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Abstract

In [E. S. Gawlik, Zolotarev iterations for the matrix square root, SIAM Journal on Matrix
Analysis and Applications, 40 (2019), pp. 696–719], a family of iterations for computing the
matrix square root was constructed by exploiting a recursion obeyed by Zolotarev’s rational
minimax approximants of the function z1/2. The present paper generalizes this construction by
deriving rational minimax iterations for the matrix pth root, where p ≥ 2 is an integer. The
analysis of these iterations is considerably different from the case p = 2, owing to the fact that
when p > 2, rational minimax approximants of the function z1/p do not obey a recursion. Nev-
ertheless, we show that several of the salient features of the Zolotarev iterations for the matrix
square root, including equioscillatory error, order of convergence, and stability, carry over to the
case p > 2. A key role in the analysis is played by the asymptotic behavior of rational minimax
approximants on short intervals. Numerical examples are presented to illustrate the predictions
of the theory.
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1 Introduction

In recent years, a growing body of literature has highlighted the usefulness of rational minimax iter-
ations for computing functions of matrices [4, 7, 9, 28, 29]. In these studies, f(A) is approximated
by a rational function r of A possessing two properties: r closely (and often optimally) approximates
f in the uniform norm over a subset of the real line, and r can be generated from a recursion. A
prominent example of such an iteration was introduced by Nakatsukasa and Freund in [29], where
it was observed that rational minimax approximants of the function sign(z) = z/(z2)1/2 obey a
recursion, allowing one to rapidly compute sign(A) and related decompositions such as the polar
decomposition, symmetric eigendecomposition, SVD, and, in subsequent work, the CS decomposi-
tion [9]. An analogous recursion for rational minimax approximants of z1/2 has recently been used
to construct iterations for the matrix square root [7], building upon ideas of Beckermann [2]. There,
the iterations are referred to as Zolotarev iterations, owing to the role played by explicit formulas
for rational minimax approximants of sign(z) and z1/2 derived by Zolotarev [36].

The aim of this paper is to introduce a family of rational minimax iterations for computing the
principal pth root of a square matrix A, where p ≥ 2 is an integer. Recall that the principal pth
root of a square matrix A having no nonpositive real eigenvalues is the unique solution of Xp = A
whose eigenvalues are contained in {z ∈ C | −π/p < arg z < π/p} [16, Theorem 7.2]. The iterations
∗Department of Mathematics, University of Hawaii at Manoa, egawlik@hawaii.edu

1



we propose reduce to the Zolotarev iterations for the matrix square root [7] when p = 2, but when
p > 2, they differ from the Zolotarev iterations in several important ways. Notably, for all integers
p ≥ 2, the iterations generate a rational function r of A which has the property that for scalar
inputs, the relative error e(z) = (r(z) − z1/p)/z1/p equioscillates on a certain interval [a, b] (see
Section 2 for our terminology). Remarkably, when p = 2, e(z) equioscillates often enough to render
maxa≤z≤b |e(z)| minimal among all choices of r with a fixed numerator and denominator degree [7].
This optimality property is the hallmark of the Zolotarev iterations, and it allows one to appeal to
classical results from rational approximation theory to estimate the maximum relative error. When
p > 2, no such optimality property holds. Much of this paper is devoted to showing that the rational
minimax iterations for the pth root still enjoy many of the same desirable features as the Zolotarev
iterations for the square root, despite the absence of optimality in the case p > 2. We take care to
present our results in such a way that when p = 2, the salient features of the Zolotarev iterations
are recovered as special cases.

There are a number of connections between the iterations we derive and existing iterations from
the literature on the matrix pth root. We have already mentioned that they reduce to the Zolotarev
iterations when p = 2. For arbitrary p ≥ 2, the two lowest order versions of our rational minimax
iterations are scaled variants of the Newton iteration and the inverse Newton iteration [16, Chapter
6], [3, Section 6], [20]. In another limiting case, our iterations reduce to the Padé iterations [24,
Section 5]. Relative to these iterations, the rational minimax iterations offer advantages primarily
when the matrix A has eigenvalues with widely varying magnitudes. As an extreme example, if
p = 3 and A is Hermitian positive definite with condition number ≤ 1016, convergence is achieved
in double-precision arithmetic after just 2 iterations when using our type-(6, 6) rational minimax
iteration. In contrast, up to 5 iterations are needed when using the type-(6, 6) Padé iteration.
Our numerical experiments indicate that the situation is similar, but less dramatic, for non-normal
matrices with eigenvalues away from the positive real axis.

This paper is organized as follows. In Section 2, we review the Zolotarev iterations for the
matrix square root by summarizing the contents of [7]. In Section 3, we introduce rational minimax
iterations for the matrix pth root and present our main results: Theorem 1, Theorem 2, and their
corollaries. Proofs of these results are provided separately in Section 4. Finally, Section 5 presents
numerical experiments that illustrate the predictions of the theory.

2 Background: Zolotarev iterations for the matrix square root

Let us summarize the Zolotarev iterations for the matrix square root and their key properties [7].
Let Rm,` denote the set of all rational functions of type (m, `)—ratios of polynomials of degree at
most m to polynomials of degree at most `. We say that a function r(z) = g(z)/h(z) in Rm,` has
exact type (m′, `′) if, after canceling common factors, g(z) and h(z) have degree exactly m′ ≤ m
and `′ ≤ `, respectively. The number d = min{m−m′, `− `′} is called the defect of r in Rm,`. In
most of what follows, z is a real variable; we use the letter z since the behavior of r on C will play
an important role later in the paper.

Given a continuous, increasing bijection f : [0, 1] → [0, 1] and a number α ∈ (0, 1), let
rm,`(z, α, f) denote the best type-(m, `) rational approximant of f(z) on [f−1(α), 1]:

rm,`(·, α, f) = arg min
r∈Rm,`

max
z∈[f−1(α),1]

∣∣∣∣r(z)− f(z)

f(z)

∣∣∣∣ . (1)

It is well-known that the minimization problem above has a unique solution [1, p. 55]. Furthermore,
explicit formulas for rm,`(·, α,

√
·) are known for ` ∈ {m − 1,m} [36]. Let r̂m,`(z, α, f) denote the
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unique scalar multiple of rm,`(z, α, f) with the property that

min
z∈[f−1(α),1]

r̂m,`(z, α, f)− f(z)

f(z)
= 0. (2)

For m ∈ N and ` ∈ {m− 1,m}, the Zolotarev iteration of type (m, `) for computing the square root
of a square matrix A reads

Xk+1 = Xkr̂m,`
(
X−2k A,αk,

√
·
)
, X0 = I, (3)

αk+1 =
αk

r̂m,`(α
2
k, αk,

√
·)
, α0 = α. (4)

It is proven in [7] that in exact arithmetic, Xk → A1/2 and αk → 1 with order of convergence
m+`+1 for any A with no nonpositive real eigenvalues. In floating point arithmetic, it is necessary
to reformulate the iteration to ensure its stability; we detail the stable reformulation of (3-4) later
on.

The iteration (3-4) has the remarkable property that it generates an optimal rational approxi-
mation of A1/2 of high degree. Namely, X̃k := 2αkXk/(1 + αk) = rmk,`k(A,α,

√
·), where

(mk, `k) =

{(
1
2(2m)k, 12(2m)k − 1

)
, if ` = m− 1,(

1
2((2m+ 1)k − 1), 12((2m+ 1)k − 1)

)
, if ` = m.

(5)

A simple consequence of this is that if A is Hermitian positive definite with eigenvalues in [α2, 1],
then

‖(X̃k −A1/2)A−1/2‖2 ≤ Emk,`k(
√
·, [α2, 1]),

where
Em,`(f, S) = min

r∈Rm,`
max
z∈S

∣∣∣∣r(z)− f(z)

f(z)

∣∣∣∣ .
For more detailed error estimates, including error estimates for non-normal A with eigenvalues in
C \ (−∞, 0], see [7]. Note that by definition,

Em,`(f, [f
−1(α), 1]) = max

z∈[f−1(α),1]

∣∣∣∣rm,`(z, α, f)− f(z)

f(z)

∣∣∣∣ .
3 Minimax iterations for the matrix pth root

In this paper, we propose an iteration for computing pth roots of matrices that generalizes (3-4).
Given α ∈ (0, 1), m, ` ∈ N0, and an integer p ≥ 2, the iteration reads

Xk+1 = Xkr̂m,`

(
X−pk A,αk,

p√·
)
, X0 = I, (6)

αk+1 =
αk

r̂m,`(α
p
k, αk,

p√·)
, α0 = α. (7)

The Zolotarev iterations (3-4) correspond to the cases {(m, `, p) | m ∈ N, ` ∈ {m − 1,m}, p = 2}
in (6-7). (Note that we colloquially referred to these cases as “the case p = 2” in Section 1). Since
Xk is a rational function of A for each k, it commutes with A.

With the exception of the cases {(m, `, p) | m ∈ N, ` ∈ {m − 1,m}, p = 2} and {(m, `, p) |
(m, `) ∈ {(0, 0), (1, 0), (0, 1)}, p ≥ 2}, explicit formulas for r̂m,`(z, α,

p√·) are not known. However,
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the coefficients of the numerator and denominator of r̂m,`(z, α,
p√·) can be computed numerically; see

Section 5 for details. Note that the cost of computing r̂m,`(z, α,
p√·) is independent of the dimension

of A, so it is expected to be negligible for problems involving large matrices.
As with the square root iteration (3-4), it is necessary to reformulate the pth root iteration (6-

7) to ensure its stability. This is accomplished by considering the iteration for Yk = X1−p
k A and

Zk = X−1k implied by (6-7). Exploiting commutativity, we have

Yk+1 = Ykh`,m,p (ZkYk, αk)
p−1 , Y0 = A, (8)

Zk+1 = h`,m,p (ZkYk, αk)Zk, Z0 = I, (9)
αk+1 = αkh`,m,p(α

p
k, αk), α0 = α, (10)

where h`,m,p(z, α) = rm,`(z, α,
p√·)−1. (We swapped the order of the first two indices to emphasize

that h`,m,p(z, α) is a rational function of type (`,m), not (m, `).)
The remainder of this section presents a series of results about the behavior of the iteration (6-7)

and its counterpart (8-10). Proofs of these results are given in Section 4.

3.1 Functional iteration

A great deal of information about the behavior of the iteration (6-7) (and hence (8-10)) can be
gleaned from a study of the functional iteration

fk+1(z) = fk(z)r̂m,`

(
z

fk(z)p
, αk,

p
√
·
)
, f0(z) = 1, (11)

αk+1 =
αk

r̂m,`(α
p
k, αk,

p
√
·)
, α0 = α. (12)

Indeed, we have Xk = fk(A) in (6-7), and Yk = fk(A)1−pA and Zk = fk(A)−1 in (8-10).
The following theorem summarizes the properties of the functional iteration (11-12). In the

interest of generality, it focuses on a slight generalization of (11-12) that reduces to (11-12) when
the function f appearing below is f(z) = z1/p. The theorem makes use of the following terminology.
A continuous function g(z) is said to equioscillate m times on an interval [a, b] if there existm points
a ≤ z0 < z1 < · · · < zm−1 ≤ b at which

g(zj) = σ(−1)j max
z∈[a,b]

|g(z)|, j = 0, 1, . . . ,m− 1.

for some σ ∈ {−1, 1}. It is well known that the minimax approximants (1) are uniquely characterized
by the property that rm,`(z,α,f)−f(z)

f(z) equioscillates at least m+`+2−d times on [f−1(α), 1], where d
is the defect of rm,`(z, α, f) in Rm,` [32, Theorem 24.1]. We will be particularly interested in those
functions f for which:

(3.i) For every α ∈ (0, 1) and m, ` ∈ N0, rm,`(z, α, f) has exact type (m, `). Furthermore,
rm,`(z,α,f)−f(z)

f(z) equioscillates exactly m + ` + 2 times on [f−1(α), 1], achieves its maximum
at z = f−1(α), and achieves an extremum at z = 1.

The function f(z) = z1/p satisfies this hypothesis; see Lemma 5 for a proof.
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Theorem 1. Let f : [0, 1] → [0, 1] be a continuous, increasing bijection satisfying (3.i). Let α ∈
(0, 1) and m, ` ∈ N0, and define fk(z) recursively by

fk+1(z) = fk(z)r̂m,`

(
f−1

(
f(z)

fk(z)

)
, αk, f

)
, f0(z) = 1, (13)

αk+1 =
αk

r̂m,`(f−1(αk), αk, f)
, α0 = α. (14)

Then, with f̃k(z) = 2αk
1+αk

fk(z) and εk = maxz∈[f−1(α),1]

∣∣∣ f̃k(z)−f(z)f(z)

∣∣∣, we have:

(3.ii) For every k ≥ 0,

αk =
1− εk
1 + εk

(15)

and
εk+1 = Em,`(f, [f

−1(αk), 1]). (16)

(3.iii) For every k ≥ 0, the relative error f̃k(z)−f(z)
f(z) equioscillates (m+`+1)k+1 times on [f−1(α), 1],

and it achieves its extrema at the endpoints.

(3.iv) If f ∈ Cm+`+1([α, 1]), f−1 is Lipschitz on [α, 1], and (m, `) 6= (0, 0), then εk → 0 monotoni-
cally with order of convergence m+ `+ 1 as k →∞.

Let us discuss the meaning of this theorem. It states that the iteration (13-14) generates a func-
tion f̃k(z) ≈ f(z) with the following curious property: The maximum relative error in f̃k(z) on the
interval [f−1(α), 1] is equal to the maximum relative error in the best rational approximant of f(z)
on a much smaller interval [f−1(αk−1), 1]. Indeed, as k increases, the length of [f−1(α), 1] remains
constant, whereas the length of [f−1(αk−1), 1] = [f−1(αk−1), f

−1(1)] is O(1 − αk−1) = O(εk−1)
by (15), assuming f−1 is Lipschitz near z = 1. Since rational functions of type (m, `) can approxi-
mate analytic functions on intervals of length O(εk−1) with (generically) accuracy O(εm+`+1

k−1 ) [32,
Theorem 27.1], we see from (16) that εk = O(εm+`+1

k−1 ), assuming f is smooth enough near z = 1.
That is, εk → 0 with order of convergence m+ `+ 1.

For most functions f , the iteration (13-14) is not useful, as it (rather circularly) uses f (and
f−1) to generate an approximation of f . Furthermore, the approximation it generates need not be
a rational function of z. The function f(z) = z1/p, however, is exceptional, in that the iteration (13-
14)—which reduces to (11-12) for this f—generates a rational function fk(z) without requiring the
evaluation of any pth roots.

The following theorem specializes Theorem 1 to the case f(z) = z1/p and gives precise informa-
tion about the constants implicit in the convergence result (3.iv). In it, we use the notation (β)m
for the rising factorial (the Pochhammer symbol): (β)m = β(β + 1)(β + 2) · · · (β +m− 1).

Theorem 2. Let α ∈ (0, 1), m, ` ∈ N0, and p ∈ N with p ≥ 2 and (m, `) 6= (0, 0). Let fk(z) and
αk be defined by the iteration (11-12), and let f̃k(z) = 2αk

1+αk
fk(z) and εk = maxz∈[αp,1]

∣∣∣ f̃k(z)−z1/p
z1/p

∣∣∣.
Then the conclusions (3.ii) and (3.iii) hold with f(z) = z1/p. Furthermore, as k → ∞, εk → 0
monotonically with

εk+1 = C(m, `, p)εm+`+1
k + o(εm+`+1

k ), (17)

where

C(m, `, p) =
pm+`+1m!`!(1/p)`+1(1− 1/p)m

2m+`(m+ `+ 1)!(m+ `)!
. (18)
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Note that when p = 2 and ` ∈ {m − 1,m}, (18) simplifies to C(m, `, 2) = 4−(m+`). This is
consistent with the results of [7], where it is shown that for these m, `, and p, an asymptotically
sharp bound of the form εk ≤ 4ρ−(m+`+1)k holds with ρ a constant depending on α.

Letmk and `k be the degrees of the polynomials in the numerator and denominator, respectively,
of f̃k. Since the relative error

f̃k(z)−z1/p
z1/p

equioscillates (m+`+1)k+1 times on [αp, 1], it is natural to
wonder how the number (m+ `+ 1)k + 1 compares with mk + `k + 2, the number of equioscillations
achieved by arg minr∈Rmk,`k

maxz∈[αp,1]

∣∣∣ r(z)−z1/p
z1/p

∣∣∣ (which has defect 0 in Rmk,`k ; see Lemma 5). We
address question this below.

Proposition 1. Let α,m, `, p, and f̃k be as in Theorem 2. Then, for each k ∈ N, f̃k is a rational
function of type (mk, `k), where

mk =

{
1
p(pm)k, if ` < m,
1
p

[
(p`+ 1)k − (p(`−m) + 1)k

]
, if ` ≥ m,

`k =

{
1
p(pm)k − (m− `), if ` < m,
1
p

[
(p`+ 1)k − 1

]
, if ` ≥ m.

As k →∞, the asymptotic relation

(m+ `+ 1)k + 1

mk + `k + 2
∼


p
2

(
m+`+1
pm

)k
, if ` < m,

p
2

(
m+`+1
p`+1

)k
, if ` ≥ m 6= 0,

p
(
`+1
p`+1

)k
, if ` > m = 0

(19)

holds.

When p = 2 and ` ∈ {m − 1,m}, the asymptotic relation (19) is an equality: (m+`+1)k+1
mk+`k+2 = 1

for every k.

3.2 Convergence of the matrix iteration

An immediate consequence of Theorem 2 is that the iteration (6-7) converges when A is Hermitian
positive definite with eigenvalues in [αp, 1].

Corollary 1. Let α ∈ (0, 1), m, ` ∈ N0, and p, n ∈ N with p ≥ 2 and (m, `) 6= (0, 0). Let A ∈ Cn×n
be Hermitian positive definite. If the eigenvalues of A lie in [αp, 1], then the iteration (6-7) generates
a sequence X̃k = 2αkXk/(1 + αk) that converges to A1/p with order m + ` + 1. In particular, we
have

‖X̃kA
−1/p − I‖2 ≤ εk,

for every k ≥ 0, where εk obeys the recursion

εk+1 = Em,`

(
p√·,
[(

1− εk
1 + εk

)p
, 1

])
= C(m, `, p)εm+`+1

k + o(εm+`+1
k ), ε0 =

1− α
1 + α

, (20)

and C(m, `, p) is given by (18).

A similar result holds for the coupled iteration (8-10).
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Corollary 2. Let α,m, `, p, n, and A be as in Corollary 1. Then the coupled iteration (8-10)
generates sequences Ỹk = (1+αk)

p−1Yk/(2αk)
p−1 and Z̃k = (1+αk)Zk/(2αk) that converge to A1/p

and A−1/p respectively, with order m+ `+ 1. In particular, we have

‖ỸkA−1/p − I‖2 ≤
(1 + εk)

p−1 − 1

(1− εk)p−1
,

‖Z̃kA1/p − I‖2 ≤
εk

1− εk
,

for every k ≥ 0, where εk obeys the recursion (20).

Note that the bounds above imply corresponding bounds on the relative errors ‖X̃k−A1/p‖2/‖A1/p‖2,
‖Ỹk −A1/p‖2/‖A1/p‖2, and ‖Z̃k −A−1/p‖2/‖A−1/p‖2. For instance,

‖X̃k −A1/p‖2
‖A1/p‖2

=
‖(X̃kA

−1/p − I)A1/p‖2
‖A1/p‖2

≤ ‖X̃kA
−1/p − I‖2 ≤ εk.

When A is non-normal and/or has eigenvalues away from the positive real axis, the behavior of
the matrix iteration (6-7) (and hence (8-10)) is dictated by the behavior of the scalar iteration (11-
12) on complex inputs z. This has been analyzed in detail for the case p = 2 in [9], but for p > 2,
numerical experiments indicate that the scalar iteration converges in a subset of the complex plane
with fractal structure, a typical feature of iterations for the pth root. We study this behavior
numerically in Section 5. It remains an open problem to determine theoretically the convergence
region {z ∈ C | limk→∞ fk(z) = z1/p} for the iteration (11-12).

3.3 Special cases

For certain values of m, `, and p, the theory above recovers some known results from the literature.
We discuss these situations below.

3.3.1 Square roots

When p = 2, m ∈ N, and ` ∈ {m − 1,m}, a remarkable phenomenon occurs, allowing us to draw
the connection between Theorem 1 and the results of [7] that we alluded to earlier. For these p, m,
and `, the function f̃k(z) is a rational function of type (mk, `k), where (mk, `k) is given by (5). In
both the case ` = m− 1 and the case ` = m, we have

mk + `k = (m+ `+ 1)k − 1,

so (3.iii) implies that f̃k(z)−f(z)
f(z) equioscillates mk + `k + 2 times on [f−1(α), 1]. It follows from the

theory of rational minimax approximation that f̃k(z) is the best rational approximant of
√
z of type

(mk, `k) on [α2, 1]:

f̃k(z) = rmk,`k(z, α,
√
·), if p = 2 and ` ∈ {m− 1,m}.

In particular,

εk = Em,`(
√
·, [α2

k, 1]) = Emk,`k(
√
·, [α2, 1]), if p = 2 and ` ∈ {m− 1,m},

for every k ≥ 1. This shows that Theorem 1 includes [7, Theorem 1] as a special case.
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3.3.2 Low-order iterations

When p ≥ 2 is an integer and (m, `) = (1, 0) or (0, 1), we recover variants of another family of
iterations.

Proposition 2. Let p ≥ 2 be an integer and α ∈ (0, 1). We have

r̂1,0(z, α,
p
√
·) =

1

p

(
(p− 1)µ+

z

µp−1

)
, µ =

(
α− αp

(p− 1)(1− α)

)1/p

. (21)

and

r̂0,1(z, α,
p
√
·) =

p

(p+ 1)ν − νp+1z
, ν =

(
(p+ 1)(1− α)

1− αp+1

)1/p

. (22)

Note that the formula (21) for r̂1,0(z, α, p
√
·) appears in [27, Theorem 2] and [23]; see also [14,

Lemma 3.2] for a related result. (When comparing (21) with [27, Theorem 2], one must bear in
mind that r1,0(z, α, p

√
·) and r̂1,0(z, α, p

√
·) differ by a factor of 2

1+r̂1,0(1,α,
p√·) = 2µpp

µ+µp(µ(p−1)+p) .)
The preceding proposition shows that when (m, `) = (1, 0), the iteration (6-7) reads

Xk+1 =
1

p

(
(p− 1)µkXk + (µkXk)

1−pA
)
, X0 = I,

αk+1 =
pαk

(p− 1)µk + µ1−pk αpk
, α0 = α,

where

µk =

(
αk − αpk

(p− 1)(1− αk)

)1/p

. (23)

This is a scaled variant of the popular Newton iteration [16, Equation 7.5] for the matrix pth root.
The scaling heuristic above is reminiscent of one proposed by Hoskins and Walton [19], but theirs
is based on type-(1, 0) rational minimax approximants of z(p−1)/p.

On the other hand, when (m, `) = (0, 1), the iteration (6-7) reads

Xk+1 = pXk

(
(p+ 1)νkI − νp+1

k X−pk A)
)−1

, X0 = I,

αk+1 =
1

p
αk

(
(p+ 1)νk − νp+1

k αpk

)
, α0 = α,

where

νk =

(
(p+ 1)(1− αk)

1− αp+1
k

)1/p

. (24)

In terms of the matrix Zk = X−1k , the iteration for Xk becomes

Zk+1 =
1

p

(
(p+ 1)νkZk − (νkZk)

p+1A
)
, Z0 = I,

which is a scaled variant of the inverse Newton iteration [16, Equation (7.12)] for computing A−1/p.
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3.3.3 Padé iterations

We recover one more family of iterations by considering the limit as α ↑ 1 in (6-7).
Below, we say that a family of rational functions {rα ∈ Rm,` | α ∈ (0, 1)} converges coefficient-

wise to r1 ∈ Rm,` as α ↑ 1 if the coefficients of the polynomials in the numerator and denominator
of rα, appropriately normalized, approach those of r1 as α ↑ 1.

Proposition 3. As α ↑ 1, r̂(z, α, p
√
·) converges coefficientwise to the type-(m, `) Padé approximant

Pm,`,p(z) of z1/p at z = 1:

Pm,`,p(z) =
m∑
j=0

(−m)j(−1/p− `)j
j!(−`−m)j

(1− z)j
/∑̀

j=0

(1/p)j(1/p−m)m(j − `−m)m
j!(−`−m)m(j + 1/p−m)m

(1− z)j . (25)

It follows that the iteration (6-7) reduces formally to

Xk+1 = XkPm,`,p

(
X−pk A

)
, X0 = I (26)

as α ↑ 1. This is precisely the Padé iteration for the matrix pth root studied by Laszkiewicz and
Ziętak [24, Equation (36)]. When (m, `) = (1, 1), it is the Halley iteration [21, p. 11], [13]. In terms
of Yk = X1−p

k A and Zk = X−1k , the iteration (26) reads

Yk+1 = YkQ`,m,p (ZkYk)
p−1 , Y0 = A, (27)

Zk+1 = Q`,m,p (ZkYk)Zk, Z0 = I, (28)

where Q`,m,p(z) = Pm,`,p(z)
−1.

For later use, it will be convenient to define

r̂m,`(z, 1,
p√·) := Pm,`,p(z),

h`,m,p(z, 1) := Q`,m,p(z).

The Padé iterations (26) and (27-28) are then simply the iterations obtained by setting α = 1 in
the minimax iterations (6-7) and (8-10), respectively.

3.4 Stability of the coupled matrix iteration

As alluded to earlier, the uncoupled matrix iteration (6-7) exhibits numerical instability, whereas
the coupled iteration (8-10) does not. We justify the latter claim below.

We recall the following definition. A matrix iteration Xk+1 = g(Xk) with fixed point X∗ is said
to be stable in a neighborhood of X∗ if the Fréchet derivative of g at X∗ has bounded powers [16,
Definition 4.17]. That is, if Lg(A,E) denotes the Fréchet derivative of g at A ∈ Cn×n in a direction
E ∈ Cn×n, then there exists a constant c > 0 such that ‖Gj(E)‖ ≤ c‖E‖ for every j and every
E ∈ Cn×n, where G(E) = Lg(X∗, E).

We first address the stability of the coupled Padé iteration (27-28).

Proposition 4. Let m, ` ∈ N0 and p, n ∈ N with (m, `) 6= (0, 0) and p ≥ 2. The Padé iteration (27-
28) is stable in a neighborhood of (B,B−1) for any B ∈ Cn×n. In particular, with g(Y, Z) =
(Y Q`,m,p(ZY )p−1, Q`,m,p(ZY )Z), we have

Lg(B,B
−1;E,F ) =

1

p

(
E − (p− 1)BFB, (p− 1)F −B−1EB−1

)
for any E,F ∈ Cn×n, and Lg(B,B−1; ·, ·) is idempotent.
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Consider now the coupled minimax iteration (8-10). Theorem 1 established that αk converges
to 1 in (10). We argue in Section 5 that when αk is close to 1, it is numerically prudent to set αk
(and all subsequent iterates) equal to 1, thereby reverting to the Padé iteration (27-28). Since the
latter iteration is stable, it follows that the aforementioned modification of (8-10) is stable as well.

4 Proofs

In this section, we prove Theorems 1 and 2, Corollaries 1 and 2, and Propositions 1, 2, 3, and 4.

4.1 Proof of Theorem 1

4.1.1 Equioscillation

To prove the claims (3.ii) and (3.iii) in Theorem 1, we use an inductive argument. When k = 0, (3.iii)
holds since the relative error f̃0(z)−f(z)

f(z) = 2α
f(z)(1+α) − 1 decreases monotonically from 1−α

1+α to −1−α
1+α

as z runs from f−1(α) to 1. This shows also that ε0 = 1−α
1+α , so (15) holds when k = 0. Next, we

prove two lemmas in preparation for the inductive step.

Lemma 1. Let f : [0, 1] → [0, 1] be a continuous, increasing bijection satisfying (3.i). Then the
recurrence (14) is equivalent to

αk+1 =
1− Em,`(f, [f−1(αk), 1])

1 + Em,`(f, [f−1(αk), 1])
, α0 = α. (29)

Proof. Since

min
z∈[f−1(α),1]

rm,`(z, α, f)

f(z)
= 1− Em,`(f, [f−1(α), 1]),

the defining property (2) of r̂m,`(z, α, f) implies that

r̂m,`(z, α, f) =
rm,`(z, α, f)

1− Em,`(f, [f−1(α), 1])
.

Also, the assumption (3.i) implies that

rm,`(f
−1(α), α, f)

f(f−1(α))
= max

z∈[f−1(α),1]

rm,`(z, α, f)

f(z)
= 1 + Em,`(f, [f

−1(α), 1]),

so
α

r̂m,`(f−1(α), α, f)
=

1− Em,`(f, [f−1(α), 1])

1 + Em,`(f, [f−1(α), 1])
.

Since this holds for any α ∈ (0, 1), it follows that the recurrence (14) is equivalent to (29).

Lemma 2. Let f : [0, 1]→ [0, 1] be a continuous, increasing bijection satisfying (3.i). Let α ∈ (0, 1)

and m, ` ∈ N0. Let F̃ (z) be any continuous function on [f−1(α), 1] with the property that F̃ (z)−f(z)
f(z)

equioscillates q times on [f−1(α), 1] and achieves its extrema ±ε at the endpoints, where q ≥ 2 and

10



0 < ε < 1. Define

α′ =
1− ε
1 + ε

,

α′′ =
1− Em,`(f, [f−1(α′), 1])

1 + Em,`(f, [f−1(α′), 1])
,

F (z) =
1 + α′

2α′
F̃ (z),

H(z) =
2α′′

1 + α′′
F (z)r̂m,`

(
f−1

(
f(z)

F (z)

)
, α′, f

)
.

Then H(z)−f(z)
f(z) equioscillates (m+`+1)(q−1)+1 times on [f−1(α), 1] with extrema ±Em,`(f, [f−1(α′), 1]),

and it achieves its extrema at the endpoints.

Proof. The assumed equioscillation of F̃ (z)
f(z) − 1 on [f−1(α), 1] implies that the function F̃ (f−1(z))

z − 1

equioscillates q times on [α, 1] with extrema ±ε. If we now define

S(z) =
z(1− ε2)
F̃ (f−1(z))

,

then we conclude that S(z)−1 equioscillates q times on [α, 1] with extrema 1−ε2
1±ε −1 = ∓ε. Moreover,

it achieves its extrema at the endpoints by our assumptions on F̃ .
By the same reasoning as above, the function

sm,`(z, α
′, f) =

z(1− (ε′)2)

rm,`(f−1(z), α′, f)
, ε′ = Em,`(f, [f

−1(α′), 1]),

has the property that sm,`(z, α′, f) − 1 equioscillates m + ` + 2 times on [α′, 1] with extrema ±ε′,
and it achieves its extrema at the endpoints by the assumption (3.i).

Consider now the function
g(z) = sm,`

(
S(z)

1 + ε
, α′, f

)
. (30)

We claim that g(z) − 1 equioscillates on [α, 1] with extrema ±ε′. To see this, we make two obser-
vations. First, as z runs from α to 1, S(z)1+ε runs from/to 1−ε

1+ε = α′ to/from 1+ε
1+ε = 1 a total of q − 1

times, achieving its extrema at the endpoints each time. Second, each time y = S(z)
1+ε runs from/to α′

to/from 1, sm,`(y, α′, f)− 1 equioscillates m+ `+ 2 times with extrema ±ε′. By counting extrema,
we conclude that the composition (30) (minus 1) equioscillates

(m+ `+ 2)(q − 1)− (q − 2) = (m+ `+ 1)(q − 1) + 1

times on [α, 1] with extrema ±ε′.
Finally, consider the function

h(z) =
(1− (ε′)2)

g(f(z))
.

In view of the equioscillation of (30), the function h(z) − 1 equioscillates (m + ` + 1)(q − 1) + 1

times on [f−1(α), 1] with extrema 1−(ε′)2
1±ε′ − 1 = ∓ε′, and it achieves its extrema at the endpoints.
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We will complete the proof by showing that h(z) = H(z)
f(z) . Using the fact that 1 − ε′ = 2α′′

1+α′′ ,

F̃ (z) = (1− ε)F (z), and rm,`(z, α, f) = (1− ε′)r̂m,`(z, α, f), we have

h(z) =
(1− (ε′)2)

sm,`

(
S(f(z))
1+ε , α′, f

)
=
rm,`

(
f−1

(
S(f(z))
1+ε

)
, α′, f

)
S(f(z))
1+ε

=
rm,`

(
f−1

(
f(z)(1−ε)
F̃ (z)

)
, α′, f

)
f(z)(1−ε)
F̃ (z)

= (1− ε′)
F (z)r̂m,`

(
f−1

(
f(z)
F (z)

)
, α′, f

)
f(z)

=
H(z)

f(z)
.

Remark 1. When f(z) = z1/p, the function

sm,`(z, α
′,

p√·) =
z(1− (ε′)2)

rm,`(zp, α′,
p√·)

appearing in the proof above is a rational approximant of the sector function sectp(z) = z/(zp)1/p;
see Fig. 1. In fact, the proof above reveals that on each of the segments {z ∈ C | e−2πij/pz ∈ [α′, 1]},
j = 0, 1, 2, . . . , p− 1, the relative error

sm,`(z, α
′,

p√·)− sectp(z)

sectp(z)
= e−2πij/psm,`(z, α

′,
p√·)− 1

is real-valued and equioscillates m + ` + 2 times with extrema ±ε′. In particular, for ` ∈ {m −
1,m}, sm,`(z, α′,

√
·) is Zolotarev’s type-(2`+ 1, 2m) best rational approximant of the sign function

sign(z) = z/(z2)1/2 on [−1,−α′] ∪ [α′, 1] [29].
We are now ready to prove (3.ii-3.iii). Suppose (3.iii) and (15) hold at step k in the iteration (11-

12). Then Lemma 2 (applied with F̃ = f̃k, ε = εk, and q = (m + ` + 1)k + 1, so that α′ = αk
and α′′ = αk+1) implies that (3.iii) and (15) hold at step k + 1, so in fact they hold for all k. It
now follows immediately that (16) is equivalent to (29), which, in turn, is equivalent to (14) by
Lemma 1. This completes the proof of (3.ii-3.iii).

4.1.2 Convergence

We now address the last claim (3.iv) of Theorem 1, which concerns the convergence of εk to 0 in
the iteration

εk+1 = G(εk), ε0 =
1− α
1 + α

, (31)

with α ∈ (0, 1),

G(ε) = Em,`

(
f,

[
f−1

(
1− ε
1 + ε

)
, 1

])
, (32)

and (m, `) 6= (0, 0).
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Figure 1: Plots of sm,`(z, α′,
p√·) and sectp(z) with m = 2, ` = 2, p = 3, and α′ = 0.03.

Lemma 3. Let m, ` ∈ N0, and let f : [0, 1] → [0, 1] be a continuous, increasing bijection sat-
isfying (3.i). If (m, `) 6= (0, 0), then G is continuous, nonnegative, and nondecreasing on (0, 1).
Furthermore, G(ε) < ε for every ε ∈ (0, 1).

Proof. It is obvious that G is nonnegative and nondecreasing. To show that G(ε) < ε for every
ε ∈ (0, 1), note that (32) is no larger than the uniform relative error committed by the constant
function g(z) = 1− ε:

−ε =
1− ε− f(1)

f(1)
≤ g(z)− f(z)

f(z)
≤

1− ε− f
(
f−1

(
1−ε
1+ε

))
f
(
f−1

(
1−ε
1+ε

)) = ε

for every z ∈
[
f−1

(
1−ε
1+ε

)
, 1
]
. This establishes that G(ε) ≤ ε. The inequality is in fact strict since

we assumed (3.i), which implies that the minimizer of the relative error is not a constant function
when (m, `) 6= (0, 0). It remains to show that G is continuous on (0, 1). We assumed in (3.i) that
the minimizer for Em,`(f, [f−1(α), 1]) has defect 0 in Rm,` for each α ∈ (0, 1), so, for each fixed
α ∈ (0, 1), the map g 7→ rm,`(·, α, g) is continuous with respect to the uniform norm at g = f [26].
By considering functions g obtained by scaling and translating the input to f , we deduce that
rm,`(·, α, f) depends continuously on α ∈ (0, 1), again with respect to the uniform norm. Hence,
the map α 7→ Em,`(f, [f

−1(α), 1]) is continuous on (0, 1), and so too is G.

It follows from the above properties ofG that εk → 0 monotonically in the iteration εk+1 = G(εk)
for every ε0 ∈ (0, 1).

4.1.3 Rate of convergence

It remains to show that the order of convergence of εk to 0 is m + ` + 1. As we explained in the
paragraph below Theorem 1, it suffices to note that when f is Cm+`+1 in a neighborhood of 1,

Em,`(f, [a, 1]) = O((1− a)m+`+1), as a→ 1.
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Indeed, this, together with (16), gives

εk+1 = O

((
1− f−1

(
1− εk
1 + εk

))m+`+1
)

= O(εm+`+1
k ), (33)

assuming that f−1 is Lipschitz near 1 and f−1(1) = 1. Below, we give more precise information
about the constant implicit in (33). We begin with a lemma that shows, in essence, that the uniform
error in the best type-(m, `) rational approximant of a function g(z) on a small interval [−δ, δ] is
about 2m+` times smaller than the uniform error in the type-(m, `) Padé approximant of g(z). (Note
that this does not contradict Proposition 3; the difference between the two aforementioned uniform
errors still tends to 0 as δ → 0.)

Lemma 4. Let g(z) be Cm+`+1 and positive in a neighborhood of 0. Assume that the type-(m, `)
Padé approximant p(z) of g(z) about 0 has defect 0 in Rm,`, and

p(z)− g(z) = cgz
m+`+1 + o(zm+`+1),

where cg ∈ R. For each δ > 0, let

rδ = arg min
r∈Rm,`

max
−δ≤z≤δ

∣∣∣∣r(z)− g(z)

g(z)

∣∣∣∣ .
Then, as δ → 0,

max
−δ≤z≤δ

∣∣∣∣rδ(z)− g(z)

g(z)

∣∣∣∣ =
2|cg|
g(0)

(
δ

2

)m+`+1

+ o(δm+`+1).

Proof. Let
q = arg min

r∈Rm+`,0

max
−δ≤z≤δ

|r(z)− zm+`+1|. (34)

Among polynomials of degree m+`+1 with unit leading coefficient, the polynomial zm+`+1−q(z) is
the one that deviates least from 0 on [−δ, δ]. Up to a rescaling, this is precisely the degree-(m+`+1)
Chebyshev polynomial of the first kind Tm+`+1(z):

zm+`+1 − q(z) = 2

(
δ

2

)m+`+1

Tm+`+1

(z
δ

)
.

Now let R(z) be the type-(m, `) Padé approximant of

ḡ(z) = g(z)− cgq(z).

Since we assumed that the Padé approximant of g(z) has defect 0 in Rm,`, the Taylor coefficients of
R(z) approach those of p(z) as δ → 0 [34, Corollary of Theorem 2a]. It follows that for each δ > 0
sufficiently small,

R(z)− ḡ(z) = c̄gz
m+`+1 + o(zm+`+1),

for some c̄g with c̄g − cg = o(1) as δ → 0. Thus, for each δ > 0 sufficiently small,

R(z)− g(z) = R(z)− ḡ(z)− cgq(z)

= c̄gz
m+`+1 − cgzm+`+1 + 2cg

(
δ

2

)m+`+1

Tm+`+1

(z
δ

)
+ o(zm+`+1).
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Hence, as δ → 0,

R(z)− g(z) = 2cg

(
δ

2

)m+`+1

Tm+`+1

(z
δ

)
+ o(δm+`+1)

for every z ∈ [−δ, δ], uniformly in z. Multiplying by 1
g(z) = 1

g(0) + o(1), we conclude that

R(z)− g(z)

g(z)
=

2cg
g(0)

(
δ

2

)m+`+1

Tm+`+1

(z
δ

)
+ o(δm+`+1) (35)

for every z ∈ [−δ, δ], uniformly in z. Finally, by the definition of rδ,

max
−δ≤z≤δ

∣∣∣∣rδ(z)− g(z)

g(z)

∣∣∣∣ ≤ max
−δ≤z≤δ

∣∣∣∣R(z)− g(z)

g(z)

∣∣∣∣ =
2cg
g(0)

(
δ

2

)m+`+1

+ o(δm+`+1).

In fact, this bound is sharp, for the following reason. The relation (35) shows that for δ sufficiently
small, R(z)−g(z)

g(z) approximately equioscillates, in the sense that there exist m + ` + 2 points −δ ≤
z0 ≤ z1 ≤ · · · ≤ zm+`+1 ≤ δ at which R(z)−g(z)

g(z) alternates in sign and satisfies∣∣∣∣R(zj)− g(zj)

g(zj)

∣∣∣∣ ≥ 2|cg|
g(0)

(
δ

2

)m+`+1

− γ, j = 0, 1, . . . ,m+ `+ 1,

where γ = o(δm+`+1). The de la Vallée Poussin lower bound [32, Exercise 24.5] then implies that

max
−δ≤z≤δ

∣∣∣∣rδ(z)− g(z)

g(z)

∣∣∣∣ ≥ 2|cg|
g(0)

(
δ

2

)m+`+1

− γ.

Remark 2. The proof above suggests a heuristic for constructing near-best rational minimax approx-
imants on short intervals [−δ, δ]: one computes the Padé approximant of ḡ(z) = g(z)− cgzm+`+1 +
2cg(δ/2)m+`+1Tm+`+1(z/δ) rather than g(z). In view of (35), this heuristic is closely related to
Chebyshev–Padé approximation [35].

Remark 3. The near equioscillation of R in the proof above can be used to show that R is close to
rδ: R(z) − rδ(z) = o(δm+`+1), uniformly in z ∈ [−δ, δ] as δ → 0. The argument is essentially the
same as the one used in [33, p. 429-430] to show that Charathéodory–Fejér approximants are close
to minimax approximants on small intervals. See Fig. 2 for an illustration.

It is now a simple matter to estimate the constant implicit in (33). As ε→ 0, the above lemma
gives

G(ε) = Em,`

(
f,

[
f−1

(
1− ε
1 + ε

)
, 1

])
= max

f−1( 1−ε
1+ε )≤z≤1

∣∣∣∣rm,`(z, α, f)− f(z)

f(z)

∣∣∣∣
=

2|cf,δ|
f(1− δ)

(
δ

2

)m+`+1

+ o(δm+`+1),

where
δ =

1

2

(
1− f−1(α)

)
, α =

1− ε
1 + ε

,
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Figure 2: Relative errors in R(z), rδ(z), and the type-(m, `) Padé approximant p(z) of g(z) = ez

with m = 2, ` = 1, and δ = 0.1.

and cf,δ is the Taylor coefficient of (z−1+δ)m+`+1 in the difference between f(z) and its type-(m, `)
Padé approximant about z = 1− δ. Since 1

f(1−δ) = 1
f(1) + o(1) = 1 + o(1), we have

G(ε) = 2|cf,δ|
(
δ

2

)m+`+1

+ o(δm+`+1).

A short calculation shows that δ = ε(f−1)′(1) + o(ε) = ε/f ′(1) + o(ε) and cf := cf,0 = cf,δ + o(1),
so

G(ε) =
|cf |

2m+`f ′(1)m+`+1
εm+`+1 + o(εm+`+1).

It follows that in the iteration (31), we have

εk+1 =
|cf |

2m+`f ′(1)m+`+1
εm+`+1
k + o(εm+`+1

k ). (36)

4.2 Proof of Theorem 2

Having proved Theorem 1, we now verify that the function f(z) = z1/p satisfies the hypothesis (3.i),
and we prove Theorem 2.

We begin by establishing a few properties of the minimax approximants rm,`(z, α,
p√·). The

proof of the following lemma is similar to that of [31, Lemma 2], which studies rational functions
of type (` + 1, `) that minimize the maximum absolute error on [0, 1] rather than the maximum
relative error on [α, 1], α > 0. The proof makes use of the following terminology. A Chebyshev
system of dimension N on an interval I ⊆ R is a linearly independent set {gj(z)}Nj=1 of continuous
functions on I with the property that any nontrivial linear combination

∑N
j=1 cjgj(z) has at most

N − 1 (distinct) roots in I.

Lemma 5. Let m, ` ∈ N0, 0 < a < b <∞, and p ∈ N, p ≥ 2. If r ∈ Rm,` minimizes

max
z∈[a,b]

|e(z)|, e(z) =
r(z)− z1/p

z1/p
,
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then r has exact type (m, `), e(z) equioscillates exactly m+ `+ 2 times on [a, b], and

e(a) = max
z∈[a,b]

|e(z)|, (37)

e(b) = (−1)m+`+1 max
z∈[a,b]

|e(z)|. (38)

Proof. Suppose that r(z) = g(z)/h(z), where g(z) and h(z) are polynomials of exact degree m′ ≤ m
and `′ ≤ `, respectively. Observe that the function

z1/ph(z)e(z) = g(z)− z1/ph(z)

belongs to the space W spanned by

{1, z, z2, . . . , zm′ , z1/p, z1+1/p, z2+1/p, . . . , z`
′+1/p},

which is a Chebyshev system on [a, b] of dimension m′ + `′ + 2 [22, p. 9, Example 1]. Thus,
z1/ph(z)e(z) has at most m′ + `′ + 1 zeros on [a, b]. In particular, e(z) has at most m′ + `′ + 1
zeros on [a, b], so it equioscillates at most m′+ `′+ 2 times on [a, b]. But e(z) equioscillates at least
m+ `+ 2− d times on [a, b], where d = min{m−m′, `− `′} ≥ 0. It follows that

m′ + `′ + 2 ≥ m+ `+ 2− d,

so
d ≥ (m−m′) + (`− `′) ≥ 2d.

From this we conclude that d = 0, m′ = m, `′ = `, and e(z) equioscillates exactly m+ `+ 2 times
on [a, b].

Let a ≤ z0 < z1 < · · · < zm+`+1 ≤ b be the points at which e(z) achieves its extrema on [a, b].
Suppose that z0 > a or zm+`+1 < b. By considering the graph of e(z), one easily deduces that there
exists c ∈ R such that e(z)− c has at least m+ `+ 2 roots in [a, b]. But

z1/ph(z)(e(z)− c) = z1/ph(z)e(z)− cz1/ph(z) ∈W,

so z1/ph(z)(e(z)− c) has at most m′ + `′ + 1 = m+ `+ 1 roots in [a, b]. In particular, e(z)− c has
at most m+ `+ 1 roots in [a, b], a contradiction. It follows that z0 = a and zm+`+1 = b.

It remains to verify that the signs in (37-38) are correct. Consider the dependence of e(z) on
the parameters a and b. Denote this dependence by e(z; a, b). By an argument similar to the one
made in the proof of Lemma 3, the maps a 7→ e(a; a, b) and b 7→ e(a; a, b) are continuous on (0, b)
and (a,∞), respectively. These maps also have no zeros, since e(z; a, b) has a nonzero extremum
at z = a for every 0 < a < b < ∞. Now, for small δ > 0, the proof of Lemma 4 shows that for
z ∈ [1− δ, 1 + δ],

e(z; 1− δ, 1 + δ) = 2cf

(
δ

2

)m+`+1

Tm+`+1

(
z − 1

δ

)
+ o(δm+`+1),

where cf is the coefficient of (z−1)m+`+1 in the Taylor expansion of Pm,`,p(z)−z1/p about z = 1. In
particular, e(1− δ; 1− δ, 1 + δ) has the same sign as cfTm+`+1(−1) = (−1)m+`+1cf for δ close to 0,
which, as we verify below in (40), is positive. By continuity, e(a; a, b) > 0 for every 0 < a < b <∞,
and (37-38) follow.
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The preceding lemma shows that the function f(z) = z1/p satisfies the hypothesis (3.i), so
Theorem 2 will follow if we can show that the constant C(m, `, p) in the estimate (17) is given
by (18). In view of the general estimate (36), it suffices to determine the coefficient cf of the
leading-order term cf (z−1)m+`+1 in Pm,`,p(z)− z1/p, where Pm,`,p(z) is the Padé approximant (25)
of z1/p about z = 1. This is given by [11, Lemma 3.12]

cf = (−1)m+`+1m!`!(1/p)`+1(1− 1/p)m
(m+ `+ 1)!(m+ `)!

. (39)

Inserting this into (36) and noting that f ′(1) = 1
p and

|cf | = (−1)m+`+1cf , (40)

we obtain (18).

4.3 Proof of Proposition 1

To prove Proposition 1, it suffices to analyze fk, which is a rational function of the same type as
f̃k. Write fk(z) = uk(z)

vk(z)
with uk and vk polynomials of degree mk and `k, respectively. Since

r̂m,`(z, α,
p√·) =

amz
m + am−1z

m−1 + · · ·+ a0
b`z` + b`−1z`−1 + · · ·+ b0

for some coefficients aj and bj depending on α, m, `, and p, we have

fk+1(z) = fk(z)r̂m,`

(
z

fk(z)p
, αk,

p√·
)

=
uk(z)

vk(z)

am
(
zvk(z)

p

uk(z)p

)m
+ am−1

(
zvk(z)

p

uk(z)p

)m−1
+ · · ·+ a0

b`

(
zvk(z)p

uk(z)p

)`
+ b`−1

(
zvk(z)p

uk(z)p

)`−1
+ · · ·+ b0

 ,

where the coefficients aj and bj vary with the iteration number k. In the case where ` < m, we can
write this as a ratio of two polynomials,

fk+1(z) =
amz

mvk(z)
pm + am−1z

m−1uk(z)
pvk(z)

p(m−1) + · · ·+ a0uk(z)
pm

b`z`uk(z)p(m−`)−1vk(z)p`+1 + b`−1z`−1uk(z)p(m−`+1)−1vk(z)p(`−1)+1 + · · ·+ b0uk(z)pm−1vk(z)
.

An inductive argument shows that the terms a0uk(z)pm and b0uk(z)
pm−1vk(z) have the high-

est degree among terms in the numerator and denominator, respectively. Hence, fk+1 has type
(mk+1, `k+1), where

mk+1 = pmmk, m1 = m,

`k+1 = (pm− 1)mk + `k, `1 = `.

Solving this recursion gives

mk =
1

p
(pm)k,

`k =
1

p
(pm)k − (m− `).
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The case in which ` ≥ m is similar. This time we write

fk+1(z) =
amz

muk(z)
p(`−m)+1vk(z)

pm + am−1z
m−1uk(z)

p(`−m+1)+1vk(z)
p(m−1) + · · ·+ a0uk(z)

p`+1

b`z`vk(z)p`+1 + b`−1z`−1uk(z)pvk(z)p(`−1)+1 + · · ·+ b0uk(z)p`vk(z)
,

leading to the recursion

mk+1 = m+ (p(`−m) + 1)mk + pm`k, m1 = m,

`k+1 = `+ (p`+ 1)`k, `1 = `,

with solution

mk =
1

p

[
(p`+ 1)k − (p(`−m) + 1)k

]
,

`k =
1

p

[
(p`+ 1)k − 1

]
.

The asymptotic relation (19) follows easily.

4.4 Proof of Corollaries 1 and 2

To prove Corollaries 1 and 2, let ek(z) = f̃k(z)−z1/p
z1/p

. Since Xk = fk(A) = 1+αk
2αk

f̃k(A), Yk = X1−p
k A,

and Zk = X−1k in (6), (8), and (9), we have

X̃kA
−1/p − I = ek(A),

ỸkA
−1/p − I = X̃

−(p−1)
k A(p−1)/p − I

= (I + ek(A))−(p−1)
(
I − (I + ek(A))p−1

)
,

and

Z̃kA
1/p − I = X̃−1k A1/p − I

= −(I + ek(A))−1ek(A).

The results follow from the above equalities and the bounds

‖ek(A)‖2 ≤ max
αp≤z≤1

|ek(z)| = εk,

‖(I + ek(A))−1‖2 ≤
1

1− ‖ek(A)‖2
≤ 1

1− εk
,

and

‖I − (I + ek(A))p−1‖2 =

∥∥∥∥∥∥−
p−1∑
j=1

(
p− 1

j

)
ek(A)j

∥∥∥∥∥∥
2

≤
p−1∑
j=1

(
p− 1

j

)
εjk

= (1 + εk)
p−1 − 1.
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4.5 Proof of Proposition 2

To prove the formula (21) for r̂1,0(z, α,
p√·), it suffices to show that the function

ê(z) :=
r̂1,0(z, α,

p√·)− z1/p

z1/p

achieves its global maximum on [αp, 1] at both endpoints and has global minimum 0 on [αp, 1].
Indeed, if this is the case, then the rescaled function

2

2 + ê(1)
r̂1,0(z, α,

p√·)

has relative error which equioscillates three times on [αp, 1], and so must be the minimizer for
E1,0(

p√·, [αp, 1]). A calculation verifies that ê(z) has a critical point at z = µp, ê(µp) = 0, ê(αp) =
ê(1), ê(z) is decreasing on (αp, µp), and ê(z) is increasing on (µp, 1).

The proof of (22) is similar. In this case, a calculation verifies that the function

ê(z) :=
r̂0,1(z, α,

p√·)− z1/p

z1/p

has a critical point at z = 1/νp, ê(1/νp) = 0, ê(αp) = ê(1), ê(z) is decreasing on (αp, 1/νp), and
ê(z) is increasing on (1/νp, 1).

4.6 Proof of Proposition 3

Trefethen and Gutknecht [34, Theorem 3b] have shown that for any function f analytic in a neigh-
borhood of 1, arg minr∈Rm,` maxz∈[1−δ,1] |r(z) − f(z)| converges coefficientwise as δ → 0 to the
type-(m, `) Padé approximant of f about z = 1, provided that the Padé approximant has defect
0 in Rm,`. Their proof carries over easily to minimizers of the relative error |(r(z) − f(z))/f(z)|,
assuming f(1) 6= 0. Since Pm,`,p(z) has defect 0 in Rm,` [10], Proposition 3 follows. The explicit
formula (25) for Pm,`,p(z) is from [24, p. 954].

4.7 Proof of Proposition 4

Since Q`,m,p(z)−1 = Pm,`,p(z) is a Padé approximant of f(z) = z1/p about z = 1 of type (m, `) 6=
(0, 0), we have Q`,m,p(1) = 1 and

−Q′`,m,p(1) =
−Q′`,m,p(1)

Q`,m,p(1)2
= P ′m,`,p(1) = f ′(1) =

1

p
.

Hence, Q`,m,p(I) = I, LQ`,m,p(I, E) = −1
pE, and L

Qp−1
`,m,p

(I, E) = −p−1
p E for any E ∈ Cn×n. Thus,

with g(Y,Z) = (Y Q`,m,p(ZY )p−1, Q`,m,p(ZY )Z), we obtain

Lg(B,B
−1;E,F ) =

(
E −B

(
p− 1

p

)
(FB +B−1E), F − 1

p
(FB +B−1E)B−1

)
=

1

p

(
E − (p− 1)BFB, (p− 1)F −B−1EB−1

)
.

Setting Ẽ = 1
p(E−(p−1)BFB) and F̃ = 1

p((p−1)F−B−1EB−1), we find that Lg(B,B−1; Ẽ, F̃ ) =

Lg(B,B
−1;E,F ), so Lg(B,B−1; ·, ·) is idempotent.
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5 Numerical examples

In this section, we present numerical examples and discuss the implementation of the rational
minimax iteration (8-10).

5.1 Implementation

Implementing the rational minimax iteration (8-10) requires evaluating the rational function h`,m,p(z, αk) =
r̂m,`(z, αk,

p√·)−1 at a matrix argument ZkYk. With the exception of the special cases detailed in
Section 3.3, explicit formulas for this function are not available. Nevertheless, r̂m,`(z, αk,

p√·) (or,
more precisely, its unscaled counterpart rm,`(z, αk,

p√·)) can be determined numerically using, for
instance, the function MiniMaxApproximation from Mathematica’s FunctionApproximations pack-
age. This function uses the Remez exchange algorithm to determine rational minimax approximants
on real intervals. We used this function along with Apart to compute h`,m,p(z, αk) in partial fraction
form. For αk close to 1, the computation of h`,m,p(z, αk) poses numerical difficulties, so we rounded
αk to 1 (thereby reverting to the Padé iteration (27-28)) whenever αk > 0.99. We also observed that
for αk close to 0 and ` = m, accuracy improved if rm,m(z, αk,

p√·) was computed as R(1/z), where
R = arg minr∈Rm,m max1≤z≤α−pk

|(r(z)−z−1/p)/z−1/p|. The time taken to determine rm,`(z, αk,
p√·)

with MiniMaxApproximation ranged from about 0.01 seconds (for (m, `) = (1, 1) and α far from 0)
to about 1 second (for (m, `) = (8, 8) and α close to 0), with little dependence on p.

Note that a more robust option for computing minimizers of the maximum absolute error
|r(z) − f(z)| is the Chebfun function minimax [6]. However, Chebfun currently does not support
minimization of the maximum relative error |(r(z)− f(z))/f(z)|.

Algorithm 1 summarizes the implementation of the rational minimax iteration (8-10). For
simplicity, it focuses on the type-(m,m) iteration. The type-(m, `) iteration with ` 6= m is similar,
but the form of the partial fraction expansion of h`,m,p(z, α) varies with `. In the algorithm,
the eigenvalues of A with the smallest and largest magnitudes are denoted λmin(A) and λmax(A),
respectively.

The choices of α0 and τ used in the algorithm are motivated by Corollary 2: they ensure that
the spectrum of A/τ is contained in the annulus {z ∈ C | αp0 ≤ |z| ≤ 1}. In particular, if A is
Hermitian positive definite, then the spectrum of A/τ is contained in [αp0, 1], and Corollary 2 is
directly applicable. Neither λmin(A) nor λmax(A) need to be computed accurately; our experience
suggests that estimates can be used without significantly degrading the algorithm’s performance.

As a termination criterion, we terminated the iterations when

‖Z̃k−1Ỹk−1 − I‖∞ ≤ p
(

∆

(p− 1)C(m, `, p)

)1/(m+`+1)

,

where ∆ = 10−15 is a relative error tolerance. This is a generalization to arbitrary p of the termi-
nation criterion described in [7, Section 4.3].

Floating point operations If A is n × n and (a0I + W )p−1 is computed with binary powering
in Line 10 of Algorithm 1, then the cost of each iteration in Algorithm 1 is about (6 + 2m +
β log2(p − 1))n3 flops, where β ∈ [1, 2] [16, p. 72]. In the first iteration, the cost reduces to
(2 + 2m + β log2(p − 1))n3 flops since Z0 = I. If parallelism is exploited, then the m matrix
inversions in Line 9 can be performed simultaneously, as can Lines 10-11. The effective cost (i.e.,
the span/depth) of such a parallel implementation is (4 +β log2(p− 1))n3 flops in the first iteration
and (6 + β log2(p− 1))n3 flops in each remaining iteration. Further savings in computational costs
can be achieved when p = 2; see [7, Section 4.2] for details.
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Algorithm 1 Type-(m,m) rational minimax iteration for the matrix pth root
1: τ = |λmax(A)|
2: α0 = |λmin(A)/λmax(A)|1/p
3: Y0 = A/τ
4: Z0 = I
5: k = 0
6: while not converged do
7: if αk > 0.99 then αk = 1 end if
8: Compute hm,m,p(z, αk) and its partial fraction expansion

hm,m,p(z, αk) = a0 +
m∑
j=1

aj
z + bj

.

9: W =
∑m

j=1 aj(ZkYk + bjI)−1

10: Yk+1 = Yk(a0I +W )p−1

11: Zk+1 = a0Zk +WZk
12: αk+1 = αkhm,m,p(α

p
k, αk)

13: k = k + 1
14: end while
15: Ỹk = τ1/p(1 + αk)

p−1Yk/(2αk)
p−1

16: Z̃k = τ−1/p(1 + αk)Zk/(2αk)
17: return Ỹk ≈ A1/p, Z̃k ≈ A−1/p

(m, `, p) = (1, 1, 13) (m, `, p) = (2, 2, 3) (m, `, p) = (3, 3, 5)

k εk εk/ε
m+`+1
k−1 εk εk/ε

m+`+1
k−1 εk εk/ε

m+`+1
k−1

0 5.0000 · 10−1 9.9999 · 10−1 9.0000 · 10−1

1 1.4864 · 10−1 1.19 · 100 7.8215 · 10−1 7.82 · 10−1 4.2647 · 10−2 8.92 · 10−2

2 9.5361 · 10−3 2.90 · 100 1.4269 · 10−2 4.87 · 10−2 2.1116 · 10−11 8.23 · 10−2

3 3.0325 · 10−6 3.50 · 100 1.4379 · 10−11 2.43 · 10−2

3.50 · 100 2.43 · 10−2 8.25 · 10−2

Table 1: Values of {εk}3k=1 generated by the iteration (31) with f(z) = z1/p for various choices of m,
`, p, and ε0. In each instance, the ratios εk/εm+`+1

k−1 approach the constant C(m, `, p) given by (18),
whose value is recorded in the last row of the table for reference.

In the vast majority of our numerical experiments with, for instance, the type-(8, 8) minimax
iteration, convergence was achieved in two iterations (see Table 3), yielding an effective parallel
cost of (10 + 2β log2(p− 1))n3 flops. For small to moderate p, this cost compares favorably against
Schur-based algorithms for the matrix pth root, which are not easy to parallelize and typically cost
at least 28n3 flops [14, 17, 18, 30].

5.2 Scalar iteration

Asymptotic convergence rates To verify the asymptotic convergence rates predicted by Theo-
rem 2, we computed εk = 1−αk

1+αk
, k = 1, 2, 3, for various choices of m, `, p, and ε0. Table 1 reports the

results for three such choices. (We selected values of m, `, p, and ε0 so that the asymptotic regime
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(m, `) = (1, 1), α = 10−4/3 (m, `) = (1, 1), α = 10−10/3 (m, `) = (1, 1), α = 10−16/3

(m, `) = (4, 4), α = 10−4/3 (m, `) = (4, 4), α = 10−10/3 (m, `) = (4, 4), α = 10−16/3

(m, `) = (8, 8), α = 10−4/3 (m, `) = (8, 8), α = 10−10/3 (m, `) = (8, 8), α = 10−16/3

Figure 3: Boundaries of the sets S(k; δ, α,m, `, p) with δ = 10−14, p = 3, (m, `) = (1, 1) (first row),
(m, `) = (4, 4) (second row), (m, `) = (8, 8) (third row), α = 10−4/3 (first column), α = 10−10/3

(second column), and α = 10−16/3 (third column). In each plot, one of the boundaries has been
selected arbitrarily and labelled with its index k. Each unlabelled boundary has an index which
differs by +1 from that of its nearest inner neighbor. Shaded regions correspond to points z for
which limk→∞ f̃k(z) 6= z1/p.

was reached before convergence to machine precision occurred.) The table demonstrates that the
ratios εk/εm+`+1

k−1 approach the constant C(m, `, p) given by (18). Note that the entry in the row
k = 3 of the last column has been omitted, since ε3 was below machine precision in that instance.

Complex inputs To study the behavior of the rational function f̃k(z) generated by the type-
(m, `) iteration (11-12), we numerically computed the sets

S(k) = S(k; δ, α,m, `, p) =

{
z ∈ C :

∣∣∣∣∣ f̃k(z)− z1/pz1/p

∣∣∣∣∣ ≤ δ
}

for various choices of δ, α, m, `, and p. The boundaries of these sets are plotted in Fig. 3.
They are plotted in the (log10 |z|, arg z) coordinate plane rather than the usual (Re z, Im z) co-
ordinate plane to facilitate viewing. The shaded regions in the plots correspond to points z ∈ C
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(m, `) = (1, 1), α = 10−4/3 (m, `) = (1, 1), α = 10−10/3 (m, `) = (1, 1), α = 10−16/3

(m, `) = (4, 4), α = 10−4/3 (m, `) = (4, 4), α = 10−10/3 (m, `) = (4, 4), α = 10−16/3

(m, `) = (8, 8), α = 10−4/3 (m, `) = (8, 8), α = 10−10/3 (m, `) = (8, 8), α = 10−16/3

Figure 4: Boundaries of the sets T (k; δ, α,m, `, p) with the same parameters as in Fig. 3.

for which limk→∞ f̃k(z) 6= z1/p. Numerical evidence indicates that at these points, limk→∞ f̃k(z) ∈
{e2πij/pz1/p | j ∈ {1, 2, . . . , p− 1}}. Furthermore, the shaded regions have a fractal structure. Both
of these phenomena are typical features of iterations for the pth root when p > 2 [5].

Fig. 3 gives valuable insight into the behavior of the matrix iteration (6-7) (and, of course, its
coupled counterpart (8-10)). Indeed, if A is a normal matrix with eigenvalues in S(k), then the
iteration (6-7) converges in at most k iterations with a relative tolerance δ in the 2-norm. As an
example, the plot in row 3, column 2 of Fig. 3 demonstrates that S(2) contains the set

{z ∈ C | log10 |z| ∈ [−10, 0], arg z ∈ [−π/2, π/2]}

when (m, `) = (8, 8), p = 3, and α = 10−10/3. It follows that the type-(8, 8) iteration (6-7) converges
to A1/3 in at most 2 iterations for any normal matrix A with spectrum in the right half plane and
|λmax(A)/λmin(A)| ≤ 1010.

For comparison, Fig. 4 shows the boundaries of the sets

T (k) = T (k; δ, α,m, `, p) =

{
z ∈ C :

∣∣∣∣∣ f̃k(z/αp/2)− (z/αp/2)1/p

(z/αp/2)1/p

∣∣∣∣∣ ≤ δ
}
,
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p 2 3 4 5 6 7 8 9 10 100 1000 10000

αp = 10−4 6 6 7 7 7 7 7 7 7 7 7 7
αp = 10−10 7 8 9 9 9 10 10 10 10 11 11 11
αp = 10−16 8 9 10 10 11 11 12 12 12 14 14 14

Table 2: Smallest k for which |f̃k(z)− z1/p|/|z1/p| ≤ 10−14. Here, z = 1
2 , (m, `) = (1, 0), and results

are reported for various choices of p and α.

where this time f̃k(z) is the rational function generated by (11-12) with the initial condition α0 = α
replaced by α0 = 1. By Proposition 3, the sets T (k) characterize the convergence behavior of the
Padé iteration (25) (and its coupled counterpart (27-28)) with the initial iterate scaled by 1/αp/2.
(Scaling by 1/αp/2 facilitates the comparison with Fig. 3 by centering the Padé contours around
z = αp/2.)

Notice that for small α (the two rightmost columns of Fig. 4), the sets T (k) do not contain
scalars with extreme magnitudes (|z| = αp and |z| = 1) unless k is relatively large. Comparing, for
instance, the bottom right plots in Figs. 3 and 4, we see that if A is Hermitian positive definite with
spectrum in [10−16, 1], then the type-(8, 8) rational minimax iteration (11-12) converges in at most 2
iterations, whereas the type-(8, 8) Padé iteration (25) converges in at most 5. The same observation
holds, in fact, for the type-(6, 6) and type-(7, 7) iterations, which are not shown in Figs. 3-4. This
is entirely analagous to the behavior observed in the case p = 2 in [7, Section 5.1]. In fact, with the
exception of the low-order iterations, Figs. 3-4 bear a rather strong resemblance to Figs. 1-2 of [7].

It is worth noting that for the low-order iterations, the sets {z ∈ C | limk→∞ f̃k(z) 6= z1/p}
occupy more of the complex plane when f̃k(z) is generated from the rational minimax iteration
than when f̃k(z) is generated from the Padé iteration (see the shaded regions in row 1 of Figs. 3-4).
This appears to be a drawback of the low-order rational minimax iterations. The moderate-order
and high-order iterations do not suffer as much from this issue; compare the shaded regions in the
bottom two rows of Figs. 3-4, which occupy only a small neighborhood of the nonpositive real axis
(| arg z| = π). The latter observation suggests that for moderate to high m and `, it is safe to apply
Algorithm 1 to matrices with spectrum contained in {z ∈ C : | arg z| ≤ Θ}, where Θ < π is close to
π. For matrices with eigenvalues that lie very near but not on the nonpositive real axis, a simple
workaround is to compute A1/2 using any algorithm for the matrix square root, and then compute
((A1/2)1/p)2. One can also compute ((A1/2s)1/p)2

s with s > 1, as in [14, 17], but the advantages
of minimax approximation over Padé approximation become less pronounced as s increases, since
A1/2s has eigenvalues clustered near 1 for large s.

Dependence on p Next, we studied the dependence of the iteration (11-12) on p. We fixed
z = 1

2 and (m, `) = (1, 0), and, for various choices of p and α, we numerically determined the
smallest integer k for which |f̃k(z) − z1/p|/|z1/p| ≤ 10−14. The results for 2 ≤ p ≤ 10000 and
αp ∈ {10−4, 10−10, 10−16} are shown in Table 2. The table indicates that the iteration count k
grows with p, but does so rather slowly unless both p and αp are small. For the higher-order
iterations (m, ` ≥ 1), we detected little to no dependence of the iteration count on p. For instance,
the iteration counts for (m, `) = (1, 1) (not shown) were constant for 2 ≤ p ≤ 10000 (4 iterations
when αp = 10−4 and 5 iterations when αp ∈ {10−10, 10−16}).
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Figure 5: Relative errors committed by the Padé iterations of type (4, 4) and (8, 8), the minimax
iterations of type (4, 4) and (8, 8), and the Schur method [30]. Results are shown for 41 tests with
p = 3, ordered by decreasing condition number κ(p)(A).

Iterations 1 2 3 4 5 ≥ 6

Padé-(4, 4) 0 17 12 6 4 2
Padé-(8, 8) 0 27 7 6 1 0

Minimax-(4, 4) 0 17 20 2 1 1
Minimax-(8, 8) 0 34 6 1 0 0

Table 3: Number of iterations used by each iterative method in the tests appearing in Fig. 5.

5.3 Matrix iteration

To test Algorithm 1, we applied it to a collection of matrices of size 10 × 10 from the Matrix
Computation Toolbox [15]. We selected those 10 × 10 matrices in the toolbox with condition
number ≤ u−1 (where u = 2−53 denotes the unit roundoff) and with spectrum contained in the
sector {z ∈ C : | arg z| < 0.9π}. We also included those matrices whose spectrum could be rotated
into the aforementioned sector by multiplying A by a suitable scalar eiθ, θ ∈ [0, 2π]. A total of 41
matrices met these criteria. We carried out these tests in MATLAB, using a Wolfram Language
script to call Mathematica’s MiniMaxApproximation function in Line 8 of Algorithm 1.

Fig. 5 plots the relative error ‖X̂ −A1/p‖F /‖A1/p‖F in the computed pth root X̂ of A for each
of the 41 matrices, where p = 3. The tests are sorted in order of decreasing κ(p)(A), where

κ(p)(A) =
‖A‖F
‖X‖F

∥∥∥∥∥∥
 p∑
j=1

(Xp−j)T ⊗Xj−1

−1∥∥∥∥∥∥
2

denotes the Frobenius-norm relative condition number of the matrix pth root X of A [16, Problem
7.4]. Results for five methods are shown: the rational minimax iterations (8-10) of type (4, 4) and
(8, 8), the Padé iterations (27-28) of type (4, 4) and (8, 8), and Smith’s Schur method for the matrix
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pth root [30]. The Padé iterations were implemented using Algorithm 1 with Lines 1-2 replaced by
τ = 1/

√
|λmin(A)λmax(A)| and α0 = 1. The results indicate that the algorithms under consideration

behave in a forward stable way, with relative errors mostly lying within a small factor of uκ(p)(A).
In Table 3, the number of iterations used by each iterative method on the 41 tests are recorded.

In analogy with the results of [7], the rational minimax iterations very often converged more quickly
than the Padé iterations on these tests.

6 Conclusion

This paper has constructed and analyzed a family of iterations for computing the matrix pth root
using rational minimax approximants of the function z1/p. The output of each step k of the type-
(m, `) iteration is a rational function r of A with the property that the scalar function e(z) =
(r(z) − z1/p)/z1/p equioscillates (m + ` + 1)k + 1 times on [αp, 1], where α ∈ (0, 1) is a parameter
depending on A. With the exception of the Zolotarev iterations (i.e. p = 2 and ` ∈ {m−1,m}), this
equioscillatory behavior does not render maxαp≤z≤1 |e(z)| minimal among all choices of r with the
same numerator and denominator degree. Nevertheless, we have shown that many of the desirable
features of the Zolotarev iterations carry over to the general setting. A key role in the analysis was
played by the asymptotic behavior of rational minimax approximants on short intervals.

Several topics mentioned in this paper are worth pursuing in more detail. Remark 1 leads
naturally to a family of rational minimax iterations for the matrix sector function sectp(A) =
A(Ap)−1/p. As α ↑ 1, these iterations likely reduce to the Padé iterations for the sector function
studied by Laszkiewicz and Ziętak [24, Section 5], so the results therein could inform an analysis
of the convergence of the rational minimax iterations on matrices that are non-normal and/or have
spectrum away from the positive real axis. Another topic of interest is computing the action of A1/p

on a vector b using rational minimax iterations. Li and Yang [25] address a similar task: computing
the action of a spectral filter on b using Zolotarev iterations for sign(z). It may be possible to
construct a similar algorithm for computing A1/pb. Finally, the functional iteration (11-12) is of
interest in its own right, as it offers a method of rapidly generating rational approximants of z1/p

with small relative error, a tool that may have applications in, for instance, numerical conformal
mapping [12] and approximation theory for compositions of rational functions [8].
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