Vh and V+
h consist of continuous functions that are elementwise polynomials over shape-regular,

quasi-uniform meshes of Ω that coincide except on a region of measure O(hγ) for some constant γ ≥ 0. To
allow for more generality, we state the assumptions on V+

h and Vh abstractly, and we refer the reader to
Appendix A for a proof of their satisfaction in the aforementioned setting.

In particular, we assume the existence of a constant η ∈ [2,∞] such that the following properties hold:

(2.2.i) For every h ≤ h0, Vh,V+
h ⊂W s,η(Ω) ∩ V.

(2.2.ii) There exists C > 0 independent of h such that the inverse estimate

‖wh‖m,η ≤ Ch−m‖wh‖0,η

holds for every m = 0, 1, . . . , s, every wh ∈ V+
h ∩ Vh, and every h ≤ h0.

(2.2.iii) There exist constants γ ≥ 0 and C > 0 independent of h and a map πh : V+
h + Vh → V+

h ∩ Vh such
that

‖πhwh‖0,η ≤ C‖wh‖0,η
and

|supp(πhwh − wh)| ≤ Chγ
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for every wh ∈ V+
h + Vh and every h ≤ h0.

In the context of finite element spaces consisting of continuous functions that are elementwise polynomials
over shape-regular, quasi-uniform meshes of Ω, a befitting choice for πh in (2.2.iii) is the nodal interpolant
onto V+

h ∩ Vh; see Appendix A. In that setting, the constant γ appearing in (2.2.iii) may take on any real
value between 0 and d, unless the two meshes coincide entirely (in which case γ may be chosen arbitrarily
large). To realize a pair of meshes Th and T +

h fulfilling (2.2.iii) with γ ∈ [0, d], one may, for instance,

consider a shape-regular, quasi-uniform mesh Th of Ω and perturb the positions of O(h−d+γ) of its nodes by
a sufficiently small amount to define T +

h .
The following theorem results from applying Theorem 2.1 to the setting delineated in conditions (2.2.i-

2.2.iii), with the choice eh = πh(r+
h u− rhu) and e+

h = 0 in (4).

Theorem 2.2. Suppose the conditions of Theorem 2.1 hold and the finite element spaces V+
h and Vh satisfy

conditions (2.2.i-2.2.iii). Suppose further that there exist constants C1 > 0, δ ≥ 0, 1 ≤ q ≤ η, and
µ, ν ∈ {0, 1, . . . , s} independent of h such that

|a+
h (v, w)− ah(v, w)| ≤ C1h

δ‖v‖µ,η‖w‖ν,q (5)

for every v, w ∈W s,η(Ω)∩ V and every h ≤ h0. Then there exists C > 0 independent of h such that for any
h ≤ h0 and any u ∈W s,η(Ω) ∩ V,

‖r+
h u− rhu‖s,2 ≤ Ch

σ−s
[
hs‖r+

h u− u‖s,η + hs‖rhu− u‖s,η + ‖r+
h u− u‖0,η + ‖rhu− u‖0,η

+ (hµ‖rhu− u‖µ,η)
1/2 (‖r+

h u− u‖0,η + ‖rhu− u‖0,η
)1/2 ]

with

σ = min

{
γ

(
1

2
− 1

η

)
,
δ + 2s− µ− ν

2

}
. (6)

The meaning of Theorem 2.2 is clearest when the quantities hm‖rhu − u‖m,p and hm‖r+
h u − u‖m,p,

m = 0, 1, . . . , s, p = 2, η, all decay at the same rate with respect to h as h → 0. In such a setting, the
theorem states that ‖r+

h u− rhu‖s,2 tends to zero faster than ‖rhu− u‖s,2 + ‖r+
h u− u‖s,2 by a factor O(hσ),

where the order of superconvergence σ depends primarily upon two features: (1) the extent to which the
finite element spaces Vh and V+

h coincide, as measured by the constant γ in (2.2.iii), and (2) the difference

between the bilinear forms ah and a+
h , as measured by the constants δ, µ, and ν in (5). The regularity of u

also plays a role in the estimate via the constant η, which is in the best case equal to ∞.
To be more concrete, let us point out that in many contexts (which we detail in Appendix B), the quantities

rhu− u and r+
h u− u satisfy estimates of the form

‖rhu− u‖0,η + ‖r+
h u− u‖0,η ≤ C`(h)hr|u|r,η, (7)

‖rhu− u‖m,η + ‖r+
h u− u‖m,η ≤ Ch

r−m|u|r,η, m = 1, 2, . . . , s, (8)

for every u ∈W r,η(Ω)∩V and every h ≤ h0, where r > s is an integer and `(h) is either identically unity or
equal to log(h−1). Note that (8) is vacuous when s = 0. When such estimates hold, the following corollary
to Theorem 2.2 is immediate.

Corollary 2.3. Suppose that the conditions of Theorem 2.2 are satisfied and that both rh and r+
h satisfy

estimates of the form (7-8) for an integer r > s. Then there exists C > 0 independent of h such that

‖r+
h u− rhu‖s,2 ≤ C`(h)hr−s+σ|u|r,η

for every u ∈W r,η(Ω) ∩ V and every h ≤ h0, with σ given by (6).
In particular, if ah = a+

h , then

‖r+
h u− rhu‖s,2 ≤ C`(h)hr−s+γ(1/2−1/η)|u|r,η

for every u ∈W r,η(Ω) ∩ V and every h ≤ h0.
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Note that to deduce the preceding corollary, the case ah = a+
h is handled by taking δ =∞ and choosing

any admissible µ, ν and q in (5).
L2 estimates for elliptic projections. Finally, we restrict our attention to the case s = 1 with

V = H1
0 (Ω), so that ah and a+

h are coercive, continuous bilinear forms on H1
0 (Ω) ×H1

0 (Ω), uniformly in h.
Here, H1

0 (Ω) denotes the space of functions in H1(Ω) with vanishing trace on ∂Ω. Our aim is to provide an
estimate for the L2-norm of r+

h u− rhu that parallels the estimate in the H1-norm provided by Corollary 2.3
but is of a higher order by up to one power of h.

In addition to the assumptions stated in Theorem 2.2, we make the following assumptions on the bilinear
forms ah and a+

h .

(2.4.i) The bilinear forms ah and a+
h are associated with elliptic operators whose adjoints possess smoothing

properties (cf. [2, Definition 3.14]), uniformly in h. Precisely, let f ∈ L2(Ω) and consider the following
problem: Find w ∈ V such that

ah(y, w) = (f, y) ∀y ∈ V, (9)

where (f, y) :=
∫

Ω
fy. Then ah is said to have smoothing properties (uniformly in h) if there exists

a constant C > 0 independent of h such that for every f ∈ L2(Ω) and every h ≤ h0, there exists a
unique solution w to (9) satisfying the elliptic regularity estimate

‖w‖2,2 ≤ C‖f‖0,2.

(2.4.ii) There exists C > 0 such that for any h ≤ h0, any subdomain R ⊆ Ω, and any v, w ∈ V with
supp(w) ⊆ R,

|ah(v, w)| ≤ C‖v‖1,2,R‖w‖1,2,R,
where the constant C is independent of h and R, and similarly for a+

h .
(2.4.iii) The constant q appearing in the bound (5) satisfies the additional restriction{

q <∞ if d = 4− 2ν,

q ≤ 2d
d−4+2ν if d > 4− 2ν.

Condition (2.4.iii) guarantees the validity of the Sobolev emdedding H2(Ω) ⊂ W ν,q(Ω). Note that it places
no additional restriction on q if d < 4− 2ν.

Furthermore, we assume the existence of interpolation operators ih : V̄ → Vh and i+h : V̄ → V+
h defined on

a space H2(Ω) ∩ V ⊆ V̄ ⊆ V that satisfy the following properties.

(2.4.iv) There exists C > 0 independent of h such that

‖ihw‖ν,q + ‖i+hw‖ν,q ≤ C‖w‖ν,q

for every w ∈ H2(Ω) ∩ V and every h ≤ h0.
(2.4.v) There exists C > 0 independent of h such that

‖ihw − w‖1,2 + ‖i+hw − w‖1,2 ≤ Ch|w|2,2

for every w ∈ H2(Ω) ∩ V and every h ≤ h0.
(2.4.vi) For every w ∈ H2(Ω) ∩ V and every h ≤ h0,

supp(i+hw − ihw) ⊆ Rh,

where

Rh :=
⋃

wh∈Vh+V+
h

supp(wh − πhwh)

and πh is the map introduced in (2.2.iii).

Our estimate for the L2-norm of r+
h u− rhu, whose proof employs a duality argument, is as follows.
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Theorem 2.4. Suppose the conditions of Theorem 2.2 hold with s = 1. Assume further that conditions (2.4.i-
2.4.vi) hold. Then there exists C > 0 independent of h such that for every u ∈W 1,η(Ω)∩V and every h ≤ h0,

‖r+
h u− rhu‖0,2 ≤ Ch

σ′
[
h‖r+

h u− u‖1,η + h‖rhu− u‖1,η + ‖r+
h u− u‖0,η + ‖rhu− u‖0,η

+ (hµ‖rhu− u‖µ,η)
1/2 (‖r+

h u− u‖0,η + ‖rhu− u‖0,η
)1/2

+ hµ‖rhu− u‖µ,η
]
,

with

σ′ = min

{
γ

(
1

2
− 1

η

)
,
δ + 2− µ− ν

2
, δ − µ

}
. (10)

Just as in Theorem 2.2, the meaning of Theorem 2.4 is clearest when the quantities hm‖rhu− u‖m,p and
hm‖r+

h u − u‖m,p, m = 0, 1, . . . , s, p = 2, η, all decay at the same rate with respect to h as h → 0. In such

a setting, Theorem 2.4 states that ‖r+
h u− rhu‖0,2 tends to zero faster than ‖rhu− u‖0,2 + ‖r+

h u− u‖0,2 by

a factor O(hσ
′
), where the order of superconvergence σ′ is given by (10). Note that σ′ ≤ σ, where σ is the

order of superconvergence of the H1-norm of r+
h u− rhu that was provided in Theorem 2.2.

Concretely, when estimates of the form (7-8) hold for u ∈ W r,η(Ω) ∩ V with an integer r > 1, we arrive
immediately at the following corollary to Theorem 2.4.

Corollary 2.5. Suppose that the conditions of Theorem 2.2 are satisfied and that both rh and r+
h satisfy

estimates of the form (7-8) for an integer r > 1. Then there exists C > 0 independent of h such that

‖r+
h u− rhu‖0,2 ≤ C`(h)hr+σ

′
|u|r,η

for every u ∈W r,η(Ω) ∩ V and every h ≤ h0, with σ′ given by (10).
In particular, if ah = a+

h , then

‖r+
h u− rhu‖0,2 ≤ C`(h)hr+γ(1/2−1/η)|u|r,η

for every u ∈W r,η(Ω) ∩ V and every h ≤ h0.

Note that to deduce the preceding corollary, the case ah = a+
h is again handled by taking δ = ∞ and

choosing any admissible µ, ν and q in (5).

3. Proofs

This section presents proofs of Theorems 2.1, 2.2, and 2.4.

Proof of Theorem 2.1. Let eh ∈ Vh and e+
h ∈ V

+
h , and write

a+
h (r+

h u− rhu, r
+
h u− rhu) = a+

h

(
r+
h u− rhu, r

+
h u− rhu− (eh + e+

h )
)

+ a+
h (r+

h u− rhu, eh + e+
h ).

The uniform coercivity and continuity of a+
h imply

‖r+
h u− rhu‖

2
s,2 ≤

1

α

(
M‖r+

h u− rhu‖s,2‖r
+
h u− rhu− (eh + e+

h )‖s,2 + |a+
h (r+

h u− rhu, eh + e+
h )|
)
.

Using the fact that for real numbers x, a, b ≥ 0,

x2 ≤ ax+ b =⇒ x ≤ a+
√
b,

we deduce that

‖r+
h u− rhu‖s,2 ≤

M

α
‖r+
h u− rhu− (eh + e+

h )‖s,2 +
1√
α
|a+
h (r+

h u− rhu, eh + e+
h )|1/2
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The result will then follow from the identity

a+
h (r+

h u− rhu, eh + e+
h ) = a+

h (r+
h u− u, eh) + ah(u− rhu, e+

h )

+ a+
h (u− rhu, eh + e+

h )− ah(u− rhu, eh + e+
h )

(11)

together with the subadditivity of the square root operator.
To prove (11), use the decomposition r+

h u− rhu = (r+
h u− u) + (u− rhu) to write

a+
h (r+

h u− rhu, eh + e+
h ) = a+

h (r+
h u− u, eh + e+

h ) + a+
h (u− rhu, eh + e+

h ).

Now add and subtract ah(u− rhu, eh + e+
h ) to obtain

a+
h (r+

h u− rhu, eh + e+
h ) = a+

h (r+
h u− u, eh + e+

h ) + ah(u− rhu, eh + e+
h )

+ a+
h (u− rhu, eh + e+

h )− ah(u− rhu, eh + e+
h ).

Finally, use the definitions of r+
h and rh to simplify the first two terms, giving (11). �

We remark that while the estimate (4) is not symmetric in the “+” variables and their unadorned coun-
terparts, it can easily be made symmetric by exchanging the roles of r+

h and a+
h with rh and ah, respectively,

and averaging the resulting estimates. The same holds true for the estimates in Theorems 2.2 and 2.4.
We now turn to the proof of Theorem 2.2. We begin with a lemma concerning the relationship between

a function’s support and its Sobolev norms.

Lemma 3.1. Let f ∈W k,p(Ω), k ≥ 0, p ∈ [1,∞]. Then for any 1 ≤ t ≤ p,

‖f‖k,t ≤ |supp(f)|1/t−1/p‖f‖k,p.

Proof. Let χ : Ω→ {0, 1} denote the indicator function for supp(f). We have

‖f‖k,t =
∑
|α|≤k

‖∂αf‖0,t

=
∑
|α|≤k

‖χ∂αf‖0,t.

Now let p̃ ∈ [1,∞] be such that 1
p̃ + 1

p = 1
t . By Holder’s inequality,

‖f‖k,t ≤
∑
|α|≤k

‖χ‖0,p̃‖∂αf‖0,p

= |supp(f)|1/p̃
∑
|α|≤k

‖∂αf‖0,p

= |supp(f)|1/t−1/p‖f‖k,p.

�
The proof of Theorem 2.2 is as follows.

Proof of Theorem 2.2. Choose e+
h = 0 and eh = πh(r+

h u−rhu) in (4). By the stability assumption in (2.2.iii),

‖eh‖0,η ≤ C‖r+
h u− rhu‖0,η

≤ C
(
‖r+
h u− u‖0,η + ‖u− rhu‖0,η

)
.

Thus, for any m = 0, 1, . . . , s,

‖eh‖m,η ≤ Ch−m
(
‖r+
h u− u‖0,η + ‖u− rhu‖0,η

)
(12)
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by (2.2.ii). It follows that

‖r+
h u− rhu− (eh + e+

h )‖s,η ≤ ‖r+
h u− u‖s,η + ‖u− rhu‖s,η + ‖eh‖s,η + ‖e+

h ‖s,η
≤ C

(
‖r+
h u− u‖s,η + ‖u− rhu‖s,η

+ h−s‖r+
h u− u‖0,η + h−s‖u− rhu‖0,η

)
.

Now note that r+
h u−rhu−(eh+e+

h ) has support of measure O(hγ) by (2.2.iii). Consequently, by Lemma 3.1,

‖r+
h u− rhu− (eh + e+

h )‖s,2 ≤ Chγ(1/2−1/η)‖r+
h u− rhu− (eh + e+

h )‖s,η
≤ Chγ(1/2−1/η)

(
‖r+
h u− u‖s,η + ‖rhu− u‖s,η

+ h−s‖r+
h u− u‖0,η + h−s‖rhu− u‖0,η

)
. (13)

To estimate the remaining terms that appear in (4), note that

a+
h (r+

h u− u, eh) = 0

since eh ∈ V+
h ∩ Vh ⊆ V

+
h , and

ah(rhu− u, e+
h ) = 0

since e+
h = 0. Finally, using (12) with m = ν together with (5) shows that∣∣a+

h (rhu− u, eh+e+
h )− ah(rhu− u, eh + e+

h )
∣∣

≤ Chδ‖rhu− u‖µ,η‖eh‖ν,q
≤ Chδ‖rhu− u‖µ,η‖eh‖ν,η
≤ Chδ−ν‖rhu− u‖µ,η

(
‖r+
h u− u‖0,η + ‖u− rhu‖0,η

)
.

Taking the square root and adding (13) proves the claim. �
Note that the preceding proof treats the estimate (5) wastefully when q < η, in the sense that the ultimate

bound on ‖r+
h u−rhu‖s,2 is unchanged if q is replaced by η. The importance of considering scenarios in which

q may be chosen less than η is made apparent in Theorem 2.4, where the restriction (2.4.iii) is enforced.
With this in mind, we now prove Theorem 2.4.

Proof of Theorem 2.4. Define w ∈ V as the solution to the dual problem

a+
h (y, w) = (r+

h u− rhu, y) ∀y ∈ V. (14)

Note that w ∈ H2(Ω) ∩ V by (2.4.i).
For any w+

h ∈ V
+
h , wh ∈ Vh, we have

‖r+
h u− rhu‖

2
0,2 = a+

h (r+
h u− rhu,w)

= a+
h (r+

h u− rhu,w − w
+
h ) + a+

h (r+
h u− rhu,w

+
h )

= a+
h (r+

h u− rhu,w − w
+
h ) + a+

h (u− rhu,w+
h )

= a+
h (r+

h u− rhu,w − w
+
h ) + a+

h (u− rhu,w+
h − wh)

+ a+
h (u− rhu,wh)− ah(u− rhu,wh)

=: T1 + T2 + T3,

where

T1 = a+
h (r+

h u− rhu,w − w
+
h ),

T2 = a+
h (u− rhu,w+

h − wh),

T3 = a+
h (u− rhu,wh)− ah(u− rhu,wh).
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Now choose w+
h = i+hw and wh = ihw and bound each term separately. By the continuity of a+

h and (2.4.v),

|T1| ≤ C‖r+
h u− rhu‖1,2‖w − w

+
h ‖1,2

≤ Ch‖r+
h u− rhu‖1,2|w|2,2.

To bound T2, note that supp(w+
h − wh) ⊆ Rh has measure O(hγ) by (2.4.vi) and (2.2.iii). Thus,

|T2| ≤ C‖u− rhu‖1,2,Rh
‖w+

h − wh‖1,2,Rh

≤ Chγ(1/2−1/η)‖u− rhu‖1,η
(
‖w+

h − w‖1,2,Rh
+ ‖w − wh‖1,2,Rh

)
≤ Chγ(1/2−1/η)+1‖u− rhu‖1,η|w|2,2

by (2.4.ii), Lemma 3.1, and (2.4.v). For T3, we have by (5) that

|T3| ≤ Chδ‖u− rhu‖µ,η‖wh‖ν,q.

Using (2.4.iv) together with the Sobolev embedding H2(Ω) ⊂W ν,q(Ω) ensured by (2.4.iii) gives

|T3| ≤ Chδ‖u− rhu‖µ,η‖w‖2,2.

Combining results and invoking the regularity estimate (2.4.i) leads to

‖r+
h u− rhu‖0,2 ≤ C

[
h‖r+

h u− rhu‖1,2

+ hmin{γ(1/2−1/η),δ−µ} (h‖u− rhu‖1,η + hµ‖u− rhu‖µ,η)
]
.

Conclude using Theorem 2.2. �

4. The Need for Regularity

When a+
h = ah and γ is fixed, the estimates of Corollaries 2.3 and 2.5 are of the highest order in h when

η =∞, but in this case they demand that u ∈W r,∞(Ω)∩V. If the regularity requirement u ∈W r,∞(Ω)∩V
is relaxed, the rates of convergence of ‖r+

h u− rhu‖0,2 and ‖r+
h u− rhu‖1,2 as h→ 0 may deteriorate.

Indeed, consider the case in which Vh is the space of piecewise affine functions on a grid (0, h, 2h, 3h, . . . , 1)
of the unit interval in one dimension that vanish at 0 and 1. Let V+

h be the space of piecewise affine functions
on the nearby grid (0, 3h/2, 2h, 3h, . . . , 1) that vanish at 0 and 1. Let

a+
h (u,w) = ah(u,w) =

∫ 1

0

∂u

∂x

∂w

∂x
dx,

so that the projectors rh and r+
h coincide with the nodal interpolants onto Vh and V+

h , respectively [2,
Remark 3.25(i)]. In this setting, the conditions of Corollaries 2.3 and 2.5 hold with η = ∞, γ = 1, r = 2,
and `(h) ≡ 1, leading to the estimates

‖r+
h u− rhu‖0,2 ≤ Ch

5/2|u|r,∞,

‖r+
h u− rhu‖1,2 ≤ Ch

3/2|u|r,∞

for u ∈W 2,∞(0, 1) ∩H1
0 (0, 1).

However, consider the function

u(x) = x2−1/p − x



TITLE WILL BE SET BY THE PUBLISHER 11

Table 1. L2-supercloseness of L2-projections onto piecewise affine (r = 2) and piecewise
quadratic (r = 3) finite element spaces over nearby meshes (γ = 1) in one dimension.

Affine (r = 2) Quadratic (r = 3)
h0/h ‖r+

h u− rhu‖0,2 Order ‖r+
h u− rhu‖0,2 Order

1 3.2150e-03 - 1.2843e-04 -
2 5.6505e-04 2.5084 1.0676e-05 3.5886
4 9.9837e-05 2.5007 9.1277e-07 3.5480
8 1.7645e-05 2.5003 7.9301e-08 3.5248

16 3.1189e-06 2.5002 6.9484e-09 3.5126
32 5.5132e-07 2.5001 6.1146e-10 3.5063

Table 2. H1-supercloseness of elliptic projections onto piecewise affine (r = 2) and piece-
wise quadratic (r = 3) finite element spaces over nearby meshes (γ = 1) in one dimension.

Affine (r = 2) Quadratic (r = 3)
h0/h ‖r+

h u− rhu‖1,2 Order ‖r+
h u− rhu‖1,2 Order

1 1.4451e-01 - 7.4390e-03 -
2 5.1203e-02 1.4968 1.2835e-03 2.5351
4 1.8081e-02 1.5017 2.2408e-04 2.5180
8 6.3851e-03 1.5017 3.9364e-05 2.5090

16 2.2558e-03 1.5011 6.9369e-06 2.5045
32 7.9723e-04 1.5006 1.2243e-06 2.5023

Table 3. L2-supercloseness of elliptic projections onto piecewise affine (r = 2) and piece-
wise quadratic (r = 3) finite element spaces over nearby meshes (γ = 1) in one dimension.

Affine (r = 2) Quadratic (r = 3)
h0/h ‖r+

h u− rhu‖0,2 Order ‖r+
h u− rhu‖0,2 Order

1 3.4546e-03 - 1.7770e-04 -
2 6.1937e-04 2.4796 1.5493e-05 3.5198
4 1.1019e-04 2.4908 1.3576e-06 3.5124
8 1.9537e-05 2.4957 1.1943e-07 3.5069

16 3.4587e-06 2.4979 1.0530e-08 3.5036
32 6.1186e-07 2.4990 9.2955e-10 3.5018

with 2 < p <∞, so that u ∈W 2,p−ε(0, 1) ∩H1
0 (0, 1) for any ε > 0. Then a direct calculation renders that

‖r+
h u− rhu‖0,2 ≥ Ch

5/2−1/p,

‖r+
h u− rhu‖1,2 ≥ Ch

3/2−1/p,

which are of a lower order than the rates h5/2 and h3/2, respectively, obtainable for a function in W 2,∞(0, 1)∩
H1

0 (0, 1). In fact, by letting p → 2, these rates can be made arbitrarily close to the quadratic and linear
rates that hold in the L2- and H1-norms, respectively, on a pair of unrelated meshes.

5. Numerical Examples

In this section, we numerically illustrate the superconvergent estimates of Corollaries 2.3 and 2.5 on test
cases in one and two dimensions.

One dimension. Consider the case in which Vh is the space of piecewise polynomial functions of degree
at most r − 1 on a grid (0, h, 2h, 3h, . . . , 1) of the unit interval in one dimension that vanish at 0 and 1.
Let V+

h be the space of piecewise polynomial functions of the same degree that vanish at 0 and 1, on the
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(a) (b) (c)

Figure 1. (a) Mesh of the unit square consisting of equally sized isosceles right triangles.
(b) Identical mesh, but with the node at (x, y) = (1/4, 1/4) perturbed by h/4 in the positive

x direction. (c) Identical mesh, but with all nodes having distance h/
√

2 from the boundary
perturbed by h/4 in the positive x direction.

same grid but with the node nearest to x = 1/4 perturbed by h/4 in the positive direction. In this scenario,
assumption (2.2.iii) is satisfied with γ = 1. Let u(x) = sin(πx) and let

a+
h (u,w) = ah(u,w) =

∫ 1

0

uw dx,

so that rh and r+
h are the L2-projectors onto Vh and V+

h , respectively.

Table 1 shows the L2-norm of the difference r+
h u−rhu for several values of h, beginning with h = 1/8 =: h0.

The table illustrates the predictions of Corollary 2.3, namely

‖r+
h u− rhu‖0,2 ≤

{
Ch5/2|u|2,∞ if r = 2,

Ch7/2|u|3,∞ if r = 3.

Next, consider the same setup as above, but with

a+
h (u,w) = ah(u,w) =

∫ 1

0

∂u

∂x

∂w

∂x
dx,

so that rh and r+
h are the standard elliptic projectors onto Vh and V+

h , respectively. Table 2 shows the

H1 norm of the difference r+
h u − rhu for the sequence of grids described above. The table illustrates the

predictions of Corollary 2.3, namely

‖r+
h u− rhu‖1,2 ≤

{
Ch3/2 log(h−1)|u|2,∞ if r = 2,

Ch5/2|u|3,∞ if r = 3.

Table 3 shows the L2-norm of the difference r+
h u− rhu for the same sequence of grids. The table illustrates

the predictions of Corollary 2.5, namely

‖r+
h u− rhu‖0,2 ≤

{
Ch5/2 log(h−1)|u|2,∞ if r = 2,

Ch7/2|u|3,∞ if r = 3.

Note that we have not attempted to detect the presence of the factor log(h−1) in these numerical experiments.
Two dimensions. Consider now the case in which Vh ⊂ H1

0 ((0, 1)×(0, 1)) is the space of piecewise affine
functions on a mesh of the unit square in two dimensions consisting of equally sized isosceles right triangles,
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Table 4. L2-supercloseness of L2-projections onto piecewise affine (r = 2) finite element
spaces over nearby meshes (γ = 2; see Figs. 1(a) and 1(b)) in two dimensions.

Affine (r = 2)
h0/h ‖r+

h u− rhu‖0,2 Order

1 6.3533e-03 -
2 7.5614e-04 3.0708
4 8.8718e-05 3.0914
8 1.1020e-05 3.0091

16 1.3781e-06 2.9993

Table 5. H1- and L2-supercloseness of elliptic projections onto piecewise affine (r = 2)
finite element spaces over nearby meshes (γ = 2; see Figs. 1(a) and 1(b)) in two dimensions.

Affine (r = 2)
h0/h ‖r+

h u− rhu‖1,2 Order ‖r+
h u− rhu‖0,2 Order

1 2.1441e-01 - 6.6386e-03 -
2 4.7374e-02 2.1782 7.8678e-04 3.0768
4 1.1359e-02 2.0603 9.6370e-05 3.0293
8 2.8114e-03 2.0144 1.2033e-05 3.0016

16 7.0176e-04 2.0023 1.5106e-06 2.9937

as in Fig. 1(a). Let V+
h ⊂ H1

0 ((0, 1)× (0, 1)) be the space of piecewise affine functions on the same mesh, but
with the node nearest to (x, y) = (1/4, 1/4) perturbed by h/4 in the positive x direction, as in Fig. 1(b). In
this scenario, assumption (2.2.iii) is satisfied with γ = 2. Let u(x) = sin(πx) sin(πy) and let

a+
h (u,w) = ah(u,w) =

∫ 1

0

∫ 1

0

uw dxdy,

so that rh and r+
h are the L2-projectors onto Vh and V+

h , respectively.

Table 4 shows the L2-norm of the difference r+
h u−rhu for several values of h, beginning with h =

√
2/4 =:

h0. The table illustrates the predictions of Corollary 2.3, namely

‖r+
h u− rhu‖0,2 ≤ Ch

3|u|2,∞. (15)

Next, consider the same setup as above, but with

a+
h (u,w) = ah(u,w) =

∫ 1

0

∫ 1

0

(
∂u

∂x

∂w

∂x
+
∂u

∂y

∂w

∂y

)
dxdy,

so that rh and r+
h are the elliptic projectors onto Vh and V+

h , respectively. Table 5 shows the H1- and

L2-norms of the difference r+
h u− rhu for the sequence of meshes described above. The table illustrates the

predictions of Corollaries 2.3 and 2.5, namely

‖r+
h u− rhu‖m,2 ≤

{
Ch2 log(h−1)|u|2,∞ if m = 0,

Ch3 log(h−1)|u|2,∞ if m = 1.
(16)

Again, we have not attempted to detect the presence of the factor log(h−1).
More substantial mesh perturbation in two dimensions. Finally, consider the same two-dimensional

tests as above, but with the mesh of Fig. 1(b) replaced by a different perturbation of the uniform mesh.

Namely, consider perturbing all nodes whose distance from the boundary of the unit square is equal to h/
√

2
(the length of the shortest edge of each triangle) via a translation by h/4 in the positive x direction, as in
Fig. 1(c).
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Table 6. L2-supercloseness of L2-projections onto piecewise affine (r = 2) finite element
spaces over nearby meshes (γ = 1; see Figs. 1(a) and 1(c)) in two dimensions. Relative to
Table 4, a lower order of superconvergence is observed due to the larger fraction of perturbed
elements present in the perturbed mesh.

Affine (r = 2)
h0/h ‖r+

h u− rhu‖0,2 Order

1 2.2504e-02 -
2 4.8445e-03 2.2158
4 1.0019e-03 2.2736
8 1.9159e-04 2.3866

16 3.5132e-05 2.4472
32 6.3195e-06 2.4749

Table 7. H1- and L2-supercloseness of elliptic projections onto piecewise affine (r = 2)
finite element spaces over nearby meshes (γ = 1; see Figs. 1(a) and 1(c)) in two dimensions.
Relative to Table 5, lower orders of superconvergence are observed due to the larger fraction
of perturbed elements present in the perturbed mesh.

Affine (r = 2)
h0/h ‖r+

h u− rhu‖1,2 Order ‖r+
h u− rhu‖0,2 Order

1 5.4318e-01 - 1.9864e-02 -
2 2.8504e-01 0.9303 4.8794e-03 2.0254
4 1.2522e-01 1.1867 1.0528e-03 2.2125
8 4.8674e-02 1.3632 1.9842e-04 2.4075

16 1.7931e-02 1.4407 3.5671e-05 2.4758
32 6.4595e-03 1.4730 6.3290e-06 2.4947

In this scenario, assumption (2.2.iii) is satisfied with γ = 1, so that the estimates (15) and (16) no longer
apply. Their analogues in this case read

‖r+
h u− rhu‖0,2 ≤ Ch

5/2|u|2,∞.

and

‖r+
h u− rhu‖m,2 ≤

{
Ch3/2 log(h−1)|u|2,∞ if m = 0,

Ch5/2 log(h−1)|u|2,∞ if m = 1,

respectively. Tables 6-7 illustrate these predictions. Again, we have not attempted to detect the presence of
the factor log(h−1).

6. Summary

We have derived estimates for the difference between the orthogonal projections rhu and r+
h u of a smooth

function u onto nearby finite element spaces Vh and V+
h , respectively, with respect to bilinear forms ah, a

+
h :

V × V → R, respectively, where V is a closed subspace of Hs(Ω). When s ∈ {0, 1} and Vh and V+
h consist

of continuous functions that are elementwise polynomials over shape-regular, quasi-uniform meshes that
coincide except on a region of measure O(hγ) for a constant γ ≥ 0, the estimates for ‖r+

h u − rhu‖s,2 are

superconvergent by O(hγ/2), provided that u ∈ W s,∞(Ω) and ah and a+
h are sufficiently close. In addition,

when s = 1 and a few more mild assumptions (namely (2.4.i-2.4.vi)) are satisfied, an O(hγ/2)-superconvergent
estimate for ‖r+

h u−rhu‖0,2 holds. Numerical experiments illustrated these estimates and verified the necessity
of the regularity assumptions on u.
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Appendix A. Properties of Piecewise Polynomial Finite Element Spaces

In this section, we verify conditions (2.2.i-2.2.iii) for piecewise polynomial finite element spaces on nearby
meshes for the cases s = 0 and s = 1.

As in Section 1, consider two families of shape-regular, quasi-uniform meshes {Th}h≤h0
and {T +

h }h≤h0
of

an open, bounded, Lipschitz domain Ω ⊂ Rd, d ≥ 1. Assume that the two families are parametrized by a
scalar h that equals the maximum diameter of an element among all elements of Th and T +

h for every h ≤ h0.

Let Vh and V+
h be finite element spaces consisting of continuous functions that are elementwise polynomials

of degree at most r − 1 over Th and T +
h , respectively, where r > 1 is an integer.

In this setting, condition (2.2.i) is automatic for any η ∈ [2,∞], s ∈ {0, 1}. Condition (2.2.ii) is trivial for
s = 0 and is satisfied for s = 1 and any η ∈ [2,∞] [2].

Condition (2.2.iii) holds for any η ∈ [2,∞] when Th and T +
h coincide except on a region of measure O(hγ).

To prove this, let {Na}Aa=1 ⊂ Vh and {N+
a }A

+

a=1 ⊂ V+
h be the standard Lagrange shape functions that form

bases for Vh and V+
h , respectively. Our assumptions on Th and T +

h imply the existence of an integer I such
that Na = N+

a for every 1 ≤ a ≤ I and such that∣∣∣∣∣∣
(

A⋃
a=I+1

supp(Na)

)
∪

 A+⋃
a=I+1

supp(N+
a )

∣∣∣∣∣∣ ≤ Chγ (17)

for every h ≤ h0.
Define πh : V+

h + Vh → V+
h ∩ Vh as follows: For any

wh =

I∑
a=1

caNa +

A∑
a=I+1

caNa +

A+∑
a=I+1

c+aN
+
a (18)

belonging to V+
h + Vh, set

πhwh :=

I∑
a=1

caNa. (19)

Clearly,
|supp(πhwh − wh)| ≤ Chγ

for every wh ∈ V+
h + Vh and every h ≤ h0. To prove that

‖πhwh‖0,η ≤ C‖wh‖0,η (20)

for every wh ∈ V+
h + Vh and every h ≤ h0, there are two cases to consider: η =∞ and 2 ≤ η <∞.

For η = ∞, it is enough to note that for each of the two finite element spaces, every shape function is
bounded uniformly in h in the maximum norm, the number of shape functions whose support intersects any
given element is bounded uniformly in h, and the coefficients ca, 1 ≤ a ≤ I, in the expansion (18) of wh
are bounded by ‖wh‖0,∞. Indeed, the standard degrees of freedom σa, 1 ≤ a ≤ I, for the Lagrange shape
functions Na(= N+

a ), 1 ≤ a ≤ I, satisfy

σa(Nb) = δab, 1 ≤ b ≤ A

and
σa(N+

b ) = δab, 1 ≤ b ≤ A+,

where δab denotes the Kronecker delta. Hence, for any 1 ≤ a ≤ I,

|ca| = |σa(wh)| ≤ ‖wh‖0,∞.

For 2 ≤ η <∞, the proof of (20) relies on the following lemma.
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Lemma A.1. Let {Th}h≤h0 be a shape-regular, quasi-uniform family of meshes of an open, bounded, Lips-
chitz domain Ω ⊂ Rd, d ≥ 1, with h denoting the maximum diameter of an element K ∈ Th. Let r > 1 be an
integer. For any K ∈ Th, let θ1, θ2, . . . , θnsh

denote the local shape functions for the Lagrange finite element
of degree at most r − 1 on K. Then for any 2 ≤ η < ∞, there exist C1, C2 > 0 independent of h such that
for every h ≤ h0, every K ∈ Th, and every v =

∑nsh

i=1 diθi,

C1h
d
nsh∑
i=1

|di|η ≤ ‖v‖η0,η,K ≤ C2h
d
nsh∑
i=1

|di|η.

Proof. A proof of this fact when η = 2 is given in [2, Lemma 9.7]. The case 2 < η < ∞ is a trivial
modification thereof. �

Now let wh and πhwh be as in (18) and (19), respectively. Note that the support of πhwh is contained
within the region Qh ⊆ Ω over which Th and T +

h coincide. On any K ∈ Th with K ⊆ Qh, we can write

wh|K =

nsh∑
i=1

diθi

and

πhwh|K =

nsh∑
i=1

d̄iθi,

with scalars di ∈ R and d̄i ∈ {0, di} for every i. By Lemma A.1,

‖πhwh‖η0,η,K ≤ C2h
d
nsh∑
i=1

|d̄i|η

≤ C2h
d
nsh∑
i=1

|di|η

≤ C2C
−1
1 ‖wh‖

η
0,η,K

on every such K. Summing over all K ∈ Th with K ⊆ Qh proves (20) for 2 ≤ η <∞.

Appendix B. Estimates for the L2-Projection and Elliptic Projections

Two exemplary cases in which estimates of the form (7-8) are known to hold are the following. Suppose
that V = Hs(Ω)∩H1

0 (Ω) and Vh is the space of continuous functions in V that are elementwise polynomials of
degree at most r− 1 on a shape-regular, quasi-uniform family of meshes {Th}h≤h0

whose maximum element
diameter is h. Then:

(i) If s = 0, d ∈ {1, 2}, and

ah(u,w) =

∫
Ω

uw dx

so that rh is the L2-projector onto Vh, then (7) holds with `(h) ≡ 1 for any η ∈ [2,∞] [21]. Note
that the estimate (8) is vacuous in this case, since s = 0.

(ii) If s = 1, d ∈ {2, 3}, and

ah(u,w) =

∫
Ω

 d∑
i,j=1

aij(x)
∂u

∂xi

∂w

∂xj
+

d∑
j=1

bj(x)
∂u

∂xj
w + b0(x)uw

 dx

with h-independent coefficients aij , i, j = 1, 2, . . . , d and bj , j = 0, 1, . . . , d, then (7-8) hold [2] with
`(h) ≡ 1 for any 2 ≤ η <∞ (if r = 2) and any η ∈ [2,∞] (if r > 2), provided that
• The coefficients satisfy bj ∈ L∞(Ω), j = 0, 1, . . . , d, and aij ∈ L∞(Ω)∩W 1,p(Ω), i, j = 1, 2, . . . , d,

with p > 2 if d = 2 and p ≥ 12/15 if d = 3.
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• The coefficients aij are coercive pointwise, i.e. there exists c > 0 independent of x such that

d∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2 (21)

for every 0 6= ξ ∈ Rd and a.e. x ∈ Ω.
• There exists C > 0, q0 > d such that the continuous Dirichlet problem

ah(u,w) =

∫
Ω

fw dx ∀w ∈ V

has a unique solution satisfying

‖u‖2,q ≤ C‖f‖0,q (22)

for every f ∈ Lp(Ω) and every 1 < q < q0.
Under the same conditions as above but with r = 2 and η = ∞, the estimates (7-8) hold with
`(h) = log(h−1) in dimension d = 2 [2].
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