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Abstract. We construct fast, structure-preserving iterations for computing the sign decom-
position of a unitary matrix A with no eigenvalues equal to ±i. This decomposition factorizes A
as the product of an involutory matrix S = sign(A) = A(A2)−1/2 times a matrix N = (A2)1/2

with spectrum contained in the open right half of the complex plane. Our iterations rely on a re-
cently discovered formula for the best (in the minimax sense) unimodular rational approximant of
the scalar function sign(z) = z/

√
z2 on subsets of the unit circle. When A has eigenvalues near

±i, the iterations converge significantly faster than Padé iterations. Numerical evidence indicates
that the iterations are backward stable, with backward errors often smaller than those obtained with
direct methods. This contrasts with other iterations like the scaled Newton iteration, which suffers
from numerical instabilities if A has eigenvalues near ±i. As an application, we use our iterations to
construct a stable spectral divide-and-conquer algorithm for the unitary eigendecomposition.
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1. Introduction. Every matrix A ∈ Cn×n with no purely imaginary eigenvalues
can be written uniquely as a product

A = SN,

where S ∈ Cn×n is involutory (S2 = I), N ∈ Cn×n has spectrum in the open right
half of the complex plane, and S commutes with N . This is the celebrated matrix
sign decomposition [11], whose applications are widespread [3, 17]. In terms of the
principal square root (·)1/2, we have S = A(A2)−1/2 =: sign(A) and N = (A2)1/2.

When A is unitary, so too are S and N . It follows that S = S−1 = S∗, so we may
write, for any unitary A with Λ(A) ∩ iR = ∅,

(1.1) A = SN, S2 = I, S = S∗, N2 = A2, N∗N = I, Λ(N) ⊂ C+,

where Λ(N) denotes the spectrum of N and C+ = {z ∈ C | Re(z) > 0}. We refer to
this decomposition as the unitary sign decomposition.

We say that an algorithm for computing the decomposition (1.1) is backward
stable if it computes matrices Ŝ and N̂ with the property that the quantities

(1.2) ‖A− ŜN̂‖, ‖Ŝ2−I‖, ‖Ŝ− Ŝ∗‖, ‖N̂∗N̂−I‖, ‖N̂2−A2‖, max{0,− min
λ∈Λ(N̂)

Reλ}

are each a small multiple of the unit roundoff u (= 2−53 in double-precision arith-
metic).1 Here, ‖ · ‖ denotes the 2-norm.

The goal of this paper is to design backward stable iterations for computing the
decomposition (1.1). To illustrate why this is challenging, let us point out the pitfalls
of naive approaches. A widely used iteration for computing the sign of a general
matrix A ∈ Cn×n is the Newton iteration [21] [12, Section 5.3]

(1.3) Xk+1 =
1

2
(Xk +X−1

k ), X0 = A.
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If A is unitary, then the first iteration is simply

(1.4) X1 =
1

2
(A+A∗).

In floating point arithmetic, this calculation is susceptible to catastrophic cancellation
if A has eigenvalues near ±i. Indeed, if we carry out (1.4) followed by (1.3) for
k = 1, 2, . . . on the 100 × 100 unitary matrix A = gallery(’orthog’,100,3) from
the MATLAB matrix gallery, then the iteration diverges. Scaling the iterates with
standard scaling heuristics [15] leads to convergence, but the computed sign of A
satisfies ‖Ŝ − Ŝ∗‖ > 0.1 in typical experiments. This happens because A has several
eigenvalues lying near ±i.

The above algorithm can be reinterpreted in a different way: It is computing
the unitary factor in the polar decomposition of (A + A∗)/2. Indeed, the Newton
iteration Xk+1 = 1

2 (Xk + X−∗k ) for the polar decomposition [12, Section 8.3] coin-
cides with (1.3) on Hermitian matrices. This suggests another family of potential
algorithms: compute the polar decomposition of (A + A∗)/2 via iterative methods
or other means. However, numerical experiments confirm that such algorithms are
similarly inaccurate on matrices with eigenvalues near ±i. This unstable behavior is
also shared by the superdiagonal Padé iterations for the matrix sign function [14], all
of which map eigenvalues λ ≈ ±i of A to a small real number (or the inverse thereof)
in the first iteration.

One way to overcome these difficulties is to adopt structure-preserving iterations.
Here, we say that an iteration Xk+1 = gk(Xk) for the unitary sign decomposition is
structure-preserving if the iterates Xk are unitary for every k. Examples include the
diagonal family of Padé iterations [13], whose lowest-order member is the iteration

(1.5) Xk+1 = Xk(3I +X2
k)(I + 3X2

k)−1, X0 = A.

By keeping Xk unitary, a structure-preserving iteration ensures that the eigenvalues
of Xk remain on the unit circle, ostensibly skirting the dangers of catastrophic can-
cellation. We observe numerically that, if implemented in a clever way (described in
Section 3), the diagonal Padé iterations are backward stable. However, they can take
excessively long to converge on matrices with eigenvalues near ±i. For example, when
A = gallery(’orthog’,100,3), the iteration (1.5) takes 34 iterations to converge.

We construct in this paper a family of structure-preserving iterations for the uni-
tary sign decomposition that converge more rapidly—sometimes dramatically more
so—than the diagonal Padé iterations. Numerical evidence indicates that these iter-
ations are backward stable, with backward errors often smaller than those obtained
with direct methods.

The key ingredient that we use to construct our iterations is a recently discovered
formula for the best (in the minimax sense) unimodular rational approximant of the
scalar function sign(z) = z/

√
z2 on subsets of the unit circle [7]. Remarkably, it

can be shown that composing two such approximants yields a best approximant of
higher degree [7], laying the foundations for an iteration. When applied to matrices,
the iteration produces a sequence of unitary matrices X0 = A, X1, X2, . . . that
converges rapidly to S = sign(A), often significantly faster than the corresponding
diagonal Padé iteration. When A = gallery(’orthog’,100,3), for example, the
lowest-order iteration converges within 6 iterations, which is about 6 times faster
than the corresponding diagonal Padé iteration (1.5).
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Prior work. Matrix iterations constructed from rational minimax approximants
have attracted growing interest in recent years. Early examples include the optimal
scaling heuristic proposed by Byers and Xu [2] for the Newton iteration for the polar
decomposition, as well as an analogous scaling heuristic for the matrix square root
proposed by Wachspress [22] and Beckermann [1]. Nakatsukasa, Bai, and Gygi [18]
designed an optimal scaling heuristic for the Halley iteration for the polar decomp-
sition, and their strategy was generalized to higher order by Nakatsukasa and Fre-
und [19]. The latter work elucidated the link between these scaling heuristics and the
seminal work of Zolotarev [23] on rational minimax approximation. The iterations
derived in [19] have a variety of applications, including algorithms for the symmet-
ric eigendecomposition, singular value decomposition, polar decomposition, and CS
decomposition [19, 8].

All of the aforementioned algorithms rely crucially on the following fact: if two
rational minimax approximants of the scalar function sign(x) on suitable real intervals
are composed with one another, then their composition is a best approximant of higher
degree [19]. A related composition law for rational minimax approximants of

√
z has

been used to construct iterations for the matrix square root [4]. These iterations were
generalized to the matrix pth root in [5] and used to derive approximation theoretic
results in [6]. An even more recent advancement—a composition law for rational
minimax approximants of sign(z) on subsets of the unit circle [7]—is what inspired
the present paper.

Connections to other iterations. The iterations we derive in this paper are inti-
mately connected to several existing iterations for the matrix sign function and the
polar decomposition. When applied to a unitary matrix A, our iterations produce a
sequence of unitary matrices whose Hermitian part coincides with the sequence of ma-
trices generated by Nakatsuka and Freund’s iterations [19] for the polar decomposition
of (A+ A∗)/2. A special case of this result is a connection between our lowest-order
iteration for sign(A) and the optimally scaled Halley iteration for the polar decompo-
sition of (A+A∗)/2 [18]. It is important to note that these equivalences hold only in
exact arithmetic. In floating-point arithmetic, our iterations behave very differently
from the aforementioned algorithms.

There is also a link between our iterations and the diagonal Padé iterations.
Roughly speaking, our iterations are designed using rational minimax approximants
of sign(z) on two circular arcs containing ±1. If these arcs are each shrunk to a
point, then the diagonal Padé iterations are recovered. This helps to explain the slow
convergence of the diagonal Padé iterations on unitary matrices with eigenvalues near
±i: The iterations need to approximate sign(z) near z = ±i, but they use rational
functions that are designed to approximate sign(z) near z = ±1.

Unitary eigendecomposition. Our emphasis on handling eigenvalues near ±i is not
merely pedantic. It is precisely the sort of situation that one often encounters if the
unitary sign decomposition is used as part of a spectral divide-and-conquer algorithm
for the unitary eigendecomposition.

Indeed, consider a unitary matrix A ∈ Cm×m with eigendecomposition A =
V ΛV ∗. The matrix (I + sign(A))/2 is a spectral projector onto the invariant sub-
space V+ of A associated with eigenvalues having positive real part. A spectral
divide-and-conquer algorithm uses this projector to find orthonormal bases U1 ∈
Cm×m1 , U2 ∈ Cm×m2 , m1 + m2 = m, for V+ and its orthogonal complement. Then(
U1 U2

)∗
A
(
U1 U2

)
is block diagonal, so recursion can be used to determine V

and Λ. At each step, scalar multiplication by complex numbers with unit modulus
can be used to rotate the spectrum so that it is distributed approximately evenly



4 EVAN S. GAWLIK

between the left and right half-planes. If A has a cluster of nearby eigenvalues, then
it is reasonable to expect this process to center the cluster near ±i at some step. This
is precisely what we observe in practice, and the ability to compute the unitary sign
decomposition quickly and accurately in the presence of eigenvalues near ±i becomes
paramount.

Organization. This paper is organized as follows. We begin in Section 2 by study-
ing rational minimax approximants of sign(z) on the unit circle. This material is
largely drawn from [7], but we add some additional results and insights to relate
these approximants to Padé approximants. Next, we use these approximants to con-
struct matrix iterations for the unitary sign decomposition in Section 3. We illustrate
their utility by constructing a spectral divide-and-conquer algorithm for the unitary
eigendecomposition in Section 4. We conclude with numerical examples in Section 5.

2. Rational Approximation of the Sign Function on the Unit Circle. In
this section, we study rational approximants of the scalar function sign(z) = z/

√
z2

on the set

SΘ = {z ∈ C | |z| = 1, arg z /∈ (Θ, π −Θ) ∪ (−π + Θ,−Θ)},

where Θ ∈ (0, π/2). Since our ultimate interest is in constructing structure-preserving
iterations for the unitary sign decomposition, we focus on rational functions r satis-
fying |r(z)| = 1 for |z| = 1. We call such rational functions unimodular. Unimodular
rational functions have the property that r(A) is unitary for any unitary matrix A.

The problem of determining the best (in the minimax sense) unimodular rational
approximant of sign(z) on SΘ has recently been solved in [7]. To describe the solution,
let us introduce some notation. We use sn(·, `), cn(·, `), and dn(·, `) to denote Jacobi’s
elliptic functions with modulus `, and we use `′ =

√
1− `2 to denote the modulus

complementary to `. We denote the complete elliptic integral of the first kind by
K(`) =

∫ π/2
0

(1 − `2 sin2 θ)−1/2 dθ. We say that a rational function r(z) = p(z)/q(z)
has type (m,n) if p and q are polynomials of degree at most m and n, respectively.

Theorem 2.1. Let Θ ∈ (0, π/2) and n ∈ N0. Among all rational functions r of
type (2n+ 1, 2n+ 1) that satisfy |r(z)| = 1 for |z| = 1, the ones which minimize

max
z∈SΘ

∣∣∣∣arg

(
r(z)

sign(z)

)∣∣∣∣
are

r(z) = r2n+1(z; Θ) = z

n∏
j=1

z2 + aj
1 + ajz2

and its reciprocal, where

aj = aj(Θ) =

(
` sn(vj , `

′) + dn(vj , `
′)

cn(vj , `′)

)2(−1)j+n

,

vj = 2j−1
2n+1K(`′), ` = cos Θ, and `′ =

√
1− `2 = sin Θ.

Proof. See [7, Theorem 2.1 and Remark 2.2].

Remark 2.2. For simplicity, we have chosen to focus only on best unimodular
rational approximants of sign(z) on SΘ of type (2n + 1, 2n + 1) in this paper. Best
approximants of type (2n, 2n) can also be written down; see [7] for details.
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The rational function r2n+1(z; Θ) has the following remarkable behavior under
composition.

Theorem 2.3. Let Θ ∈ (0, π/2), m,n ∈ N0, and Θ̃ =
∣∣arg(r2n+1(eiΘ; Θ))

∣∣. Then
r2m+1(r2n+1(z; Θ); Θ̃) = r(2m+1)(2n+1)(z; Θ).

Proof. See [7, Theorem 3.3 and Remark 3.6].

We also have the following error estimate.

Theorem 2.4. Let Θ ∈ (0, π/2) and n ∈ N0. We have

max
z∈SΘ

∣∣∣∣arg

(
r2n+1(z; Θ)

sign(z)

)∣∣∣∣ ≤ 4ρ−(2n+1),

where

(2.1) ρ = ρ(Θ) = exp

(
πK(cos Θ)

2K(sin Θ)

)
.

Proof. See [7, Theorem 3.2], and note that their definition of ρ differs from ours
by a factor of 2 in the exponent.

Remark 2.5. Theorems 2.3 and 2.4 continue to hold when Θ = 0 if we adopt the
convention that ρ(0) = ∞, S0 = {−1, 1}, and r2n+1(z; 0) = z

∏n
j=1

z2+aj(0)
1+aj(0)z2 . We

elaborate on this fact below.

2.1. Connections with Other Rational Approximants. The rational func-
tion r2n+1(z; Θ) is closely connected to several other well-known rational approximants
of sign(z).

Proposition 2.6. As Θ → 0, r2n+1(z; Θ) converges coefficientwise to zpn(z2),
where pn(z) is the type-(n, n) Padé approximant of z−1/2 at z = 1.

Proof. This is a consequence of [7, Proposition 3.9], where it is shown that√
z/r2n+1(

√
z; Θ) converges coefficientwise to 1/pn(z) as Θ→ 0.

In the notation of Remark 2.5, the above proposition states that

r2n+1(z; 0) = zpn(z2).

This rational function has been studied extensively in [14, 16, 9] [12, Theorem 5.9].
It satisfies [12, Theorem 5.9]

(2.2) zpn(z2) = tanh((2n+ 1) arctanh z)

It also has the following properties. Both pn(z) and zpn(z2) are unimodular [13]; that
is, for any n ∈ N0,

|zpn(z2)| = |pn(z)| = 1, if |z| = 1.

Under composition, we have [12, Theorem 5.9)(c)]

(2.3) r2m+1(r2n+1(z; 0); 0) = r(2m+1)(2n+1)(z; 0)

for any m,n ∈ N0. Finally, r2n+1(1; 0) = −r2n+1(−1; 0) = 1 for all n ∈ N0. These
last two facts justify Remark 2.5.
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The rational functions r2n+1(z; 0), n ∈ N0, have been used in [14] to construct
iterations for computing the matrix sign function. The iterations constitute the diag-
onal family of Padé iterations. The first few diagonal Padé approximants of z−1/2 at
z = 1 are

p0(z) = 1, p1(z) =
3 + z

1 + 3z
, p2(z) =

5 + 10z + z2

1 + 10z + 5z2
, p3(z) =

7 + 35z + 21z2 + z3

1 + 21z + 35z2 + 7z3
.

More generally, Padé iterations can be constructed from rational functions of the
form zpm,n(z2), where pm,n(z) is the type-(m,n) Padé approximant of z−1/2 at z = 1.
However, whenm 6= n, the Padé iterations are not structure-preserving, as |pm,n(z)| 6≡
1 for |z| = 1 and m 6= n.

We now turn our attention back to the rational function r2n+1(z,Θ) with positive
Θ. Interestingly, this function is intimately connected to the solution of another
rational approximation problem: approximating sign(x) on the union of real intervals
[−1,−`] ∪ [`, 1].

Theorem 2.7. Let Θ ∈ [0, π/2) and n ∈ N0. For z ∈ C with |z| = 1, we have

(2.4) Re r2n+1(z; Θ) = R̂2n+1(Re z; cos Θ),

where

R̂m(x; `) =

{
Rm(x;`)

maxy∈[`,1] Rm(y;`) if ` ∈ (0, 1),

xpn(x2), if ` = 1,

and
Rm(·; `) = arg min

R∈Rm,m

max
x∈[−1,−`]∪[`,1]

|R(x)− sign(x)|.

Proof. This identity is proven for Θ ∈ (0, π/2) in [7, Theorem 2.4]. To see that it
also holds when Θ = 0, we must show that if |z| = 1 and x = Re z = 1

2 (z+ 1/z), then

1

2

(
tanh((2n+ 1) arctanh z) +

1

tanh((2n+ 1) arctanh z)

)
= tanh((2n+ 1) arctanhx).

Since 1+x
1−x = −

(
1+z
1−z

)2

, we have arctanhx = 1
2 log

(
1+x
1−x

)
= log

(
i 1+z

1−z

)
. Thus,

(2.5) tanh((2n+ 1) arctanhx) = tanh

(
(2n+ 1) log

(
i
1 + z

1− z

))
.

On the other hand, the identity tanh(2y) = 2 tanh y
1+tanh2 y

shows that

1

2

(
tanh((2n+ 1) arctanh z) +

1

tanh((2n+ 1) arctanh z)
)

)
= coth((4n+ 2) arctanh z)

= coth

(
(2n+ 1) log

(
1 + z

1− z

))
.(2.6)

Since (2n+ 1) log
(

1+z
1−z

)
differs from (2n+ 1) log

(
i 1+z

1−z

)
by an odd multiple of πi2 , it

follows that (2.5) and (2.6) are equal.
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Written another way, the lemma above states that

(2.7)
1

2

(
r2n+1(z; Θ) +

1

r2n+1(z; Θ)

)
= R̂2n+1

(
z + 1/z

2
; cos Θ

)
for all z with |z| = 1. In particular,

1

2

(
zpn(z2) +

1

zpn(z2)

)
=

(
z + 1/z

2

)
pn

((
z + 1/z

2

)2
)
.

Since these equalities hold on the unit circle, they hold on all of C.
By combining (2.3), (2.4), and Theorem 2.3, one sees that the function R̂2n+1(x; `)

satisfies

(2.8) R̂2m+1(R̂2n+1(x, `), ˜̀) = R̂(2m+1)(2n+1)(x, `), if ˜̀= R̂2n+1(`, `)

for all m,n ∈ N0 and all ` ∈ (0, 1]. This equality was derived in [19] for ` ∈ (0, 1) by
counting extrema of R̂2m+1(R̂2n+1(x, `), ˜̀)− sign(x). It can be leveraged to construct
iterations for the matrix sign function, and such iterations are particularly well-suited
for computing the sign of a Hermitian matrix B (which coincides with the unitary
factor in the polar decomposition of B); see (3.5-3.6) below.

3. Algorithm.

3.1. Matrix Iteration. Theorem 2.3 suggests the following iteration for com-
puting the sign of a unitary matrix A with spectrum contained in SΘ, Θ ∈ [0, π/2):

Xk+1 = r2n+1(Xk; Θk), X0 = A,(3.1)

Θk+1 = | arg r2n+1(eiΘk ; Θk)|, Θ0 = Θ.(3.2)

Below we summarize the properties of the iteration (3.1-3.2).

Proposition 3.1. The iteration (3.1-3.2) is structure-preserving. That is, if A
is unitary, then Xk is unitary for every k ≥ 0.

Proof. Since |r2n+1(z; Θk)| = 1 for every scalar z with unit modulus, r2n+1(X; Θk)
is unitary for every unitary matrix X.

Theorem 3.2. Let A be a unitary matrix with spectrum contained in SΘ for some
Θ ∈ (0, π/2). For any n ∈ N, the iteration (3.1-3.2) converges to sign(A) with order
of convergence 2n+ 1. In fact,

(3.3) ‖ log(Xk sign(A)−1)‖ ≤ 4ρ−(2n+1)k ,

for every k ≥ 0, where ρ is given by (2.1).

Proof. By Theorem 2.3, we have

Xk = r(2n+1)k(A; Θ)

for every k ≥ 0. Thus, every eigenvalue ofXk sign(A)−1 is of the form r(2n+1)k(λ; Θ)/ sign(λ)
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for some eigenvalue λ of A. By Theorem 2.4,

‖ log(Xk sign(A)−1)‖ = max
λ∈Λ(Xk sign(A)−1)

| arg λ|

= max
λ∈Λ(A)

∣∣∣∣arg

(
r(2n+1)k(λ; Θ)

sign(λ)

)∣∣∣∣
≤ max
z∈SΘ

∣∣∣∣arg

(
r(2n+1)k(z; Θ)

sign(z)

)∣∣∣∣
≤ 4ρ−(2n+1)k .

3.2. Connections with Other Iterations. There is an intimate connection
between the iteration (3.1-3.2) and several existing iterations for the matrix sign
function. First, Proposition 2.6 implies that (3.1-3.2) reduces to the diagonal Padé
iteration when we set Θ = 0:

(3.4) Xk+1 = Xkpn(X2
k), X0 = A.

Second, there is a link between the iteration (3.1-3.2) and the iteration

Yk+1 = R̂2n+1(Yk; `k), Y0 = B,(3.5)

`k+1 = R̂2n+1(`k; `k), `0 = `,(3.6)

which was introduced in [19] to compute the sign of a Hermitian matrix B with
spectrum contained in [−1,−`] ∪ [`, 1]. Note that (3.5-3.6) reduces to

Yk+1 = Ykpn(Y 2
k ), Y0 = B(3.7)

when we set ` = 1 and ignore the spectrum of B. This is the same iteration as (3.4),
but with a starting matrix labelled B rather than A.

Proposition 3.3. Let A be a unitary matrix with no eigenvalues equal to ±i. Let
n ∈ N and Θ ∈ [0, π/2). If B = (A+A∗)/2 and ` = cos Θ, then the iterations (3.1-3.2)
and (3.5-3.6) generate sequences satisfying

Yk =
1

2
(Xk +X∗k), and `k = cos Θk

for every k ≥ 0.

Proof. It follows from Theorem 2.3 that in the iteration (3.1-3.2), we have

Xk = r(2n+1)k(A; Θ), Θk = | arg r(2n+1)k(eiΘ; Θ)|,

for each k ≥ 0. On the other hand, the composition law (2.8) implies that in the
iteration (3.5-3.6), we have

Yk = R̂(2n+1)k(B; `), `k = R̂(2n+1)k(`; `),

for each k ≥ 0. Thus, by (2.7),
1

2
(Xk +X∗k) =

1

2
(Xk +X−1

k )

=
1

2

(
r(2n+1)k(A; Θ) + r(2n+1)k(A; Θ)−1

)
= R̂(2n+1)k((A+A−1)/2; cos Θ)

= R̂(2n+1)k(B; `)

= Yk.
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Also, by Theorem 2.7,

cos Θk = Re eiΘk = Re r(2n+1)k(eiΘ; Θ) = R̂(2n+1)k(Re eiΘ; cos Θ) = R̂(2n+1)k(`; `) = `k.

In the case that Θ = 0, the above result implies a connection between the diagonal
Padé iterations (3.4) and (3.7).

Corollary 3.4. Let A be a unitary matrix with no eigenvalues equal to ±i, and
let n ∈ N. If B = (A + A∗)/2, then the diagonal Padé iterations (3.4) and (3.7)
generate sequences satisfying

Yk =
1

2
(Xk +X∗k)

for every k ≥ 0.

3.3. Implementation. To implement the kth step of the iteration (3.1-3.2), one
must compute products of unitary matrices of the form

(3.8) Vj = (X2
k +ajI)(I+ajX

2
k)−1 = (Xk +ajX

∗
k)(X∗k +ajXk)−1, j = 1, 2, . . . , n,

where Xk is unitary. The following lemma describes a method for computing (3.8)
that is guaranteed to produce a matrix that is unitary to machine precision.

Lemma 3.5. Let B ∈ Cm×m be a nonsingular normal matrix. Let Q1R1 = B and
Q2R2 = B∗ be the QR factorizations of B and B∗, respectively. Then

BB−∗ = Q1Q
∗
2.

Proof. Since R1 is the Cholesky factor of B∗B and R2 is the Cholesky factor of
BB∗ = B∗B, we have R1 = R2. Hence, BB−∗ = Q1R1R

−1
2 Q∗2 = Q1Q

∗
2.

Once (3.8) has been computed for each j, one must decide in what order to
multiply the matrices V1, V2, . . . , Vn, and Xk. Our numerical experience suggests that
this decision has a strong influence on the backward stability of the algorithm. We
find that the choice

(3.9) Xk+1 =
1

2
(XkV1V2 · · ·Vn + VnVn−1 · · ·V1Xk)

is preferable to, for instance, Xk+1 = XkV1V2 · · ·Vn or Xk+1 = VnVn−1 · · ·V1Xk. This
choice appears to guarantee that ‖XkA−AXk‖ = O(u) for each k, which is essential
for backward stability; see Lemma 3.7 for details. A proof that ‖XkA−AXk‖ = O(u)
when (3.9) is used remains an open problem.

Termination. We must also decide how to terminate the iteration. Here we sug-
gest terminating slightly early and applying two post-processing steps—symmetrization
followed by one step of the Newton-Schulz iteration [12, Equation 8.20] for the po-
lar decomposition—to ensure that the computed matrix Ŝ ≈ sign(A) is Hermitian
and unitary to machine precision. These post-processing steps have the following ef-
fect. Let {σj cos θj + i sin θj}mj=1 be the eigenvalues of Xk, where σj ∈ {−1, 1} and
|θj | < π/2 for each j. Then

(3.10) Y =
1

2
(Xk +X∗k)

has eigenvalues {σj cos θj}mj=1, and

(3.11) Z =
1

2
Y (3I − Y ∗Y ) =

1

2
Y (3I − Y 2)
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has eigenvalues { 1
2σj cos θj(3− cos2 θj)}mj=1. For small θj , we have

1

2
σj cos θj(3− cos2 θj) = σj

(
1− 3

8
θ4
j

)
+O(θ6

j ).

This number will lie within a tolerance δ of ±1 if

(3.12) θj .

(
8δ

3

)1/4

.

The above calculations suggest the following termination criterion. Since the
eigenvalues of Xk−X∗k are {2i sin θj}mj=1 ≈ {2iθj}mj=1, we terminate the iteration and
carry out the post-processing steps (3.10-3.11) as soon as

‖Xk −X∗k‖ ≤ 2

(
8δ

3

)1/4

.

Note that since the Frobenius norm ‖ · ‖F is an upper bound for the 2-norm ‖ · ‖,
we may safely replace ‖Xk −X∗k‖ by ‖Xk −X∗k‖F in the criterion above. If desired,
a second symmetrization can be performed after the Newton-Schulz step. This has
virtually no effect on the eigenvalues’ distance to ±1, but it may be desirable if an
exactly Hermitian matrix is sought.

Spectral angle. Let us also mention how to determine Θ so that Λ(A) ⊂ SΘ. We
hereafter refer to the smallest such Θ as the spectral angle of A, denoted Θ(A). A
simple heuristic is to estimate the eigenvalues λ+ and λ− of A that lie closest to i and
−i, respectively. Then one can set

Θ = max{π/2− | arg(iλ−)|, | arg(iλ+)| − π/2}.

In practice, it is not necessary to determine the spectral angle of A precisely. Our
experience suggests that underestimates and overestimates of Θ can be used without
significant harm, unless Θ is very close to π/2.

Spectral angles close to π/2. There are a few delicate numerical issues that arise
when the spectral angle of A is close to π/2. First, as noted in [19, Section 4.3], the
built-in MATLAB functions ellipj and ellipke cannot be used to reliably compute
sn(·, `′), cn(·, `′), dn(·, `′), and K(`′) when Θ = arccos ` is close to π/2. Instead,
the code described in [19, Section 4.3] is preferred. In addition, the lowest-order
iteration (n = 1) appears to be more reliable than the higher-order iterations when
Θ > π/2− u1/2, so we advocate using the lowest-order iteration until Θk falls below
π/2− u1/2 (recall that u = 2−53 denotes the unit roundoff). Typically this takes two
or fewer iterations, after which one can switch to a higher-order iteration if desired.

To implement the lowest-order iteration (n = 1) when Θ > π/2 − u1/2, we have
found the following heuristic to be useful for ensuring rapid convergence. If, at the
kth iteration, Θk lies above π/2 − u1/2, we compute Θk+1 as Θk+1 = Θ(Xk+1) (the
spectral angle of Xk+1) rather than via (3.2). This tends to speed up the iteration.
To improve stability, we have also found it prudent to replace Θk by π/2 − 10u if
Θk > π/2− 10u.

A summary of our proposed algorithm for computing the unitary sign decompo-
sition is presented in Algorithm 3.1.

3.4. Backward Stability. We now discuss how some of the choices made above
are inspired by backward stability considerations.
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Algorithm 3.1 Order-(2n+ 1) iteration for the unitary sign decomposition
Inputs: Unitary matrix A ∈ Cm×m, tolerance δ > 0, degree n ∈ N
Outputs: Matrices S,N ∈ Cm×m satisfying (1.1)
1: Θ0 = min{Θ(A), π/2− 10u}
2: X0 = A, n0 = n, k = 0
3: while ‖Xk −X∗k‖F > 2(8δ/3)1/4 do
4: if Θk > π/2− u1/2 then n = 1 else n = n0 end if
5: Y = Xk, Z = Xk

6: for j = 1 to n do
7: Q1R1 = Xk + aj(Θk)X∗k (QR factorization)
8: Q2R2 = X∗k + aj(Θk)Xk (QR factorization)
9: Y = Y Q1Q

∗
2

10: Z = Q1Q
∗
2Z

11: end for
12: Xk+1 = 1

2 (Y + Z)

13: if Θk > π/2− u1/2 then
14: Θk+1 = min{Θ(Xk+1), π/2− 10u}
15: else
16: Θk+1 = | arg r2n+1(eiΘk ; Θk)|
17: end if
18: k = k + 1
19: end while
20: S = (Xk +X∗k)/2
21: S = S(3I − S2)/2
22: S = (S + S∗)/2
23: N = SA
24: return S, N

We first address a remark that was made in the footnote of this paper’s introduc-
tion concerning the list of backward errors (1.2). At first glance, this list may appear
to be incomplete because the norm of N̂ Ŝ−ŜN̂ is absent. The following lemma shows
that if Ŝ and N̂ are well-conditioned matrices and ‖N̂2−A2‖, ‖A−ŜN̂‖, and ‖Ŝ2−I‖
are small, then ‖N̂ Ŝ − ŜN̂‖ is automatically small as well.

Lemma 3.6. Let A ∈ Cm×m be a unitary matrix. For any invertible matrices
Ŝ, N̂ ∈ Cm×m, we have

‖N̂ Ŝ−ŜN̂‖ ≤
(
‖N̂2 −A2‖+ (1 + ‖Ŝ‖‖N̂‖)‖A− ŜN̂‖+ ‖N̂‖2‖Ŝ2 − I‖

)
‖N̂−1‖‖Ŝ−1‖.

Proof. This follows from the identity

(N̂ Ŝ − ŜN̂)ŜN̂ = N̂2 −A2 +A(A− ŜN̂) + (A− ŜN̂)ŜN̂ + N̂(Ŝ2 − I)N̂ .

The next lemma shows that in order to achieve backward stability, it is prudent
to compute a Hermitian matrix Ŝ such that ‖Ŝ2 − I‖ and ‖AŜ − ŜA‖ are small,
and then set N̂ = ŜA. This highlights the importance of ensuring the smallness of
‖AXk −XkA‖ in Algorithm 3.1.

Lemma 3.7. Let A ∈ Cm×m be a unitary matrix, let Ŝ be an invertible Hermitian
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matrix, and let N̂ = ŜA. Then

‖N̂∗N̂ − I‖ ≤ ‖Ŝ2 − I‖,(3.13)

‖A− ŜN̂‖ ≤ ‖Ŝ2 − I‖,(3.14)

‖N̂2 −A2‖ ≤ ‖Ŝ‖‖AŜ − ŜA‖+ ‖Ŝ2 − I‖,(3.15)

‖N̂ Ŝ − ŜN̂‖ ≤ ‖Ŝ‖‖AŜ − ŜA‖.(3.16)

Proof. Since A∗A = I, N̂ = ŜA, and Ŝ = Ŝ∗, we have

N̂∗N̂ − I = A∗Ŝ2A− I = A∗(Ŝ2 − I)A.

Taking the norm of both sides proves (3.13). Similarly, the equalities

A− ŜN̂ = (I − Ŝ2)A,

N̂2 −A2 = ŜAŜA−A2 = Ŝ(AŜ − ŜA)A+ (Ŝ2 − I)A2,

N̂ Ŝ − ŜN̂ = Ŝ(AŜ − ŜA)

yield (3.14-3.16).

4. A Spectral Divide-and-Conquer Algorithm for the Unitary Eigen-
decomposition. The iteration we have proposed for computing the unitary sign
decomposition can be used to construct a spectral divide-and-conquer algorithm for
the unitary eigendecomposition, following [20, 19]. The idea is as follows. Given a
unitary matrix A ∈ Cm×m, we scale A by a complex number eiφ so that roughly
half (say, m1) of the eigenvalues of eiφA lie in the right half of the complex plane,
and roughly half (say, m2) lie in the left half of complex plane. We then compute
S = sign(eiφA) using Algorithm 3.1. The matrix P = (I+S)/2 is a spectral projector
onto the invariant subspace V+ of eiφA associated with the eigenvalues of eiφA hav-
ing positive real part. Using subspace iteration, we can compute orthonormal bases
U1 ∈ Cm×m1 and U2 ∈ Cm×m2 (where m1 + m2 = m) for V+ and its orthogonal
complement. Then (

U∗1
U∗2

)
A
(
U1 U2

)
=

(
A1 0
0 A2

)
is block diagonal, so we can recurse to find eigendecompositions A1 = V1Λ1V

∗
1 and

A2 = V2Λ2V
∗
2 . The eigendecomposition of A is then A = V ΛV ∗, where

V =
(
U1V1 U2V2

)
and

Λ =

(
Λ1 0
0 Λ2

)
.

Since every eigenvalue of P is either 0 and 1, subspace iteration with P typically
converges in one iteration, or, in rare cases, two. To choose the scalar eiφ, a simple
heuristic is to compute the median µ of the arguments of the diagonal entries of A
and set φ = π/2− µ. When A is nearly diagonal, this has the effect of centering the
eigenvalues around i.

A summary of the algorithm just described is presented in Algorithm 4.1.

5. Numerical Examples. In this section, we study the iteration (3.1-3.2) nu-
merically, and we test Algorithms 3.1 and 4.1 on a collection of unitary matrices.
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Algorithm 4.1 Divide-and-conquer algorithm for the unitary eigendecomposition
Inputs: Unitary matrix A ∈ Cm×m
Outputs: Matrices V,Λ ∈ Cm×m satisfying V ΛV ∗ = A, V ∗V = I, and Λ diagonal
1: φ = π

2 −median{argA11, . . . , argAmm}
2: S = sign(eiφA)
3: P = (I + S)/2
4: Use subspace iteration to compute orthonormal bases U1 ∈ Cm×m1 and U2 ∈

Cm×m2 for the 0- and 1-eigenspaces of P .
5: A1 = U∗1AU1, A2 = U∗2AU2

6: Recurse to find eigendecompositions V1Λ1V
∗
1 = A1 and V2Λ2V

∗
2 = A2.

7: V =
(
U1V1 U2V2

)
8: Λ =

(
Λ1 0
0 Λ2

)
9: return V , Λ

π
2 −Θ

n 1.5 1 0.5 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16

1 1 2 2 3 4 4 5 5 5 5 5
2 1 2 2 3 3 3 3 3 3 4 4
3 1 1 2 2 2 3 3 3 3 3 3
4 1 1 1 2 2 2 3 3 3 3 3
5 1 1 1 2 2 2 2 2 3 3 3
6 1 1 1 2 2 2 2 2 2 2 2
7 1 1 1 2 2 2 2 2 2 2 2
8 1 1 1 2 2 2 2 2 2 2 2

Table 5.1
Smallest integer k for which 4ρ(Θ)−(2n+1)k ≤ (8δ/3)1/4, where δ = 10−16, for various values

of n and Θ.

5.1. Scalar Iteration. To understand how rapidly the iteration (3.1-3.2) can
be expected to converge, let us study the upper bound (3.3). Table 5.1 reports the
smallest integer k for which 4ρ(Θ)−(2n+1)k falls below the number (8δ/3)1/4 appearing
in the convergence criterion (3.12). Here, we took δ = 10−16 and considered various
choices of n and Θ. The integer k so computed provides an estimate for the number
of iterations one can expect (3.1-3.2) to take to converge to sign(A) if A has spectrum
contained in SΘ.

For comparison, we computed the number of iterations needed for the scalar Padé
iteration

zk+1 = r2n+1(zk; 0) = zkpn(z2
k)

to converge to sign z0, starting from z0 = eiΘ. The results, reported in Table 5.2,
show that the Padé iterations take significantly longer to converge if Θ is close to π/2.
This suggests the matrix Padé iteration (3.4) will require a large number of iterations
to converge to sign(A) if the spectral angle Θ(A) is close to π/2.

5.2. Matrix Iteration. To test Algorithm 3.1, we computed the sign decom-
position of four unitary matrices:

1. A matrix sampled randomly from the Haar measure on the m ×m unitary
group.
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π
2 −Θ

n 1.5 1 0.5 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16

1 1 2 3 7 11 15 19 24 28 32 37
2 1 2 2 5 8 10 13 16 19 22 25
3 1 2 2 4 6 9 11 13 16 18 21
4 1 1 2 4 6 8 10 12 14 16 19
5 1 1 2 3 5 7 9 11 13 15 17
6 1 1 2 3 5 7 9 10 12 14 16
7 1 1 2 3 5 6 8 10 12 13 15
8 1 1 2 3 5 6 8 9 11 13 14

Table 5.2
Smallest integer k for which |r(2n+1)k (eiΘ; 0) − 1| ≤ (8δ/3)1/4, where δ = 10−16, for various

values of n and Θ.

2. A = gallery(’orthog’,m,3). This is the m-point discrete Fourier trans-
form matrix with entries Ajk = e2πi(j−1)(k−1)/m/

√
m. Its eigenvalues are

1,−1, i,−i. The spectrum of the floating point representation of A therefore
includes O(u)-perturbations of ±i, posing a challenge to numerical algorithms
for the unitary sign decomposition.

3. A = circshift(eye(m),1). This is a permutation matrix with eigenvalues
e2πij/m, m = 1, 2, . . . ,m. For even m, the spectrum of A includes ±i. The
same is true of the floating point representation of A, since the entries of A
are integers.

4. A = gallery(’orthog’,m,-2) (with columns normalized). The entries of A
(prior to normalizing columns) are Ajk = cos((k − 1/2)(j − 1)π/m). The
spectrum of A is clustered near ±1, making its sign decomposition somewhat
easy to compute iteratively.

In our numerical experiment, we used m = 100. The computed spectral angles
for the matrices above were π/2−Θ(A) = 0.026, 4.4×10−16, 0, and 0.95, respectively.

On each of the matrices above, we compared 10 algorithms:
• Algorithm 3.1 with n = 1, 4, 8.
• The diagonal Padé iteration (3.4) with n = 1, 4, 8. We implemented this by

running Algorithm 3.1 with line 1 replaced by Θ0 = 0.
• Three algorithms that compute the unitary factor S in the polar decomposi-

tion of B = (A+A∗)/2. The first uses the Newton iteration with 1,∞-norm
scaling, as described in [12, Section 8.6] and implemented in [10]. The second
uses the Zolo-pd algorithm from [19]. The third computes S as S = UV ∗,
where B = UΣV ∗ is the SVD of B. In all three cases, we applied post-
processing to S (S = (S + S∗)/2, followed by S = S(3I − S2)/2, followed by
S = (S + S∗)/2) and set N = SA.

• A direct method: computing the eigendecomposition A = V ΛV ∗ of A and
setting S = V sign(Λ)V ∗. We computed the eigendecomposition by using
the MATLAB command schur(A,’complex’) and setting the off-diagonal
entries of the triangular factor to zero. We applied post-processing to S
(S = S(3I − S2)/2 followed by S = (S + S∗)/2) and set N = SA.

The results of the tests are reported in Table 5.3. All of the algorithms under con-
sideration performed in a backward stable way on the first and fourth matrices. On
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the second and third matrices (gallery(’orthog’,m,3) and circshift(eye(m),1)),
only the direct method and the structure-preserving iterations (Algorithm 3.1 and the
Padé iteration (3.4)) exhibited backward stability. Among the structure-preserving
iterations, Algorithm 3.1 consistently converged more quickly than the Padé itera-
tion (3.4) for each degree n. The reduction in iteration count was particularly notice-
able for gallery(’orthog’,m,3) and circshift(eye(m),1).

5.3. Unitary eigendecomposition. Next, we tested our spectral divide-and-
conquer algorithm 4.1 on the same four matrices. We implemented line 2 of Algo-
rithm 4.1 in nine different ways, namely, by using the nine indirect methods consid-
ered in the previous experiment. We compared the results with the following direct
method: [V,Lambda]=schur(A,’complex’); Lambda = diag(diag(Lambda)). The
results are reported in Table 5.4.

All of the algorithms under consideration performed in a backward stable way on
the first, second, and fourth matrices. On the third matrix circshift(eye(m),1), the
algorithms that used Zolo-pd and the SVD did not. Curiously, the algorithm that used
the Newton iteration succeeded, but this is an anomaly. Changing circshift(eye(m),1)
to circshift(eye(m),1)+eps*randn(m) leads to a backward error ‖A−V̂ Λ̂V̂ ∗‖ close
to 0.1 for the Newton-based algorithm, and it has a negligible effect on the other al-
gorithms’ backward errors.

6. Conclusion. This paper constructed structure-preserving iterations for com-
puting the unitary sign decomposition using rational minimax approximants of the
scalar function sign(z) on the unit circle. Relative to other structure-preserving it-
erations, they converge significantly faster, and relative to non-structure-preserving
iterations, they exhibit much better numerical stability. We used our iterations to
construct a spectral divide-and-conquer algorithm for the unitary eigendecomposi-
tion.
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Algorithm k ‖A− ŜN̂‖ ‖Ŝ2 − I‖ ‖N̂∗N̂ − I‖ ‖N̂2 −A2‖ µ(N̂)

Alg. 3.1 (n = 1) 3 1.3e−15 1.1e−15 1.8e−15 2.4e−15 0.0e+0
Alg. 3.1 (n = 4) 2 1.2e−15 9.4e−16 1.9e−15 3.9e−15 0.0e+0
Alg. 3.1 (n = 8) 2 1.2e−15 1.0e−15 1.8e−15 4.9e−15 0.0e+0
Padé (n = 1) 6 1.2e−15 9.4e−16 1.8e−15 2.7e−15 0.0e+0
Padé (n = 4) 3 1.2e−15 9.4e−16 2.1e−15 4.8e−15 0.0e+0
Padé (n = 8) 3 1.2e−15 9.7e−16 1.7e−15 6.2e−15 0.0e+0

Polar (Newton) 7 1.2e−15 1.0e−15 1.7e−15 2.8e−14 0.0e+0
Polar (Zolo-pd) 2 1.0e−15 6.4e−16 1.6e−15 2.5e−15 0.0e+0
Polar (SVD) 0 1.2e−15 9.5e−16 1.7e−15 7.4e−15 0.0e+0

Direct 0 1.2e−15 1.1e−15 1.8e−15 1.1e−14 0.0e+0

Alg. 3.1 (n = 1) 6 1.2e−15 9.8e−16 2.3e−15 3.3e−15 0.0e+0
Alg. 3.1 (n = 4) 4 1.2e−15 1.0e−15 2.3e−15 1.1e−14 2.1e−15
Alg. 3.1 (n = 8) 4 1.2e−15 9.8e−16 1.8e−15 7.6e−15 1.0e−15
Padé (n = 1) 34 1.3e−15 1.3e−15 1.8e−15 9.1e−15 0.0e+0
Padé (n = 4) 17 1.3e−15 1.2e−15 2.0e−15 6.3e−14 1.6e−16
Padé (n = 8) 14 1.3e−15 1.1e−15 2.3e−15 7.7e−14 3.7e−15

Polar (Newton) 8 1.2e−15 9.2e−16 1.7e−15 3.4e−1 1.7e−1
Polar (Zolo-pd) 2 1.2e−15 6.5e−16 2.5e−15 2.0e−1 1.0e−1
Polar (SVD) 0 1.8e−2 1.8e−2 1.8e−2 3.6e−1 1.8e−1

Direct 0 1.2e−15 1.1e−15 1.8e−15 8.5e−15 0.0e+0

Alg. 3.1 (n = 1) 6 1.2e−15 9.6e−16 1.1e−15 4.4e−15 0.0e+0
Alg. 3.1 (n = 4) 4 1.3e−15 8.7e−16 1.2e−15 6.4e−15 0.0e+0
Alg. 3.1 (n = 8) 4 1.1e−15 9.4e−16 1.0e−15 5.5e−15 0.0e+0
Padé (n = 1) 37 4.1e−15 4.1e−15 4.1e−15 8.0e−15 5.4e−16
Padé (n = 4) 19 1.6e−15 1.6e−15 1.6e−15 5.0e−14 5.6e−16
Padé (n = 8) 14 1.8e−15 1.8e−15 1.8e−15 1.1e−13 7.2e−16

Polar (Newton) 7 7.1e−16 6.4e−16 6.8e−16 2.0e+0 1.0e+0
Polar (Zolo-pd) 2 7.0e−6 7.0e−6 7.0e−6 2.0e+0 1.0e+0
Polar (SVD) 0 2.3e−15 1.6e−15 2.1e−15 2.0e+0 1.0e+0

Direct 0 1.0e−15 1.0e−15 1.0e−15 1.1e−14 0.0e+0

Alg. 3.1 (n = 1) 2 1.5e−15 1.2e−15 2.0e−15 2.5e−15 0.0e+0
Alg. 3.1 (n = 4) 1 1.3e−15 1.2e−15 1.9e−15 3.0e−15 0.0e+0
Alg. 3.1 (n = 8) 1 1.3e−15 9.6e−16 2.1e−15 3.8e−15 0.0e+0
Padé (n = 1) 3 1.5e−15 1.0e−15 2.2e−15 2.5e−15 0.0e+0
Padé (n = 4) 2 1.3e−15 1.0e−15 2.2e−15 3.1e−15 0.0e+0
Padé (n = 8) 1 1.3e−15 1.0e−15 2.0e−15 3.8e−15 0.0e+0

Polar (Newton) 4 1.2e−15 8.4e−16 2.2e−15 3.8e−15 0.0e+0
Polar (Zolo-pd) 1 1.2e−15 6.4e−16 2.0e−15 2.3e−15 0.0e+0
Polar (SVD) 0 1.2e−15 1.0e−15 2.1e−15 8.0e−15 0.0e+0

Direct 0 1.3e−15 1.0e−15 2.0e−15 9.5e−15 0.0e+0

Table 5.3
Performance of algorithms for computing the unitary sign decomposition of the matrices 1-4.

The table reports the iteration count k and backward errors ‖A − ŜN̂‖, ‖Ŝ2 − I‖, ‖N̂∗N̂ − I‖,
‖N̂2 −A2‖, µ(N̂) = max{0,−min

λ∈Λ(N̂)
Reλ} for each algorithm.
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Algorithm ‖A− V̂ Λ̂V̂ ∗‖ ‖V̂ ∗V̂ − I‖
Alg. 3.1 (n = 1) 4.1e−15 3.3e−15
Alg. 3.1 (n = 4) 5.0e−15 3.8e−15
Alg. 3.1 (n = 8) 4.8e−15 3.2e−15
Padé (n = 1) 5.2e−15 3.9e−15
Padé (n = 4) 5.1e−15 3.4e−15
Padé (n = 8) 5.7e−15 3.8e−15

Polar (Newton) 1.3e−14 3.2e−15
Polar (Zolo-pd) 5.2e−15 3.5e−15
Polar (SVD) 4.4e−15 3.3e−15

Direct 1.5e−14 1.2e−14

Alg. 3.1 (n = 1) 6.0e−15 2.9e−15
Alg. 3.1 (n = 4) 5.9e−15 2.8e−15
Alg. 3.1 (n = 8) 6.3e−15 2.8e−15
Padé (n = 1) 5.9e−15 3.3e−15
Padé (n = 4) 6.2e−15 3.1e−15
Padé (n = 8) 6.6e−15 2.7e−15

Polar (Newton) 1.3e−14 2.8e−15
Polar (Zolo-pd) 6.3e−15 2.6e−15
Polar (SVD) 8.5e−15 2.6e−15

Direct 1.7e−14 1.1e−14

Algorithm ‖A− V̂ Λ̂V̂ ∗‖ ‖V̂ ∗V̂ − I‖
Alg. 3.1 (n = 1) 4.8e−15 4.2e−15
Alg. 3.1 (n = 4) 5.2e−15 3.6e−15
Alg. 3.1 (n = 8) 4.9e−15 3.3e−15
Padé (n = 1) 5.7e−15 4.7e−15
Padé (n = 4) 2.3e−14 3.7e−15
Padé (n = 8) 5.0e−14 3.3e−15

Polar (Newton) 4.8e−15 4.1e−15
Polar (Zolo-pd) 5.5e−1 3.3e−15
Polar (SVD) 4.8e−1 4.1e−15

Direct 2.1e−14 1.7e−14

Alg. 3.1 (n = 1) 4.6e−15 3.3e−15
Alg. 3.1 (n = 4) 4.7e−15 3.8e−15
Alg. 3.1 (n = 8) 4.9e−15 3.5e−15
Padé (n = 1) 4.8e−15 4.0e−15
Padé (n = 4) 5.0e−15 3.6e−15
Padé (n = 8) 5.8e−15 3.5e−15

Polar (Newton) 9.2e−15 3.4e−15
Polar (Zolo-pd) 5.5e−15 3.6e−15
Polar (SVD) 6.2e−15 3.5e−15

Direct 1.3e−14 8.7e−15

Table 5.4
Performance of algorithms for computing the unitary eigendecomposition of the matrices 1-2

(left) and (3-4) (right). With the exception of the entries labeled “Direct”, the entries reported in
column 1 refer to the algorithms for the unitary sign decomposition used in line 2 of Algorithm 4.1.
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