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Abstract. The Whitney forms on a simplex T admit high-order gen-
eralizations that have received a great deal of attention in numerical
analysis. Less well-known are the shadow forms of Brasselet, Goresky,
and MacPherson. These forms generalize the Whitney forms, but have
rational coefficients, allowing singularities near the faces of T . Moti-
vated by numerical problems that exhibit these kinds of singularities,
we introduce degrees of freedom for the shadow k-forms that are well-
suited for finite element implementations. In particular, we show that
the degrees of freedom for the shadow forms are given by integration
over the k-dimensional faces of the blow-up T̃ of the simplex T . Conse-
quently, we obtain an isomorphism between the cohomology of the com-
plex of shadow forms and the cellular cohomology of T̃ , which vanishes
except in degree zero. Additionally, we discover a surprising probabilis-
tic interpretation of shadow forms in terms of Poisson processes. This
perspective simplifies several proofs and gives a way of computing bases
for the shadow forms using a straightforward combinatorial calculation.

1. Introduction

Since their introduction in the 1950s, the Whitney forms [35] have had
widespread impact on geometry, topology, and computational mathemat-
ics [9, 14, 26]. These differential k-forms are piecewise affine forms on a
simplicial triangulation and are in duality with integration over k-chains.
As such, Whitney forms serve as the simplest example of a finite element
space of differential forms arising in finite element exterior calculus [2, 3], a
framework for analyzing finite element methods for partial differential equa-
tions. They admit piecewise polynomial generalizations [21, 27, 30, 31] that
are known to be well-suited for discretizing the Hodge Laplacian [2, 3].

In this paper, we study another generalization of the Whitney forms in-
troduced by Brasselet, Goresky, and MacPherson [10]: the so-called shadow
forms. These differential k-forms on an n-simplex T have rational, as op-
posed to polynomial, coefficients, and they exhibit singular behavior near
the boundary of T . Taken together, the spaces of shadow k-forms of degree
k = 0, 1, . . . , n form an exact sequence that contains the classical Whit-
ney forms as a subcomplex. As we argue below, the shadow forms appear
to be well-suited for constructing certain novel finite element spaces, like
tangentially- and normally-continuous vector fields on triangulated surfaces.
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We also remark here that, although the shadow forms are integrable,
not all of them are square-integrable, so the complex of shadow forms is a
Banach complex, not a Hilbert complex. While analytic results are outside
the scope of this paper, we feel that it is important to note that the problem
of Lp cohomology for p ̸= 2 received attention in Brasselet, Goresky, and
MacPherson’s paper [10], as well as more recently; see for example [34]. It
is likely that these analytic tools will be key to the eventual convergence
analysis for these new finite element spaces. Perhaps they may even yield
more direct proofs of existing finite element exterior calculus theorems that
currently rely on smoothing, such as the bounded projection operators [3].

For reasons that we explain below, we will refer to the shadow k-forms
as blow-up Whitney k-forms in this paper. This change in nomenclature
highlights an important perspective we adopt when constructing degrees of
freedom for this space and when proving exactness. Following the notational
conventions of [2, 3], we denote the space of blow-up Whitney k-forms on T
by bP−

1 Λk(T ) to emphasize that it is a superspace of P−
1 Λk(T ), the space of

classical Whitney k-forms on T .
We make three main contributions. First, we introduce a dual basis for

the blow-up Whitney k-forms that is well-suited for finite element imple-
mentations. The members of this dual basis are given by integration over
k-dimensional faces of the blow-up of T . Briefly, the blow-up of T is the
manifold obtained from T by blowing up its subsimplices in the sense of [19,
24], which is similar to the notion of blow-up in algebraic geometry. For ex-
ample, in two dimensions, we blow up the vertices of a triangle T to obtain
its blow-up T̃ ; the result is illustrated in Figure 5: It has 6 faces of dimension
1 that one can loosely think of as the 3 edges of T and 3 infinitesimal arcs
at the vertices of T . Meanwhile, in three dimensions, to obtain the blow-up

T̃ of a tetrahedron T , we first blow up its vertices, and then we blow up its
edges; the result is illustrated in Figure 7.

Our second main contribution is to relate the definition of the blow-up
Whitney forms, which is classically given by an integral formula, to a cer-
tain probability associated with Poisson processes. This link with Poisson
processes allows us to do several things. It allows us to write down ex-
plicit formulas for the blow-up Whitney k-forms in any dimension n using
a straightforward combinatorial calculation. (See [6] for a different explicit
formula involving derivatives of a rational function of barycentric coordi-
nates.) It also leads to a simple proof that the classical Whitney k-forms
are contained in the space of blow-up Whitney k-forms. And it underpins
our proof that the exterior derivative sends the blow-up Whitney k-forms to
blow-up Whitney (k+1)-forms. Although the latter two results are classical,
we include proofs to highlight the utility of the Poisson process perspective.

Our third main contribution is to give a new proof that the sequence of
blow-up Whitney forms on a simplex T is exact using the blow-up construc-
tion discussed above. Our dual basis plays a key role in this proof, allowing
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us to relate the cohomology of the complex of blow-up Whitney forms to
the cellular cohomology of the blow-up of T .

We believe that the blow-up construction and the Poisson process per-
spective will end up playing a role in developing higher-order generalizations
of the blow-up Whitney forms. The blow-up construction suggests a natu-
ral choice for degrees of freedom in the higher-order setting: one considers
higher-order moments of the form over faces of the blow-up of T . Meanwhile,
the Poisson process perspective provides ways of generating basis forms of
higher degree. In the lowest-order setting considered here, one generates
basis forms by asking for the probability of observing a certain sequence
of arrival times for particles produced by an ensemble of Poisson processes
whose rates are related to the barycentric coordinates of a point in T . We
expect that this construction admits a generalization with more particles
that would generate higher-order basis forms. At the end of this paper,
we present some preliminary results on the higher-order spaces for blow-up
scalar fields, but the full story of higher-order blow-up k-forms is still to be
realized.

Motivation. Our motivation for developing the blow-up forms comes from
two sources. First, there is growing evidence that tensor fields that exhibit
singular behavior play an important role in the study of triangulated mani-
folds equipped with nonsmooth Riemannian metrics. Specifically, when the
metric is piecewise smooth and possesses single-valued tangential-tangential
components along codimension-1 faces, various curvatures like the scalar
curvature and the Riemann curvature tensor can be given meaning in dis-
tributional sense, often on the basis of heuristic arguments [7, 15–18, 33].
(See, however, [11] for a systematic treatment of distributional scalar cur-
vature in the piecewise flat setting.) It turns out that one can arrive at
these definitions in a systematic way (in any dimension, piecewise flat or
not) by considering the action of the squared covariant exterior derivative,
interpreted in a distributional sense, on vector fields with appropriate regu-
larity. With the right regularity hypotheses, one can perform an integration
by parts calculation involving the covariant exterior derivative to arrive at
the definition of distributional Riemann curvature proposed in [18] (various
traces of which yield other distributional curvatures). This integration by

parts calculation takes place on the blow-up T̃ of each n-simplex T , lead-

ing to integrals over components of ∂T̃ , just like the degrees of freedom for
the blow-up forms. The details behind this calculation are a subject of our
ongoing work.

More motivation. Our second source of motivation comes from a desire to
construct a discretization of the vector Laplacian on triangulated surfaces
that overcomes the following well-known difficulty: any piecewise smooth
vector field tangent to a triangulated surface that has single-valued tangen-
tial and normal components along edges must vanish at the vertices, except
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in degenerate situations, like when the triangles meeting at a given vertex
lie in a common plane [13]. This peculiarity is a well-known obstruction
to constructing a conforming finite element method for the surface vector
Laplacian, a differential operator that has received considerable attention in
numerical analysis [8, 13, 20, 22, 23, 28, 32] owing to its role in the dynamics
of fluids on surfaces [5]. This operator differs from the Hodge Laplacian on
one-forms, which can be discretized with standard spaces from finite ele-
ment exterior calculus [2, 3]. The obstruction described above is intimately
related to the fact that the angles incident at a vertex P on a triangulated
surface generally do not sum to 2π; instead, their sum generally deviates
from 2π by some “angle defect” Θ ̸= 0. Hence, any vector field v with the
aforementioned properties must experience a rotation by Θ under parallel
transport around P , and this contradicts the continuity of the vector field
unless it vanishes at P . A seldom-used idea for sidestepping this obstruction
is to relax the piecewise smoothness constraint on v: within each triangle
incident at P , we allow v to rapidly rotate in the vicinity of P , so that its
value “at” P differs along different rays emanating from P . In other words,
in polar coordinates (r, θ) centered at P , we allow v to vary with θ, even at
r = 0.

The intuition above motivates the following idea. Let T be a triangle with
barycentric coordinates λ0, λ1, λ2. Consider the functions

ψ012 =
λ0λ1
λ1 + λ2

, ψ021 =
λ0λ2
λ2 + λ1

, ψ102 =
λ1λ0
λ0 + λ2

,

ψ120 =
λ1λ2
λ2 + λ0

, ψ201 =
λ2λ0
λ0 + λ1

, ψ210 =
λ2λ1
λ1 + λ0

,

which are plotted in Figure 1. Each of these functions “rapidly varies” in the
vicinity of one vertex. For example, notice that the function ψ120 vanishes
on the edge λ1 = 0, vanishes on the edge λ2 = 0, and varies linearly along
the edge λ0 = 0: ψ120

∣∣
λ0=0

= λ1. In particular, it is multivalued at vertex

1, in the sense that the limit of ψ120 as we approach vertex 1 along the edge
λ2 = 0 is 0, but its limit as we approach vertex 1 along the edge λ0 = 0 is
1. In this sense, ψ120 “rapidly varies” in the vicinity of vertex 1. We think
of ψ120 as a basis function associated with a specific endpoint of a specific
edge, namely vertex 1 of edge (1, 2) (λ0 = 0); this is the location where ψ120

evaluates to 1 (in a limiting sense).
The space spanned by the ψijk’s is the space bP−

1 Λ0(T ) of blow-up Whit-
ney 0-forms in dimension n = 2. Note that it contains all affine functions,
since

(1) ψ012 + ψ021 = λ0, ψ120 + ψ102 = λ1, ψ201 + ψ210 = λ2.

Thus, bP−
1 Λ0(T ) is a superset of P−

1 Λ0(T ), the space of classical Whitney
0-forms. The b stands for “blow-up” and signals that these functions are not
smooth on T , but rather they are smooth on the manifold obtained from T
by blowing up the vertices as we alluded to above.
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Figure 1. The 6 blow-up Whitney 0-forms in dimension
n = 2. Top row: ψ012, ψ021, ψ102. Bottom row:
ψ120, ψ201, ψ210.

Figure 2. Contour plots of the same blow-up Whitney 0-
forms as above.
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λ1
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1
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0

Figure 3. Degrees of freedom for the function ψ120 =
λ1λ2
λ2+λ0

∈ bP−
1 Λ0(T ). Each labelled point represents the lim-

iting value of the function as one approaches the indicated
vertex along the indicated edge.

To summarize: bP−
1 Λ0(T ) is a richer space than P−

1 Λ0(T ) that accom-
modates rapid variations near the vertices. By considering a vector-valued
version of this space, we obtain a space of vector fields that accommodates
rapid rotations near the vertices, and by gluing these local spaces together
appropriately on a triangulated surface T , we obtain a global space that
admits nontrivial vector fields that have single-valued normal and tangen-
tial components along edges. Our numerical experiments suggest that this
space is well-suited for discretizing the vector Laplacian on surfaces and,
more generally, the Bochner Laplacian on 2-manifolds. In particular, we
observe in numerical experiments that it can be used to compute the spec-
trum of the Bochner Laplacian with accuracy O(h2) on triangulations with
maximum element diameter h. We are pursuing this in a separate paper.

A key feature of the discretization described above is that it is intrinsic, in
the sense that it can be implemented without specifying coordinates for the
vertices of the triangulation; only edge lengths and connectivity information
are needed. In contrast, the finite element discretizations of the surface vec-
tor Laplacian that we are aware of, such as the ones studied in in [8, 13, 20,
22, 23, 28, 32], are extrinsic. That is, the discretizations rely on vertex coor-
dinates and generally change when we move the vertices without changing
the edge lengths. This is undesirable since the surface vector Laplacian—
and more generally, the Bochner Laplacian—is an intrinsic object; it does
not change under isometric deformations.

The reader may notice that the blow-up Whitney forms have some com-
monalities with the extended finite element method (XFEM) and other en-
riched finite element methods [25], which accommodate singular solutions
to partial differential equations by enriching classical finite element spaces
with singular functions. There are a few differences though. In the model
problem above involving the surface vector Laplacian, the exact solution
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to the underlying smooth problem is not singular; only the discrete solu-
tion is. Moreover, the locations of the discrete solution’s singularities are
mesh-dependent. In a typical application of XFEM, such as the simulation
of fracture propagation, the exact solution is singular, and the location of
the singularity is independent of the mesh. This is not to say that blow-up
Whitney forms could not be used for such applications; we merely wish to
emphasize that our goals are rather different. It is also worth noting that
enriched finite element spaces for differential forms of degree k > 0 are not
typically considered in the XFEM literature.

Gluing degrees of freedom. The way we choose to glue the local spaces
together has an impact on the global space we obtain, so let us discuss this in
more depth, focusing on the (scalar-valued) bP−

1 Λ0(T ) space for simplicity.
As illustrated in Figure 3, within a single element T , each degree of freedom
is associated to a vertex-edge pair. So, globally, prior to gluing, we have a
degree of freedom for each nested triple P < E < T of a vertex P , edge E,
and face T of the triangulation; we call such a triple a flag. We discuss four
natural choices of gluings, which are illustrated in Figure 4.

The gluing alluded to above is obtained by equating degrees of freedom
with matching vertex-edge pairs. That is, we glue together the degrees of
freedom corresponding to P < E < T1 and P < E < T2, where T1 and T2 are
the two elements containing edge E. However, importantly, we do not equate
degrees of freedom associated with flags P < E1 < T and P < E2 < T
if E1 ̸= E2. This leads to a global finite element space whose members
are single-valued along edges but multi-valued at vertices. We could even
take this one step further and equate all degrees of freedom associated to a
particular edge. That is, for each edge E, we glue P1 < E < T1, P1 < E <
T2, P2 < E < T1, and P2 < E < T2, where P1 and P2 are the two endpoints
of the edge E, and T1 and T2 are the two elements containing E. Then we
obtain a global finite element space whose members are single-valued and
constant along edges but multi-valued at vertices. These two spaces have
some resemblance to the Crouzeix-Raviart finite element space [12], whose
members are single-valued at the midpoint of each edge.

Consider now the following alternative gluing: we equate degrees of free-
dom P1 < E1 < T1 and P2 < E2 < T2 whenever P1 = P2. Then our
global space reduces to the piecewise affine Lagrange finite element space
P−
1 Λ0(T ). This can be understood with the help of (1). Yet another alter-

native is to equate degrees of freedom P1 < E1 < T1 and P2 < E2 < T2
whenever both P1 = P2 and T1 = T2. Then our global space reduces to the
space of discontinuous piecewise affine functions.

Bases for blow-up Whitney forms. Tables 1 and 2 list bases for the
blow-up Whitney forms on an n-simplex T in dimensions n = 2 and n = 3,
respectively. To understand these tables, a few comments are in order. As
we have alluded to above, in any dimension n, the degrees of freedom can
be conveniently indexed by flags: nested sequences of faces of T . However,
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Figure 4. Four ways of gluing together the local spaces
bP−

1 Λ0(T ). Top left: Degrees of freedom on shared edges are
equated, leading to a space of functions whose members are
single-valued along edges but multi-valued at vertices. Top
right: In addition to equating degrees of freedom on shared
edges, degrees of freedom on opposite endpoints of each edge
are equated, leading to a space of functions whose members
are single-valued and constant along edges but multi-valued
at vertices. Bottom left: Degrees of freedom at each vertex
are equated, leading to the piecewise affine Lagrange finite
element space. Bottom right: Degrees of freedom at each
vertex are equated only within individual triangles, leading
to the space of discontinuous piecewise affine functions.

it turns out to be more convenient to view a flag as an ordered partition of
the vertices of T ; from such an ordered partition, we can recover the nested
sequence of faces by taking the span of the cumulative union of the sets of
the partition. For example, if a triangle T has vertices labeled 0, 1, 2, then
the flag P0 < E01 < T is given by the ordered partition ({0}, {1}, {2}), the
flag P0 < T is given by the partition ({0}, {1, 2}), and the flag E01 < T
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k F ψF

0 012
λ0λ1
λ012λ12

1 {01}2 φ01

λ2012

1 0{12} λ0φ12

λ012λ12

(
1

λ012
+

1

λ12

)
2 {012} φ012

λ3012
Table 1. Blow-up Whitney k-forms in dimension n = 2.
Here, λi denotes the barycentric coordinate function associ-
ated with vertex i, φij denotes the classical Whitney 1-form
associated with the oriented edge (i, j), and φijk denotes the
classical Whitney 2-form associated with the oriented trian-
gle (i, j, k). The symbols λ12 and λ012 are shorthand for
λ1 + λ2 and λ0 + λ1 + λ2, respectively. Note that λ012 = 1;
it is included in the formulas to homogenize the fractions.
In the left column, shorthand notation is used for flags. For
example, {01}2 is shorthand for the flag ({0, 1}, {2}). Only
some flags are listed; the rest may be obtained by permuting
the vertices of the triangle.

is given by the ordered partition ({0, 1}, {2}). Additionally, to make the
notation more concise, we denote these flags with the shorthand 012, 0{12},
and {01}2, respectively.

As we discussed above, the degrees of freedom for blow-up Whitney k-
forms correspond to integration over the k-dimensional faces of the blow-up

T̃ , so, more properly, it is these faces that are indexed by flags. For example,

in two dimensions, the blow-up T̃ of a triangle T has 6 faces of dimension
1 that one can loosely think of as the 3 edges of T and 3 infinitesimal arcs
at the vertices of T . The face corresponding to the edge E01 is then given
by the flag E01 < T , or {01}2; its endpoints are given by the flags 012 and
102. Meanwhile, the face corresponding to the arc at vertex 2 corresponds
to the flag V2 < T or 2{01}; its endpoints are given by the flags 201 and
210. See Figure 5 for an illustration, and see Section 3.2 and Figure 7 for
information about how this extends to higher dimensions.

Correspondingly, the dual basis we construct for the 6-dimensional space
of blow-up Whitney 1-forms on T is given by integration over these 6 unidi-

mensional faces of T̃ . Point evaluations at the 6 endpoints of these unidimen-
sional faces serve as the degrees of freedom for the 6-dimensional space of
blow-up Whitney 0-forms on T . Integration over all of T̃ , which is equivalent
to integration over T , serves as the degree of freedom for the 1-dimensional
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k F ψF

0 0123
λ0λ1λ2

λ0123λ123λ23

1 {01}23 φ01λ2
λ20123λ23

1 0{12}3 λ0φ12

λ0123λ123

(
1

λ0123
+

1

λ123

)
1 01{23} λ0λ1φ23

λ0123λ123λ23

(
1

λ0123
+

1

λ123
+

1

λ23

)
2 {01}{23} φ01 ∧ φ23

λ20123λ23

(
2

λ0123
+

1

λ23

)
2 {012}3 φ012

λ30123

2 0{123} λ0φ123

λ0123λ123

(
1

λ20123
+

1

λ0123λ123
+

1

λ2123

)
3 {0123} φ0123

λ40123
Table 2. Blow-up Whitney k-forms in dimension n = 3.
The notation here is similar to that in Table 1. For example,
λ123 = λ1 + λ2 + λ3, φ123 is the classical Whitney 2-form
associated with the oriented triangle (1, 2, 3), and 0{12}3 is
shorthand for the flag ({0}, {1, 2}, {3}). Factors of λ0123 = 1
are included to homogenize the fractions. Only some flags are
listed; the rest may be obtained by permuting the vertices of
the tetrahedron.

space of blow-up Whitney 2-forms on T . Table 1 lists bases for the blow-up
Whitney forms on the triangle T that are dual to these degrees of freedom,
and Table 2 lists analogous bases in dimension n = 3. In other words, for
a flag F , we list ψF , the unique blow-up Whitney form that evaluates to 1
on the degree of freedom corresponding to the flag F and 0 on all others.
(Please note that our Definition 2.13 of the classical Whitney k-forms differs
from the usual one by a factor of k!.) Only a few of the basis forms are listed
in the tables since all others can be obtained by permuting indices.

Organization. This paper is organized as follows. In Section 2, we define
the blow-up Whitney forms, introduce degrees of freedom for them, and
point out a link with Poisson processes that allows us to quickly write down
bases that are dual to those degrees of freedom. In Section 3, we use the
Poisson process perspective to prove that the blow-up Whitney forms on a
simplex T form a complex, and we study its cohomology by defining the

blow-up T̃ of T and showing that the complex of blow-up Whitney forms
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{02}1

0{12}
{01}2

1{02}

{12}0

2{01}

021

012 102

120

210
201

{012}

Figure 5. The blow-up T̃ of a triangle T has 6 faces of
dimension 1 that one can loosely think of as the 3 edges of T
and 3 infinitesimal arcs at the vertices of T . Here, the arcs
are depicted as straight lines parallel to the opposite side.
This reflects the fact that we can parametrize a point on the
arc by specifying a ray from the vertex through the point and

seeing where it meets the opposite side. The faces of T̃ are
labelled using shorthand notation for flags as described in
the text.

is isomorphic to the cellular cochain complex of T̃ . We conclude with some
speculation about the cohomology of the complex of blow-up Whitney forms
on a triangulation (as opposed to a single simplex), as well as with some
preliminary results on generalizations to higher order.

2. Blow-up Whitney forms

2.1. The quasi-cylindrical coordinate system on a simplex.

Definition 2.1. For a set V , let T = TV denote the standard barycentric
coordinate simplex

TV =

{
(λi)i∈V ∈ RV

≥0 |
∑
i∈V

λi = 1

}
.

Throughout, we will let n = dimTV = |V | − 1.

Commonly, V is simply taken to be the set {0, . . . , n}, and so the barycen-
tric coordinates are simply λ0, . . . , λn. However, we keep the notation that
V is a general set for a couple reasons. One reason is that we want to con-
sider faces of TV . Faces of TV are all of the form TW where W is a subset
of V , but W will generally not be a set of consecutive integers even if V is.
For example, the edge joining vertices 0 and 2 will be TW for W = {0, 2}.
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Another reason to use the general set notation is that we may want to con-
sider a full triangulation, not just a single element. In that context, it makes
sense to index all of the vertices of the triangulation; then, for a particular
element T , we take V to be the indices of the vertices of T .

We use the set-theory notation RV rather than Rn+1 for similar reasons:
if V = {0, 1, 2} andW = {0, 2} and we talk about the projection RV → RW ,
it is clear which coordinates are being projected, whereas it is ambiguous
with R3 → R2.

Definition 2.2. For a set V , a flag F is an ordered partition of V , which
we denote by

F = (V0, V1, . . . , Vn−k) .

As before, n + 1 denotes |V |, and note that k is the complement of the
number of sets in the partition. Observe that, if k = 0, then F is just an
ordering of V , and if k = n, then F = (V ).

In the context of a particular flag, we will

• let J denote the index set {0, . . . , n− k},
• let Tj be shorthand for TVj ,
• let nj be shorthand for dimTj = |Vj | − 1, and
• let F ! be shorthand for

∏
j∈J nj !.

Definition 2.3 (Quasi-cylindrical coordinates). Fix a set V and a flag F ,
with notation as above. Let the radial simplex R = RF associated to F be
the simplex TJ . In other words, each vertex j of RF corresponds to the set
of vertices Vj of T . Let ρ0, . . . , ρn−k be the barycentric coordinates for R.

Next, define the angular space Θ by

Θ = ΘF =
∏
j∈J

Tj =

(θi)i∈V ∈ RV
≥0 |

∑
i∈Vj

θi = 1 ∀j

 .

Then the quasi-cylindrical coordinate system on T = TV is defined by

λi = ρjθi,

for all j and all i ∈ Vj .

Proposition 2.4. With notation as above, the quasi-cylindrical coordinate
system is an isomorphism onto its image when restricted to the interior R̊
of R, that is, the subset where ρj ̸= 0 for all j. If we also restrict to the

interior Θ̊ of Θ, then we obtain an isomorphism

R̊× Θ̊ → T̊ .

Proof. Given ρj and θi, we compute∑
i∈V

λi =
∑
j∈J

∑
i∈Vj

λi =
∑
j∈J

ρj
∑
i∈Vj

θi =
∑
j∈J

ρj = 1.
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Conversely, given the λi, set ρj =
∑

i∈Vj
λi, and set θi =

λi
ρj
. Here, we must

use the ρj ̸= 0 assumption. Then we check that∑
j∈J

ρj =
∑
j∈J

∑
i∈Vj

λi =
∑
i∈V

λi = 1

and, for each j, ∑
i∈Vj

θi =
1

ρj

∑
i∈Vj

λi =
ρj
ρj

= 1.

Finally, we check that λi ̸= 0 for all i is equivalent to ρj ̸= 0 and θi ̸= 0 for
all i and j. □

Note that the quasi-cylindrical coordinate system depends only on the
partition of F , not the order.

Example 2.5. If k = 0, then recall that F is just an ordering of V , that
is, a bijection between {0, . . . , n} and V . This bijection then induces an
isomorphism between R and T . Meanwhile, each Tj is a single-point set, so
Θ is a single-point set as well.

Example 2.6. If k = 1, then all but one Vj has a single element. Let j∗ be
the special value of j, and let v− and v+ be the two elements of Vj∗ . Then,
for j ̸= j∗, Tj is a single point; meanwhile, Tj∗ is an interval. Therefore, Θ is
an interval. Meanwhile, R is an (n−1)-dimensional simplex, with one vertex
corresponding to the set {v−, v+}, and one vertex for each other vertex of
T .

Example 2.7. If k = n− 1, then R is an interval, and Θ = T0 × T1.

Example 2.8. If k = n, then R is a single-point set, and Θ = T .

We give a brief summary of the notation implied by Proposition 2.4.

Notation 2.9. In the context of a flag F :

• R = RF is the simplex with barycentric coordinates ρj , with j ∈
J = {0, . . . , n− k}.

• Θ = ΘF =
∏

j∈J Tj , with barycentric coordinates θi with i ∈ Vj on
each factor.

• For i ∈ Vj , we have

λi = ρjθi, ρj =
∑
i∈Vj

λi, θi =
λi
ρj
.

We also introduce some additional notation.

Notation 2.10. In the context of a flag F :

• We will denote points in R = RF by ρ.
• We will denote points in Θ = ΘF by θ.

• We will let ρF be shorthand for
∏

j∈J ρ
|Vj |
j .
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2.2. Whitney forms.

Definition 2.11. We define an orientation of V to be an ordering of V
modulo even permutations. An orientation of V is equivalent to an orien-
tation of RV , which in turn is equivalent to an orientation of TV with the
outward normal.

Notation 2.12. Let Xid be the tautological vector field in RV given by

Xid :=
∑
i∈V

λi
∂

∂λi
,

or, equivalently, by
Xid[λi] = λi.

Let dλV be shorthand for

dλV :=
∧
i∈V

dλi,

with an ordering compatible with the orientation, and let

ρ = ρV :=
∑
i∈V

λi.

Note that TV is defined by ρV = 1 on RV
≥0.

Definition 2.13. We define the Whitney form φ = φV on RV to be the
contraction

φ = φV := n! iXid
dλV .

Additionally, on RV
>0, we define the homogenized Whitney form to be

ω = ωV :=
φV

ρ
|V |
V

.

Note that, restricted to TV , the forms φ and ω are equal.
Finally, ifW is a subset of V , then φW can be viewed as a form on RV and

ωW can be viewed as a form on RV
>0 by pulling it back via the projections

RV → RW .

Our definition of the Whitney forms differs from the usual one by a factor
of n!, for the following reason, which also underlies our choice of symbol ω
for the homogenized Whitney form.

Proposition 2.14. Restricted to TV , the Whitney form φV and the homog-
enized Whitney form ωV are a constant multiple of the volume form on TV ,
scaled so that their integral over TV is 1.

We begin the proof with a simple lemma that we will use frequently.

Lemma 2.15. For a set V of size n+ 1, we have

dλV =
dρ

ρ
∧ φV

n!
,

where, as before, ρ =
∑

i∈V λi.
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Proof. By dimension, dρ ∧ dλV = 0. Applying iXid
, we therefore have that

0 = iXid
(dρ) dλV − dρ ∧ iXid

dλV = ρ dλV − dρ ∧ φV

n!
. □

Proof of Proposition 2.14. As discussed, φV and ωV are equal when re-
stricted to TV ; we will focus on φV . Let X1, . . . , Xn be vectors tangent
to TV . Observing that dρ

ρ (Xid) = 1 and dρ
ρ (Xi) = 0 for 1 ≤ i ≤ n, we have

(2) dλV (Xid, X1, . . . , Xn) =
φV

n!
(X1, . . . , Xn).

Now set ρ = 1, choose a vertex 0 ∈ V , and let X1, . . . , Xn be the displace-
ment vectors from 0 to the other vertices of TV , chosen so that X1, . . . , Xn

is positively oriented. Observing that the (n+ 1) by (n+ 1) matrix

λ0 λ1 λ2 λ3 · · · λn
−1 1 0 0 · · · 0
−1 0 1 0 · · · 0
−1 0 0 1 0
...

...
...

. . . 0
−1 0 0 0 · · · 1


has determinant λ0 + · · ·+ λn = ρ = 1, we conclude that

φV

n!
(X1, . . . , Xn) = 1.

In particular, this quantity does not depend on the λi, so we know that φV
n! is

a constant multiple of the volume form on TV . Recalling that the volume of
an n-dimensional parallelepiped is n! times the volume of the corresponding
simplex, we conclude that

∫
TV
φV = 1, as desired. □

In light of the above proposition, one may wonder why we bother with
the homogenized Whitney form ωV at all. We will shortly see that it is, in
fact, the more natural way to extend the normalized volume form on TV to
RV
>0.

Proposition 2.16. Consider the quasi-spherical projection RV
>0 → T̊V de-

fined by θi = λi
ρ , where ρ =

∑
i∈V λi. Here, the λi are the coordinates

of RV
>0, and the θi are the barycentric coordinates of T̊V . Then ωV is the

pullback of the normalized volume form on TV .

Proof. Observe that we have an automorphism R>0 × RV
>0 → R>0 × RV

>0

with (σ,λ) 7→ (ρ,θ) given by

ρ =
∑
i∈V

λi, θi =
σ

ρ
λi,

or conversely,

σ =
∑
i∈V

θi, λi =
ρ

σ
θi.
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The quasi-spherical projection is simply the composition of this automor-
phism with natural inclusions and projections, given by

RV
>0

σ=1−−→ R>0 × RV
>0 → R>0 × RV

>0 → RV
>0.

We now let Xid be the tautological vector field on the domain R>0 × RV
>0,

that is, Xid = σ ∂
∂σ +

∑
i λi

∂
∂λi

. In other words, we have Xid[λi] = λi as

before, and now we also have Xid[σ] = σ. By dilation-equivariance of the
automorphism or by explicit computation, we then have Xid[θi] = θi and
Xid[ρ] = ρ. In particular, we have Xid[

σ
ρ ] = 0. So, then,

n!iXid
dθV =

(
σ

ρ

)|V |
n!iXid

dλV .

We now restrict to σ = 1, which is the defining equation of TV in the θ
coordinate system. Applying Proposition 2.14 to the θ coordinate system,
we have that the left-hand side is the normalized volume form on TV . Mean-
while, at σ = 1, the right-hand side is ωV by definition. □

We now discuss the implications for the quasi-cylindrical coordinate sys-
tem, but first we establish notation.

Henceforth, we assume that we have selected an orientation of T = TV ,
and, as is common in finite elements, we assume that we have preselected an
orientation for every face as well. In particular, in the context of a flag F ,

each Tj = TVj is equipped with an orientation, and thus so is ΘF =
∏n−k

j=0 Tj .
With that in mind, we introduce additional shorthand.

Notation 2.17. Given a flag F :

• Let φj be shorthand for φVj and ωj be shorthand for ωVj .

• Let φF be shorthand for
∧n−k

j=0 φj and ωF be shorthand for
∧n−k

j=0 ωj .

Note that, per our established notation, we have

φF = F !
∧
j∈J

iXid
dλVj , ωF = ρ−FφF .

Corollary 2.18. Given a flag F , the form ωF is the pullback of the normal-
ized volume form on ΘF via the quasi-cylindrical projection T̊ ∼= R̊F ×Θ̊F →
ΘF .

Proof. We apply Proposition 2.16 to each RVj

>0 → T̊Vj , obtaining that ωj is
the pullback of the normalized volume form on Tj via the quasi-spherical

projection on RVj

>0. Taking the product over j, we obtain a map RV
>0 → Θ̊F .

This map is our quasi-cylindrical coordinate projection when restricted to
T̊ ⊂ RV

>0. The normalized volume form on ΘF is the wedge product of the
normalized volume forms on Tj , and so ωF is its pullback. □

It remains to discuss the orientation of R. It turns out to be convenient
to not give R the orientation implied by the order ρ0, . . . , ρn−k. Instead, we
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r1

r2

(ρ1, ρ2)

Figure 6. If R is a triangle and ρ is a point in R, then Rρ

is the shaded region depicted above.

orient R so that the quasi-cylindrical coordinate system preserves orienta-
tion.

Definition 2.19. Let F be a flag on a set V with notation as above. Assume
that we have an orientation of T and of each Tj . Then let R have the

orientation such that the map R̊ × Θ̊ → T̊ in Proposition 2.4 preserves
orientation.

2.3. Blow-up Whitney forms. We are now ready to define the blow-up
Whitney forms. As we have discussed, these are the same as the shadow
forms of [10], but we give a self-contained exposition emphasizing the blow-
up/quasi-cylindrical perspective that we use later in the paper. For readers
who wish to understand the equivalence with [10], we recommend comparing
Proposition 2.23 with [10, Theorem 4.1] rather than comparing the defini-
tions.

Definition 2.20. Let R be a simplex, and let ρ be a point in the interior
of R with barycentric coordinates ρ0, . . . , ρn−k. Then let Rρ be the subset
of R defined by

Rρ =

{
(r0, . . . , rn−k) ∈ R | rj

ρj
≤
rj′

ρj′
whenever j ≤ j′

}
=

{
(r0, . . . , rn−k) ∈ R | rj−1

ρj−1
≤ rj
ρj

for all 1 ≤ j ≤ n− k

}

An illustration of Rρ is given in Figure 6.

Definition 2.21 (Blow-up Whitney forms). Fix a set V and a flag F , with
notation T = TV , R = TJ , Tj = TVj , and Θ =

∏
j∈J Tj as above. As



18 YAKOV BERCHENKO-KOGAN AND EVAN S. GAWLIK

above, fixing an orientation for the Tj , choose an orientation for R to ensure
that the above isomorphism between the interiors of T and R×Θ preserves
orientation. As before, let ω be the constant multiple of the volume form
on T whose integral over T is one.

Note that ω is an n-form, and that Rρ is (n − k)-dimensional. So then,

by Fubini’s theorem, for each ρ ∈ R̊,

ψF,ρ :=

∫
Rρ

ω

defines a k-form on Θ. Putting all of these together, we obtain a k-form ψF

on T , which we call the blow-up Whitney form associated to F . In detail,
given a point x in the interior of T and vectors X1, . . . , Xk at x, we let ρ be
the projection of x onto the R factor, and we let Y1, . . . , Yk be the projec-
tions of the X1, . . . , Xk onto the Θ factor. We then set ψF (X1, . . . , Xk) :=
ψF,ρ(Y1, . . . , Yk).

In summary, to evaluate ψF at a point x ∈ T̊ with quasi-cylindrical co-
ordinates (ρ,θ), we perform the following operations to the volume form ω
on T . Here, Φ: R × Θ → T denotes the quasi-cylindrical coordinate map,
and πΘ : R×Θ → Θ is the projection.

Λn(T̊ ) Λn(R̊× Θ̊) Λk(Θ̊) Λk(R̊× Θ̊) Λk(T̊ ) ΛkT ∗
xT

ω ω ψF,ρ ψF,ρ ψF,ρ ψF

∣∣
x

Φ∗
∫
Rρ π∗

Θ (Φ−1)
∗

|x

Note that, in the second line, we treat some pullbacks as implicit, in the
same sense that dθi can be viewed as a one-form on Θ, R × Θ, or T . We
also emphasize that the operation depends on x not only in the last step
(evaluation), but also in the second step, because Rρ depends on ρ which
depends on x.

Example 2.22. Consider a triangle T with vertices V = {0, 1, 2}, and let
F = ({0}, {1, 2}). Then R×Θ is a product of two intervals, and the quasi-
cylindrical coordinates satisfy

λ0 = ρ0, λ1 = ρ1θ1, λ2 = ρ1θ2, ρ0 + ρ1 = 1, θ1 + θ2 = 1.

After some algebra, one can express the volume form

ω = 2
λ0dλ1 ∧ dλ2 + λ1dλ2 ∧ dλ0 + λ2dλ0 ∧ dλ1

(λ0 + λ1 + λ2)3

in quasi-cylindrical coordinates as

ω = (θ1dθ2 − θ2dθ1) ∧
2ρ1dρ0

(ρ0 + ρ1)2
.

Note that θ1 dθ2 − θ2 dθ1 is just dθ2, but this form makes it easier to check
that θ1 dθ2 − θ2 dθ1 = φ12

ρ21
, where φ12 = λ1dλ2 − λ2dλ1. Since R is just an
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interval, the set Rρ is defined by r0 ∈ [0, ρ0]. Since ρ1 = 1− ρ0, integrating
over Rρ produces

ψF,ρ = (θ1dθ2 − θ2dθ1)
2ρ0 − ρ20
(ρ0 + ρ1)2

.

One checks that
2ρ0−ρ20
(ρ0+ρ1)2

= λ0
λ012

(
λ12
λ012

+ 1
)
, where λ12 = λ1 + λ2 = ρ1 and

λ012 = λ0 + λ1 + λ2 = 1, so

ψF =
λ0φ12

λ012λ12

(
1

λ012
+

1

λ12

)
.

In Section 2.5 we will show that such formulas for ψF can be arrived at more
easily using a combinatorial calculation associated with Poisson processes.

The following proposition gives a formula for ψF that also appears in [10,
Theorem 4.1].

Proposition 2.23. We have that

ψF = pFωF

where pF (ρ) is the relative volume of the subset Rρ ×Θ of T , and we recall

that ωF = ρ−FφF =
∧n−k

j=0 ρ
−|Vj |
j φVj is the normalized volume form on Θ,

pulled back to T via the quasi-cylindrical projection T̊ ∼= R̊× Θ̊ → Θ.

Proof. Let Y be a vector in Θ, and let X be its lift to a vector tangent
to the Θ factor in the product decomposition R × Θ, which, in particular,
means that dρj(X) = 0 for all j. Consequently, by λi = ρjθi, we have that
dλi(X) = ρj dθi(X). The important thing to note is that the coefficient of
dθi depends only on the ρ coordinates and not on the θ coordinates. Now
let Y1, . . . , Yk, and, respectively, X1, . . . , Xk be k such vectors, and let η be
the (n − k)-form obtained by contracting ω on the right with X1, . . . , Xk.
Since ω can be expressed as a constant multiple of a wedge product of the
dλi, we conclude that η likewise has a coefficient that depends only on the
ρ coordinates and not on the θ coordinates, when expressed in terms of the
dθi. Fixing a ρ ∈ R̊, to obtain ψF,ρ(Y1, . . . , Yk), we then integrate η over
each Rρ × {θ} for θ ∈ Θ. We can conclude that the k-form ψF,ρ on the
k-dimensional space Θ has a constant coefficient when expressed in terms of
the dθi. But note that the volume form on each Tj likewise has a constant
coefficient when expressed in terms of the dθi. We conclude that ψF,ρ is a
constant multiple of ωF , the normalized volume form on ΘF =

∏
j Tj . So,

we have that

ψF,ρ = pωF ,

for some function p that depends on ρ, but does not depend on the θ vari-
ables or, equivalently, does not depend on the position θ ∈ Θ.

From here, we can compute p explicitly by integrating both sides over Θ.
On the right-hand side, since ωF integrates to 1 over Θ, we simply have p.
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So then,

p =

∫
Θ
ψF,ρ =

∫
Θ

∫
Rρ

ω =

∫
Rρ×Θ

ω,

which is the relative volume of Rρ×Θ in T . Note that here we used the fact
that the orientation of R and hence Rρ was chosen so that the orientation
of R×Θ matches that of T . □

2.4. Unisolvence. We now discuss the degrees of freedom, that is, the dual
basis, for the blow-up Whitney forms.

Definition 2.24. Fix a set V and a flag F = (V0, V1, . . . , Vn−k). As before,
let T = TV , R = RF = TJ , Tj = TVj , and Θ =

∏
j∈J Tj , and recall the

isomorphism between the interior of T and the interior of R × Θ, where
dimR = n − k and dimΘ = k. We will define the degree of freedom ΨF

associated to F , a functional from k-forms on T to the real numbers, as
follows.

Let ψ be a k-form on T . First, for any ρ ∈ R̊, we let ψρ be the pullback of

ψ to Θ̊ under the inclusion Θ̊ ∼= {ρ}×Θ̊ ↪→ T . In other words, for Y1, . . . , Yk
vectors at a point θ ∈ Θ, we let x ∈ T be the point in T mapping to (ρ,θ)

under the isomorphism T̊ → R̊ × Θ̊, and we let X1, . . . , Xk be the vectors
at x tangent to the Θ factor of R̊ × Θ̊ that project to Y1, . . . , Yk under the
map T̊ ∼= R̊× Θ̊ → Θ̊. Then ψρ(Y1, . . . , Yk) := ψ(X1, . . . , Xk).

So, we now have a set of k-forms on the k-dimensional space Θ parametrized
by ρ. We compute the following limit of the ψρ followed by integrating over
Θ.

ΨF (ψ) :=

∫
Θ

lim
ρ1→0

· · · lim
ρn−k→0

ψρ.

Here, the limits are taken pointwise on Θ̊. In particular, fixing a point in Θ̊
means that when we take the limit limρj→0, we take the limit “by dilation”,
that is, along a path where the ratios of the λi for i ∈ Vj are fixed. In
addition, as implied by the sequential limits, the ρj remain nonzero until
that limit is taken: In other words, when we take the limit ρn−k → 0, we
approach points in the interior of the face ρn−k = 0 of R; with the next
limit, we approach points in the interior of the subface of ρn−k = 0 defined
by ρn−k−1 = 0, and so forth. In particular, since we are on the interior of
Θ, the λi also remain nonzero until we take limρj→0 where i ∈ Vj .

Note that we could also write down a more natural formula

ΨF (ψ) :=

∫
Θ

lim
ρ0→0

lim
ρ1→0

· · · lim
ρn−k→0

ψρ.

provided we extend ψ with appropriate homogeneous scaling to the orthant
RV
>0.

Remark 2.25. The degrees of freedom may be undefined if the limits or
integral fail to converge. As we will see, they are well-defined on the blow-up
Whitney forms. However, even on blow-up Whitney forms, while we have
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pointwise convergence of the ψρ, we generally do not expect L1 convergence,
and so it matters that the limits are taken before the integral.

Remark 2.26. More generally, we will later define the blow-up T̃ of T ,
and we will show in Proposition 3.12 that the degrees of freedom above are
equivalent to integration over the k-dimensional faces of T̃ . In particular,
the degrees of freedom are defined on all k-forms that are smooth on T̃ (a
weaker condition than smoothness on T ).

Theorem 2.27 (Unisolvence). The basis ΨF is dual to the basis ψF .

Proof. We first show that ΨF (ψF ) = 1. With notation as above, let ρ ∈ R.
Comparing the definition of the degrees of freedom and the definition of
the blow-up Whitney forms, we see that (ψF )ρ from Definition 2.24 is just

ψF,ρ =
∫
Rρ
ω from Definition 2.21. So, we then have that

ΨF (ψF ) =

∫
Θ

lim
ρ1→0

· · · lim
ρn−k→0

∫
Rρ

ω,

where we recall that ω is the volume form for T scaled so that the volume
of T is one.

Next, we recall Definition 2.20 of Rρ. As we send ρn−k → 0 while keeping
the other ρj nonzero, the restriction

rn−k−1

rn−k
≤ ρn−k−1

ρn−k
becomes vacuously

true, while the other inequalities
rj−1

rj
≤ ρj−1

ρj
are unaffected. As we continue

the iterated limits, when we reach ρj → 0, the inequality
rj−1

rj
≤ ρj−1

ρj
be-

comes vacuously true, the inequalities for smaller values of j are unaffected,
and the inequalities for larger values of j were eliminated at an earlier step.
Finally, when we send ρ1 → 0, we vacuously satisfy r0

r1
≤ ρ0

ρ1
. Therefore,

regarding this limiting procedure as acting on the set Rρ, we wind up with
Rρ converging to the whole set R. We thus conclude that

ΨF (ψF ) =

∫
Θ

∫
R
ω =

∫
R×Θ

ω =

∫
T
ω = 1,

where we recall that the orientation of R was selected so that the orientation
of R×Θ matches the orientation of T .

Now, we show that ΨF ′(ψF ) = 0 when F ′ ̸= F . We will first consider the
situation where F and F ′ have the same unordered partition of V , but the
order is different. In this case, up to orientation, we can identify R and R′,
as well as Θ and Θ′, since we just permute the vertices and product factors,
respectively. With this identification, the computation is exactly the same
as above, but we do the iterated limit in the wrong order. So then, there
must exist a j where we send ρj−1 → 0 before we send ρj → 0. In this case,
the inequality

rj−1

rj
≤ ρj−1

ρj
forces rj−1 to be 0, at least on the open set where

rj ̸= 0. This then forces Rρ to converge to a set with area zero in R, so∫
Rρ
ω converges to zero.

We now consider the more involved case of showing that ΨF ′(ψF ) = 0
when F and F ′ have different unordered partitions. This part of the proof
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relies on an inequality whose proof we postpone to Lemmas 2.29–2.31. As
in Definition 2.24, we let X ′

1, . . . , X
′
k be vectors tangent to the Θ′ factor of

the decomposition T̊ ∼= R̊′ × Θ̊′, and we let Y ′
1 , . . . , Y

′
k be the corresponding

vectors in Θ′. So then, using Proposition 2.23 and Lemma 2.31, we have∣∣ψF (X
′
1, . . . , X

′
k)
∣∣ ≤ ρ−F

∣∣φF (X
′
1, . . . , X

′
k)
∣∣

≤ F !

F ′!
ρ−F

∣∣φF ′(X ′
1, . . . , X

′
k)
∣∣ = F !

F ′!

ρ′F ′

ρF

∣∣ωF ′(Y ′
1 , . . . , Y

′
k)
∣∣ ,

where we recall that

• ρF is shorthand for
∏

j ρ
|Vj |
j ,

• F ! is shorthand for
∏

j nj ! where nj = dimTj = |Vj | − 1,

• φF is shorthand for
∧

j φVj , and

• ωF is shorthand for
∧

j ωj = ρ−FφF , which we recall is the volume
form on Θ normalized to have integral one.

Thus, as, top-level forms on Θ′, we have∣∣∣(ψF )ρ′

∣∣∣ ≤ F !

F ′!

ρ′F ′

ρF
|ωF ′ | .

So then it suffices to show that ρ′F ′

ρF converges to zero as we take the sequence

of limits. Specifically, we claim that

(3) lim
ρ′1→0

· · · lim
ρ′n−k→0

∏n−k
j=0 ρ

′
j
|V ′

j |∏n−k
j=0 ρ

|Vj |
j

= 0,

provided, as assumed in this case, that the V ′
j are not simply a permutation

of the Vj .
When we take the limit as ρ′n−k → 0, the numerator vanishes to order∣∣V ′
n−k

∣∣. Now consider the denominator. If Vj ⊆ V ′
n−k, then ρj → 0, so the

corresponding factor vanishes to order |Vj |. Otherwise, Vj contains an i not
in V ′

n−k, so ρj does not go to zero. So, to count the order of vanishing of the
denominator, we count the number of i ∈ V ′

n−k such that i ∈ Vj ⊆ V ′
n−k. So,

the order of vanishing of the denominator is at most
∣∣V ′

n−k

∣∣, with equality if
and only if all Vj are either contained in or disjoint from V ′

n−k. Unless this
condition holds, the limit is zero.

Assume then for the sake of contradiction that the sequence of limits (3)
is nonzero. Then, by the same reasoning, for 1 ≤ j′ ≤ n − k, all Vj are
contained in or disjoint from V ′

j′ . (Note that this implies that the same

holds for j′ = 0 as well, since V ′
0 is the complement of the union of the V ′

j′

for j′ ≥ 1.) This contradicts the assumptions that F and F ′ partition V
into the same number of sets, but not the same exact sets. □

We now prove the postponed lemmas, starting with a definition needed
only for the lemmas.
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Definition 2.28. Let F be a flag with n+ 1− k subsets (V0, . . . , Vn−k) as
above. Let W be an (n + 1 − k)-element subset of V . We say that W is
distinguished by F if every Vj contains exactly one element of W .

Lemma 2.29. Let F and F ′ be two flags, each with n+1−k subsets. Thenn−k∧
j=0

dρ′j

 (Xid,0, . . . , Xid,n−k) =
∑

±λW ,

where

ρ′j =
∑
i∈V ′

j

λi, Xid,j =
∑
i∈Vj

λi
∂

∂λi
, λW =

∏
i∈W

λi,

and the sum is taken over all W that are distinguished by both F and F ′.

Proof. Since the V ′
j are a partition of V , we have that

n−k∧
j=0

dρ′j =
∑

± dλW ,

where the sum is over all W that are distinguished by F ′, and, as before,
dλW :=

∧
i∈W dλi. Computing the same way for the multivector, we have

n−k∧
j=0

Xid,j =
∑

±λW
∂

∂λW
,

where the sum is over all W that are distinguished by F , and ∂
∂λW

=∧
i∈W

∂
∂λi

.

The claim follows since the dλW are dual to the ∂
∂λW

. □

Lemma 2.30. With notation as above, on RV
>0, we have∣∣∣∣∣∣

n−k∧
j=0

dρ′j
ρ′j

 (Xid,0, . . . , Xid,n−k)

∣∣∣∣∣∣ ≤ 1

with equality if and only if the flags F and F ′ have the same partition,
possibly in a different order.

Proof. The inequality follows from the preceding lemma, along with the fact
that

n−k∏
j=0

ρ′j =
∑

λW ,

where the sum is taken over all W distinguished by F ′.
It is easy to check that equality holds if F = F ′, since dρj(Xid,j) = ρj and

dρj(Xid,l) = 0 for l ̸= j. Next, if we permute the subsets of the partition,

then
(∧n−k

j=0 dρ
′
j

)
(Xid,0, . . . , Xid,n−k) is unchanged except up to sign, and
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j=0 ρj is unchanged. Thus, equality holds if F and F ′ have the same

partition, possibly in a different order.
Finally, if F and F ′ have different partitions, then, using the fact that

both partitions have n+1−k subsets, there exists aW that is distinguished
by F but not F ′, and vice versa. Therefore, in the preceding lemma, when
we sum over W that are distinguished by both F and F ′, we have strictly
fewer terms than when we sum over W that are distinguished by one of
the flags. Recalling the positivity assumption in RV

>0, we conclude that the
inequalities are strict. □

Lemma 2.31. Let X ′
1, . . . , X

′
k be vectors tangent to the Θ′ factor in the

decomposition T̊ ∼= R̊′ × Θ̊′. Then∣∣∣φF

F !
(X ′

1, . . . , X
′
k)
∣∣∣ ≤ ∣∣∣φF ′

F ′!
(X ′

1, . . . , X
′
k)
∣∣∣ ,

where, as before, φF is shorthand for
∧

j φVj , and similarly for φF ′.

Proof. Let Xid,0, . . . , Xid,n−k be the tautological vector fields in the pre-
ceding lemmas, ad let X ′

id,0, . . . , X
′
id,n−k be the corresponding tautological

vector fields for the sets V ′
j of the flag F ′. By definition, we have

iXid,j
dλVj =

φVj

nj !
.

Additionally, by disjointness of the Vj , we have iXj dλVl
= 0 for l ̸= j. We

conclude that then

iXid,0
· · · iXid,n−k

dλV = ±φF

F !
.

Proceeding similarly to the proof of Lemma 2.15, we then conclude that∧
j

dρ′j
ρ′j

 ∧ φF

F !
= ±

∧
j

dρ′j
ρ′j

 (Xid,0, . . . , Xid,n−k)

 dλV .

The preceding lemma tells us that, as top-level forms, the right-hand side
has magnitude at most dλV .

So then, we observe that
dρ′j
ρ′j

evaluates to 1 on X ′
id,j , evaluates to 0 on

Xid,l for l ̸= j, and evaluates to 0 on each of the vectors X ′
1, . . . , X

′
k because

they are tangent to the Θ′ factor. Thus, evaluating the previous equation on
X ′

id,0, . . . , X
′
id,n−k, X

′
1, . . . , X

′
k and applying the preceding lemma, we obtain∣∣∣φF

F !
(X ′

1, . . . , X
′
k)
∣∣∣ ≤ ∣∣dλV (X ′

id,0, . . . , X
′
id,n−k, X

′
1, . . . , X

′
k)
∣∣ ,

with equality when F = F ′. □
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2.5. Arrival times of Poisson process ensembles. Recall from Propo-
sition 2.23 that the blow-up Whitney forms can be expressed as

ψF = pFρ
−FφF = pFωF ,

where pF is the relative volume of Rρ ×Θ, φF is the wedge product of the
Whitney forms for each Vj , and ωF is the homogenization ρ−FφF , which
is also the volume form on Θ. Surprisingly, pF can be interpreted as a
probability of a particular order of arrival times of an ensemble of Poisson
processes. Poisson processes can be found in many probability textbooks;
for the purposes of this paper, a reference that we recommend is [29, Sec-
tion 11.1.2].

We first recall that if l is the first arrival time of a Poisson process with
rate 1, then l is distributed as e−l dl. Now if we have an ensemble of such
processes, indexed by i ∈ V with |V | = n+1, then r :=

∑
i li is the (n+1)st

arrival time of a Poisson process with rate 1, and the values li
r define a

uniformly distributed point in the standard n-simplex, independent of r.
Indeed, applying Lemma 2.15, we have

(4)
∧
i∈V

e−li dli = e−r dlV = e−r dr

r
∧ iXid

dlV =
rn

n!
e−r dr ∧ n!iXid

dlV

r|V | .

Per [29], rn

n! e
−r dr is the probability distribution of the arrival time of the

(n + 1)st particle, and per Proposition 2.14 and scaling, n!iXid

dlV
r|V | is the

uniform distribution on the simplex
∑

i li = r for each r.
In particular, if χ is a random variable depending on the simplex coordi-

nates li
r but not on r, then its expected value with respect to the uniform

distribution on the simplex is the same as its expected value with respect
to the Poisson ensemble distribution. We state this fact more precisely.

Proposition 2.32. If χ is a dilation-invariant scalar-valued function on
RV
>0, then ∫

RV
>0

χe−r dlV =

∫
T
χω,

where r =
∑

i∈V li and ω is the volume form on T rescaled to have integral
one.

Proof. Note that ω = n!iXid

dlV
r|V | is invariant with respect to pullback under

the dilation transformation. By the dilation invariance of χ, we therefore
have that

∫
rT χω does not depend on r. Therefore, by Equation (4),∫

RV
>0

χe−r dlV =

∫
R>0

(
rn

n!
e−r dr

(∫
rT
χω

))
=

(∫
R>0

rn

n!
e−r dr

)(∫
T
χω

)
=

∫
T
χω. □

We are now ready to interpret the pF function from Proposition 2.23 as
a probability.
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Proposition 2.33. Let F be a flag, and let ρ0, . . . , ρn−k be positive numbers.
Consider an ensemble of n+ 1− k Poisson processes, where the jth process
has rate ρj. Let tj be the arrival time of the |Vj |th particle of the jth Poisson
process. Then the relative volume pF from Proposition 2.23 is the probability
that

t0 ≤ · · · ≤ tn−k.

Before we present the proof, we remark that, earlier, the ρj were con-
strained to sum to one, but here there is no such constraint. On the other
hand, the probability that t0 ≤ · · · ≤ tn−k is clearly invariant with respect to
dilating ρ. So, properly, we are extending pF : T → R from Proposition 2.23
to the unique dilation invariant function on RV

>0.

Proof. Let rj = ρjtj , so then t0 ≤ · · · ≤ tn−k is equivalent to

r0
ρ0

≤ · · · ≤ rn−k

ρn−k
,

which are exactly the inequalities defining Rρ in Definition 2.20.
Since tj is the arrival time of the |Vj |th particle of a Poisson process with

rate ρj , we know that rj is distributed as the arrival time of the |Vj |th particle
of a Poisson process with rate 1. So then, we can also view rj =

∑
i∈Vj

li,

where li are the first arrival times of Poisson processes with rate 1. (As
per [29], waiting for the |Vj |th particle is equivalent to waiting for the first
particle |Vj | consecutive times.)

So now we can, additionally, view Rρ as a dilation-invariant subset of the
orthant RV

>0 with coordinates li. Letting χ be its characteristic function, by
Proposition 2.32 we conclude that∫

Rρ

e−r dlV =

∫
Rρ∩T

ω,

where, on the left, we view Rρ as a subset of RV
>0 as just discussed, and, on

the right, we view Rρ as a subset of T as per Definition 2.20. The right-hand
side therefore gives the relative volume of Rρ (properly its preimage Rρ×Θ)
in T as per Proposition 2.23.

Meanwhile, the left-hand side is the probability that we land in Rρ with
respect to the probability distribution e−r dlV . As we have discussed, land-
ing in Rρ is equivalent to t0 ≤ · · · ≤ tn−k. As we have also discussed, the
probability distribution e−r dlV gives the arrival times li of Poisson processes
with rate 1, which is equivalent to the rj being |Vj |th arrival times of Poisson
processes with rate 1, which, in turn, is equivalent to the tj being the |Vj |th
arrival times of Poisson processes with rates ρj . □

We can apply the above proposition to quickly compute pF and hence ψF

using some basic combinatorics and probability.

Example 2.34. Let F be the flag 01{23}. Then J is a three-element set,
but to avoid confusion with V = {0, 1, 2, 3} we will use J = {a, b, c} instead
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of J = {0, 1, 2}. So we have ρa = λ0, ρb = λ1, and ρc = λ2 + λ3. So we
ask for the probability that ta ≤ tb ≤ tc, where ta is the first arrival time
of particle a, tb is the first arrival time of particle b, and tc is the second
arrival time of particle c. We can ignore “excess” particles, that is, particles
of type a after the first, particles of of type b after the first, and particles
of type c after the second. In doing so, there are only four particles we care
about, and there are three possible sequences they can arrive in so that we
have ta ≤ tb ≤ tc, namely

abcc, acbc, cabc.

Now, let us assess the probability of each of these sequences, starting with
abcc. At any time, the relative probability that the next particle we receive
is of type j is ρj . So, the chance that we receive a first is ρa

ρa+ρb+ρc
. After

that, we will ignore any further particles of type a, so the chance that b
is next is really the chance that b is next among only the options b and c,
which is ρb

ρb+ρc
. After that, we will also ignore any further particles of type

b, so the chance that c is next is ρc
ρc

= 1, and likewise for the last c particle.

Reasoning similarly, for acbc, the probability that a is first is ρa
ρa+ρb+ρc

,

and the probability that c is next (ignoring a) is ρc
ρb+ρc

. But, unlike the

previous calculation, we don’t ignore c at this point, since we are waiting
for two c particles in total. So the chance that b is next is ρb

ρb+ρc
. As before,

since we now ignore both a and b, the next particle is c with probability
ρc
ρc

= 1.

Finally, for cabc, the chance that c arrives first is ρc
ρa+ρb+ρc

. The chance

that a arrives next is ρa
ρa+ρb+ρc

. We now ignore a, so the chance that b arrives

next is ρb
ρb+ρc

. And the last c arrives with probability 1.

So, then, putting everything together, we will compute the total prob-
ability. To keep the equations manageable, we will use shorthand ρabc =
ρa + ρb + ρc and ρbc = ρb + ρc.

pF =
ρa
ρabc

ρb
ρbc

+
ρa
ρabc

ρc
ρbc

ρb
ρbc

+
ρc
ρabc

ρa
ρabc

ρb
ρbc

=
ρaρbρc
ρabcρbc

(
1

ρabc
+

1

ρbc
+

1

ρc

)
.

So, then, multiplying by ωF = λ0
ρa

λ1
ρb

φ23

ρ2c
(the first two factors are just 1), we

obtain

ψF =
λ0λ1φ23

ρabcρbcρc

(
1

ρabc
+

1

ρbc
+

1

ρc

)
,

where ρabc = λ0123 = λ0 + λ1 + λ2 + λ3, ρbc = λ123 = λ1 + λ2 + λ3, and
ρc = λ23 = λ2 + λ3.

Example 2.35. We will now do the same computation where F is the flag
{01}{23}, using the notation J = {a, b}, so ρa = λ0 + λ1, and ρb = λ2 + λ3.
Now we want to receive two particles of both types, with the second arrival
times ta and tb satisfying ta ≤ tb. There are once again three possibilities of
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arrival sequences of the particles we care about:

aabb, abab, baab.

Using shorthand ρab = ρa + ρb, the probability is

pF =
ρa
ρab

ρa
ρab

+
ρa
ρab

ρb
ρab

ρa
ρab

+
ρb
ρab

ρa
ρab

ρa
ρab

=
ρ2aρb
ρ2ab

(
2

ρab
+

1

ρb

)
.

Multiplying by φ01

ρ2a
∧ φ23

ρ2b
, we obtain

ψF =
φ01 ∧ φ23

ρ2abρb

(
2

ρab
+

1

ρb

)
,

where ρab = λ0123 = λ0 + λ1 + λ2 + λ3 and ρb = λ23 = λ2 + λ3.

Example 2.36. We now compute for the flag F = 0{123}, once again using
J = {a, b}, this time with ρa = λ0 and ρb = λ1 + λ2 + λ3. Now we need
one particle of type a and three particles of type b, so the possible arrival
sequences of the particles we care about, with ta ≤ tb, are

abbb, babb, bbab.

Using shorthand ρab = ρa + ρb, the probability is

pF =
ρa
ρab

+
ρb
ρab

ρa
ρab

+
ρb
ρab

ρb
ρab

ρa
ρab

=
ρaρ

2
b

ρab

(
1

ρ2ab
+

1

ρabρb
+

1

ρ2b

)
.

Multiplying by λ0
ρa

φ123

ρ3b
, we obtain

ψF =
λ0φ123

ρabρb

(
1

ρ2ab
+

1

ρabρb
+

1

ρ2b

)
,

where ρab = λ0123 = λ0 + λ1 + λ2 + λ3 and ρb = λ123 = λ1 + λ2 + λ3.

The Poisson process framework can yield intuitive proofs of statements
about blow-up Whitney forms. We begin with the claim that the space
of blow-up Whitney forms contains the ordinary Whitney forms, which is
shown in [10, Proposition 11.1] by direct algebraic calculation.

Proposition 2.37. The space of blow-up Whitney forms contains the usual
Whitney forms.

Proof. Let W be a subset of V of size k + 1. We aim to show that φW can
be expressed as a sum of blow-up Whitney forms. To that end, consider the
set of flags F for which V0 = W , and V1, . . . , Vn−k each have one element;
there are (n− k)! such flags. We claim that φW is the sum of ψF over all of
these flags.

To that end, in light of Proposition 2.23, observe that, for 1 ≤ j ≤ n− k,

since Vj is a singleton set, we have ρ
−|Vj |
j φVj = λ−1

ij
λij = 1, where ij denotes

the sole element of Vj . As such, for each flag, we have ψF = pFρ
−|W |
0 φW . So

then, it remains to show that the pF sum to ρ
|W |
0 (with the normalization

ρ =
∑

i∈V λi = 1; otherwise (ρ0/ρ)
|W |).
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Since these flags all have the same unordered partition, we are working
with an ensemble of Poisson processes, where we wait for the |W |-th particle
of a Poisson process with rate ρ0, and we wait for the first particle of n− k
Poisson processes each with rate λi for i /∈ W . For a particular flag F in
the above set, we want the |W |-th particle of Poisson process 0 to arrive
first, and then we want the first particles of the other Poisson processes to
arrive in a particular order. However, since we sum over all of these orders,
we conclude that the sum of the pF is simply the probability that the |W |-
th particle of Poisson process 0 arrives first, that is, before we receive any
particles from any of the other n− k Poisson processes.

Letting ρ =
∑

i∈V λi, which we may, optionally, normalize to one, the
probability that the first particle that we receive is from the Poisson process
0 is ρ0

ρ . After receiving it, we wait for the next particle, which likewise has

probability ρ0
ρ of coming from Poisson process 0. Continuing on, we find

that the probability that the first |W | particles that we received all came

from Poisson process 0 is
(ρ0

ρ

)|W |
, as desired. □

Another result that follows easily from the Poisson process perspective is
the relationship between the blow-up Whitney forms on simplices of different
dimension. We recall that ψF = pFωF .

Proposition 2.38. Let F = (V0, . . . , Vn−k) be a flag on V . Removing the
last subset of the partition, we obtain a flag F ′ := (V0, . . . , Vn−k−1) on the
smaller set V ′ := V \ Vn−k. Then

pF ′ = lim
ρn−k→0

pF .

Proof. Recall that pF is the probability that t0 ≤ · · · ≤ tn−k, where tj is the
arrival time of the |Vj |th particle of a Poisson process with rate ρj . So, as the
rate ρn−k goes to zero, the arrival time tn−k goes to infinity. More precisely,
for any T , the probability that tn−k ≥ T goes to 1. So then the probability
that t0 ≤ · · · ≤ tn−k approaches the probability that t0 ≤ · · · ≤ tn−k−1,
which is precisely pF ′ . □

The Poisson framework also yields integral formulas similar to those that
appear in [10, p. 1028] and [6, Lemma 1]. The main idea is that t0 ≤ · · · ≤
tn−k is equivalent to

tj−1

tj
≤ 1 for 1 ≤ j ≤ n − k, so we can express the

probability pF as an integral over the tj coordinates.

Proposition 2.39. We have the following integral formulas for pF .

pF =

∫ ∞

0

∫ 1

0
· · ·
∫ 1

0

rF

F !
e−r 1

t0
d( t0t1 ) ∧ · · · ∧ d( tn−k−1

tn−k
) ∧ dtn−k

=

∫ ∞

0

rne−r

n!

∫ ρn−k−1
ρn−k

0
· · ·
∫ ρ0

ρ1

0

n!

F !

(r
r

)F rn−k

r0
d( r0r1 ) ∧ · · · ∧ d( rn−k−1

rn−k
) ∧ dr

=

∫ ∞

−∞

rn+1e−r

n!

∫ ln
ρn−k−1
ρn−k

−∞
· · ·
∫ ln

ρ0
ρ1

−∞

n!

F !

(r
r

)F
d ln r0

r1
∧ · · · ∧ d ln rn−k−1

rn−k
∧ d ln r.
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Here, as before, nj = |Vj | − 1, rj = ρjtj, r =
∑
rj, and rF and F ! are

shorthand for
∏
r
|Vj |
j and

∏
nj !, respectively.

Note, in the first line, that the bounds of integration are constants and
the integrand varies with ρ, whereas in the second and third lines the bounds
depend on ρ but the integrand does not. In all cases, the bounds do not
depend on the integration variables, so we are integrating over an (infinite)
rectangle.

Note also that, in the second and third lines, the inner integrand is dilation-
invariant, and the outer integral integrates to one, so, similarly to Propo-
sition 2.32, we can reduce to an integral over the subset Rρ of the simplex
defined by r = 1.

Proof. Recall for Poisson arrival times that the tj are independent with
probability distributions

ρ
|Vj |
j

t
nj

j

nj !
e−ρjtj dtj =

r
|Vj |
j

nj !
e−rj d ln tj .

Thus, the full probability distribution is

rF

F !
e−r d ln t0 ∧ · · · ∧ d ln tn−k.

Next, by wedging right to left, we can verify that

(d ln t0 − d ln t1) ∧ · · · ∧ (d ln tn−k−1 − d ln tn−k) ∧ d ln tn−k

= d ln t0 ∧ · · · ∧ d ln tn−k.

Since t0 ≤ · · · ≤ tn−k is equivalent to ln
tj−1

tj
≤ 0, we conclude that

pF =

∫ ∞

−∞

∫ 0

−∞
· · ·
∫ 0

−∞

rF

F !
e−r d ln t0

t1
∧ · · · ∧ d ln tn−k−1

tn−k
∧ d ln tn−k.

Changing variables, we can also write

pF =

∫ ∞

0

∫ 1

0
· · ·
∫ 1

0

rF

F !
e−r 1

t0
d( t0t1 ) ∧ · · · ∧ d( tn−k−1

tn−k
) ∧ dtn−k,

which is the first equation in the proposition. Changing variables again, we
can write

pF =

∫ ∞

0

∫ ρn−k−1
ρn−k

0
· · ·
∫ ρ0

ρ1

0

rF

F !
e−r 1

r0
d( r0r1 ) ∧ · · · ∧ d( rn−k−1

rn−k
) ∧ drn−k.

Observe that

r = rn−k(1 +
rn−k−1

rn−k
+

rn−k−1

rn−k

rn−k−2

rn−k−1
+ · · ·+ rn−k−1

rn−k
· · · r0r1 ).

We thus have that

d( r0r1 ) ∧ · · · ∧ d( rn−k−1

rn−k
) ∧ d( rn−k

r ) = 0,
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because it is an (n−k+1)-form in the n−k variables
rj−1

rj
. We can conclude

that

d( r0r1 ) ∧ · · · ∧ d( rn−k−1

rn−k
) ∧ drn−k =

rn−k

r d( r0r1 ) ∧ · · · ∧ d( rn−k−1

rn−k
) ∧ dr,

and so

pF =

∫ ∞

0

∫ ρn−k−1
ρn−k

0
· · ·
∫ ρ0

ρ1

0

rF

F !

e−r

r

rn−k

r0
d( r0r1 ) ∧ · · · ∧ d( rn−k−1

rn−k
) ∧ dr,

which yields the second and third equations in the proposition. □

3. The complex of blow-up Whitney forms and its cohomology

3.1. The exterior derivative. In this subsection, we show that the blow-
up Whitney forms form a complex with respect to the exterior derivative.

Theorem 3.1.

dψF = ±
n−k∑
j=1

ψFj ,

where Fj is the flag constructed from F by replacing the two partition ele-
ments Vj−1 and Vj with their union.

This result appears in [10, Corollary 2.2]. Here, we give a perspective
on the proof from the vantage point of Poisson processes. We want to
emphasize that, although the Poisson process perspective is new, the proof
follows roughly the same key ideas as in [10], except that we work on the

orthant squared RV
≥0×RV

>0 whereas they work on the simplex squared T̊×T .
In particular, the arrival time subset AF in Definition 3.2 corresponds to the
incidence varietyDσ in [10] (with σ corresponding to F ), and Proposition 3.3
corresponds to [10, Proposition 2.1].

We first establish and recall some notation. First, note that we have
actually been using two copies of RV

≥0. One of them, with coordinates li,
we used in the section on Poisson processes, and there we treated the λi as
parameters giving the rates of the Poisson processes. But, of course, the
λi are also coordinates of a copy of RV

≥0, and the blow-up Whitney forms
are written in terms of the λi. As before, we let φVj be Whitney forms in

terms of the λi, and we let ωVj =
φVj

ρ
|Vj|
j

, and we have ωF =
∧

j ωVj . Recall

that the blow-up Whitney forms are ψF = pFωF , where, as before, pF is the
probability of a particular order of certain arrival times of Poisson processes.
Note that the expression ωVj is defined on all of RV

>0 and is dilation-invariant
(via pullback). Therefore, instead of taking the perspective that ψF is a form
on T , we take the perspective that it is a dilation-invariant form on RV

>0.

With that all in mind, we will now work on the space RV
≥0 × RV

>0, where
the first copy has coordinates li, and the second copy has coordinates λi.

When we need to disambiguate, we will write RV,l
≥0, and RV,λ

>0 . As before,

rj =
∑

i∈Vj
li, and ρj =

∑
i∈Vj

λi, and likewise r and ρ are those sums over
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all of V . As before, we will let tj =
rj
ρj

for j ∈ J , but now we view tj as a

scalar-valued function on RV
≥0×RV

>0. We will also let si =
li
λi

for i ∈ V ; this
value can likewise be interpreted as an arrival time, but we use a different
letter to avoid confusion. Note that the denominator in these expressions is
the reason we restrict the λ space to the strictly positive orthant.

In this setting, we have a simple weak characterization of the blow-up
Whitney forms ψF . We begin with a preliminary definition.

Definition 3.2. For a flag F , let AF be the arrival time subset of RV
≥0×RV

>0,

defined by the inequalities si ≤ si′ for i ∈ Vj , i
′ ∈ Vj′ , whenever j ≤ j′. Note

in particular that si = si′ if i and i′ are in the same subset Vj = Vj′ .
Moreover, this common value is tj , so we have t0 ≤ · · · ≤ tn−k as before.

Observe that, due to the presence of these equalities, the space AF is
(2(n+ 1)− k)-dimensional.

Proposition 3.3. Let F be a flag and let α be a suitable (for instance,

smooth and compactly supported) test (n + 1 − k)-form on RV,λ
>0 , which we

can view as a form on RV
≥0 × RV

>0 that only depends on λ. Then∫
AF

e−r dlV ∧ α =

∫
RV,λ
>0

ψF ∧ α,

presuming a suitable choice of orientation of AF (without which the equation
may need a negative sign).

Proof. We first observe that the n+1 coordinates λi, along with the n+1−k
functions rj , form a coordinate system on the the (2(n+1)−k)-dimensional
space AF . Indeed, given the λi and the rj , we can compute the ρj and hence
the tj =

rj
ρj
. Given that we are on AF , the si are equal to the tj for i ∈ Vj ,

and so we can recover the li = λisi. In fact, this yields a coordinate system
on the larger set where the si are equal to the tj for i ∈ Vj , and restricting
this coordinate system to AF amounts to restricting r to Rρ for each value
of λ, because we recall that r ∈ Rρ is equivalent to t0 ≤ · · · ≤ tn−k.

Our next task is to convert the (n + 1)-form e−r dlV to this coordinate
system. We will let Xid be the tautological vector field on the whole space
(both the li and λi coordinates), and we observe that iXid

dli = siiXid
dλi.

We now focus on a particular value of j, recalling that all of the si for
i ∈ Vj are equal to a single value, which we denote by tj . We compute as in
Lemma 2.15 and using the above fact that iXid

dli = siiXid
dλi. We obtain

e−rj dlVj = e−rj
drj
rj

∧ iXid
(dlVj ) = e−rj

drj
rj

∧ t|Vj |
j iXid

dλVj

= e−rj
r
nj

j

nj !
drj ∧ ρ

−|Vj |
j φVj ,

where, as before nj = |Vj |−1. We recognize the first factor as the probability
distribution of the arrival time rj of the |Vj |th particle under a Poisson
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process with rate 1, and we recognize the second factor as ωj , the dilation-
invariant Whitney form on TVj . So then, wedging everything together over
j, we have

e−r dlV = ±e−r r
F

F !
drJ ∧ ωF ,

where, as before, rF , F !, drJ , and ωF are shorthands for the respective
products.

So now we integrate by Fubini’s theorem. Recall that, for fixed λ, because
the rj are distributed as |Vj |th arrival times of Poisson processes with rate
1, the tj =

rj
ρj

are distributed as |Vj |th arrival times of Poisson processes

with rate ρj . Also, recall that, for fixed λ, choosing r to land us in AF is
equivalent to r ∈ Rρ (viewing Rρ as a dilation-invariant subset of RJ

>0),
which we know occurs with probability pF under this probability distribu-
tion. Hence, assuming a proper choice of orientation of AF and recalling
that α only depends on λ, we have∫

AF

e−r dlV ∧ α =

∫
RV,λ
>0

(∫
Rρ

e−r r
F

F !
drJ

)
ωF ∧ α

=

∫
RV,λ
>0

pFωF ∧ α =

∫
RV,λ
>0

ψF ∧ α,

as desired. □

Proof of Theorem 3.1. We proceed by taking the weak exterior derivative
and applying Stokes’s theorem. We lower the degree of α by one, taking

it to be a test (n − k)-form on RV,λ
>0 , and as before we require compact

support away from the boundary of the orthant. So then, by the preceding
proposition, we have∫

RV,λ
>0

dψF ∧ α = ±
∫
RV,λ
>0

ψF ∧ dα = ±
∫
AF

e−r dlV ∧ dα

= ±
∫
AF

d
(
e−r dlV ∧ α

)
= ±

∫
∂AF

e−r dlV ∧ α.

Here we used the fact that d(e−r dlV ) = 0 because e−r only depends on l,

so we are effectively taking the derivative of a top-level form on RV,l
≥0.

So all that remains is to relate the boundary of AF to the AFj . The set
AF is defined by the inequalities

t0 ≤ · · · ≤ tn−k,

along with the condition that for i ∈ Vj we have si all equal to tj . So
then the boundary of AF is comprised of components which are given by
turning one of the defining inequalities tj−1 ≤ tj into an equality tj−1 = tj
(while maintaining all other inequalities and equalities). We see that doing
so precisely gives us AFj , the arrival time set of the flag Fj obtained by
replacing Vj−1 and Vj with their union.
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Additionally, we must consider the boundary component t0 = 0, but note
that this implies that r0 = 0, which means that some of the li are zero, which
means some of the dli are zero, which means that e−r dlV = 0. We must
also consider the “boundary component” as tn−k → ∞, but note that this
requires either rn−k → ∞, which means e−r → 0, or it requires ρn−k → 0,
in which case α vanishes due to the assumption of compactness away from
the boundary of the orthant.

In conclusion, we have∫
RV,λ
>0

dψF ∧ α =

n−k∑
j=1

±
∫
AFj

e−r dlV ∧ α =

n−k∑
j=1

±
∫
RV,λ
>0

ψFj ∧ α,

for all α, as desired. □

3.2. Blowing up and cohomology. Via integration, the standard Whit-
ney forms on a simplex are dual to the faces of the simplex, which means
that the complex of Whitney forms is isomorphic to the complex of simplicial
cochains. Consequently, the cohomology of these complexes are the same.
In particular, a single simplex is homeomorphic to a ball, so the cohomology
vanishes except for the constants in degree zero.

The goal of this section is to similarly conclude that the cohomology of the
blow-up Whitney form complex vanishes except for the constants in degree
zero. A priori, however, the task seems foolish: the blow-up Whitney forms
are only smooth on the interior of T , so evaluation on faces is not defined,
unless we follow the specific limiting procedure discussed in the degrees of
freedom section. Our solution to this problem is to blow up the simplex,
obtaining a blow-up space T̃ . Combinatorially, the blow-up T̃ is equivalent
to a well-understood polytope called the permutahedron; see Figure 7. But
its main advantage for us comes from analysis: The blow-up simplex comes
with a map π : T̃ → T that is a diffeomorphism on the interior, so we can
pullback the blow-upWhitney forms ψF on T to get forms ψ̃F on T̃ . Notably,
whereas the ψF are only smooth on the interior of T , the blow-up simplex
“desingularizes” the boundary of T , and the forms ψ̃F end up being smooth
on T̃ up to and including the boundary. Moreover, integrating the ψ̃F over
the faces of T̃ ends up being equivalent to the limiting procedure discussed
in the degrees of freedom section.

In short, by lifting to the blow-up T̃ , the blow-up Whitney forms become
smooth including on the boundary, and they are dual to the faces via in-
tegration. So, we get the same story for blow-up Whitney forms that we
had for the regular Whitney forms, just with T̃ in place of T and cellular
cohomology in place of simplicial cohomology.

We proceed with some intuition, followed by the definition, and then
followed by examples.

Intuition 3.4 (via barycentric subdivision). The blow-up simplex T̃ can be
thought of as the configuration space of barycentric subdivisions of T , where
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Figure 7. The blow-up of a tetrahedron is combinatori-
ally equivalent to a permutahedron of order 4. The 24
vertices of the permutahedron correspond to the 24 flags
0123, 0132, 0213, . . . , 3210 (where, for instance, 0123 is short-
hand for ({0}, {1}, {2}, {3})).

degenerate subdivisions are allowed. Normally, one performs barycentric
subdivision by choosing a point x in the interior of T , and then constructing
rays, half-planes, etc., that join the faces of T and x. But what if we allow
degenerate subdivisions, where x is on the boundary of T , for example, at a
vertex? Then the barycentric subdivision is generally no longer determined
by x. On the other hand, for each face K of T , a barycentric subdivision of
T also induces a barycentric subdivision of K, and hence gives a point xK in
K. The collection of points xK determines the barycentric subdivision even
in the degenerate case, but there are relations between the xK that must be
accounted for.

Intuition 3.5 (via Poisson processes). As in Section 2.5, consider a collec-
tion of Poisson processes with rates λi. Then, for example, the probability
that we receive particle 0 before particle 2 is λ0

λ0+λ2
, and likewise the proba-

bility that we receive particle 0 first among particles 0, 1, and 2, is λ0
λ0+λ1+λ2

.
But what if we allow some rates to be infinitesimal relative to others? For
example, perhaps source 0 emits a particle every second on average, whereas
source 1 emits three particles every million years on average, and source 2
emits two particles every million years on average. Then, effectively,

(5)
λ0

λ0 + λ1 + λ2
= 1,

λ1
λ0 + λ1 + λ2

= 0,
λ2

λ0 + λ1 + λ2
= 0.

On the other hand, if we consider only particles 1 and 2, it is clear that

λ1
λ1 + λ2

=
3

5
.

However, as written above, λ1
λ1+λ2

does not make sense because Equation (5)
implies λ1 = λ2 = 0. The solution is to treat all of these fractions as indepen-
dent variables, and then use constraint equations to enforce the relationships
between them.
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Definition 3.6. Given a simplex T , let K ≤ T denote a face of T , and
let VK denote the vertices of K. Consider then the high-dimensional first
orthant ∏

K≤T

RVK
≥0 ,

Denote the coordinates of this space by λKi , where K ≤ T and i ∈ VK .

Let T̃ be the subset of this space carved out by the equations∑
i∈VK

λKi = 1

for all K and
λHi = ρHKλ

K
i

for all K ≤ H and i ∈ VK , where ρHK =
∑

i∈VK
λHi . Note that the value of

ρHK also follows by summing the above equation over i ∈ VK , and that the
equations are vacuous when H = K since ρKK = 1.

There is a natural projection π : T̃ → T where we take the barycentric
coordinates of the image point in T to simply be λi = λTi .

Example 3.7. Consider a two-dimensional triangle T with vertices {0, 1, 2}.
Let Pi denote the zero-dimensional face corresponding to that vertex, and
let Ei denote the opposite edge. Letting λi denote λ

T
i , the coordinates we

are working with are

(λ0, λ1, λ2),

(λE0
1 , λE0

2 ), (λE1
0 , λE1

2 ), (λE2
0 , λE2

1 ),

(λP0
0 ), (λP1

1 ), (λP2
2 ).

Since barycentric coordinates sum to one, we have that λPi
i = 1, so we do not

really need to think about these coordinates. Consequently, taking K = Pi

in the constraint λHi = ρHKλ
K
i , we just have ρHK = λHi and λKi = 1, so the

constraint is vacuously satisfied. So, the only nontrivial constraints come
from Ei ≤ T . For example, taking K = E0 ≤ H = T , we get

λ1 = (λ1 + λ2)λ
E0
1 , λ2 = (λ1 + λ2)λ

E0
2 .

So, we see that, provided that λ1 + λ2 ̸= 0, we just have

λE0
1 =

λ1
λ1 + λ2

, λE0
2 =

λ2
λ1 + λ2

,

consistent with the fact that any interior point of T has only one preimage
in T̃ , so all coordinates should be determined by λ0, λ1, and λ2. More
precisely, λE0

1 and λE0
2 are the coordinates of the unique point on edge E0

that is on the ray from P0 through the point x with coordinates (λ0, λ1, λ2).
On the other hand, if λ1 = λ2 = 0, namely, at vertex P0, then the constraint
equations are vacuously satisfied, so λE0

1 and λE0
2 are free to represent any

point on the edge E0, corresponding to the fact that if x = P0, then the ray
through P0 and x is undetermined.
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Example 3.8. Now consider a three-dimensional tetrahedron T with ver-
tices {0, 1, 2, 3}. As before, we will use the notation Pi for vertices and Fi

for the opposite faces, but now we must also use Eij for the edge joining i
and j. As before, we have constraint equations that give, for example, for
F0 ≤ T , that

λF0
i =

λi
λ1 + λ2 + λ3

for i ∈ {1, 2, 3} when the denominator is nonzero, and otherwise the con-
straint is vacuously satisfied. Likewise, we have, for example, for E12 ≤ T ,
that

λE12
i =

λi
λ1 + λ2

for i ∈ {1, 2} when the denominator is nonzero.
But, now, we also have constraints coming from, for instance, E12 ≤ F0,

which yield

(6) λE12
i =

λF0
i

λF0
1 + λF0

2

.

for i ∈ {1, 2}, again provided the denominator is nonzero. On the interior of
T , this equation is automatically satisfied: it is simply the statement that

λi
λ1 + λ2

=

λi
λ1+λ2+λ3

λ1
λ1+λ2+λ3

+ λ2
λ1+λ2+λ3

.

But what if λ1 = λ2 = λ3 = 0, so we are at vertex P0? Then, the constraint
equations λi = (λ1 + λ2 + λ3)λ

F0
i and λi = (λ1 + λ2)λ

E12
i are vacuously

satisfied, so the λF0
i and λE12

i are free to roam. So now Equation (6) imposes

a nontrivial constraint, saying that the choice of λE12
i is determined by the

λF0
i . Unless, of course, we also have λF0

1 = λF0
2 = 0, in which case we are

free to choose λE12
i .

As before, the λF0
i can be thought of as representing a ray from P0 by

specifying where it hits the opposite face F0. Likewise, the λE12
i can be

thought of as representing a half-plane emanating from the edge E03 by
specifying where it hits the opposite edge E12. One can check that the
conditions imply that the ray is contained in the half-plane. The discussion
above can be reinterpreted as saying that, most of the time, the half-plane
is determined by the ray, unless λF0

1 = λF0
2 = 0, so λF0

3 = 1, so the ray from
P0 goes along edge E03, in which case the half-plane is unconstrained.

We now make explicit the above claims.

Proposition 3.9. The map π : T̃ → T is a diffeomorphism between the
interiors of T̃ and T .
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Proof. Given a point on the interior of T with barycentric coordinates λi,
we can invert π by setting

λKi =
λi
ρK

,

where ρK = ρTK =
∑

i∈VK
λi. Observe that this map is smooth on the

interior of T , since ρK does not vanish there. The constraint
∑

i∈VK
λKi = 1

follows from the definition of λKi . The constraint λHi = ρHKλ
K
i reads

λi
ρH

= ρHK
λi
ρK

,

which is true because

ρHK =
∑
i∈VK

λHi =
∑
i∈VK

λi
ρH

=
ρK
ρH

. □

Proposition 3.10. The blow-up Whitney forms ψF can be pulled back to
smooth forms ψ̃F on T̃ .

Proof. Let F be a flag. Recall that, at a point λ, the coefficient pF of ψF is
the volume of the subset of the interior of T defined by the equations

rj−1

ρj−1
≤ rj
ρj
.

Rearranging, adding one, and inverting, we obtain the equivalent inequality
rj

rj−1 + rj
≥ ρj
ρj−1 + ρj

= ρ
Hj

Kj
,

where Kj has vertices Vj−1 and Hj has vertices Vj−1∪Vj . We conclude that

pF is smooth in the ρ
Hj

Kj
. The ρ

Hj

Kj
are not smooth on T , but they are smooth

on T̃ , being just sums
∑

i∈VK
λHi of the coordinates of the ambient space.

Hence, pF is smooth on T̃ .
As for ωF , we show that ωVj is smooth on the blow-up. Let K be the

face with vertices Vj , so per our notation we have VK = Vj and ρK = ρj .
As before, let nj = dimK = |Vj | − 1. Then the Whitney form in terms of
the blow-up coordinates λKi is given by nj !iXid

(dλKK), where we extend to

the orthant RVK
≥0 and set dλKK =

∧
i∈VK

dλKi . So, this form is smooth on the
blow-up, and we will show that it is ωVK

on the interior.
To do so, we must use care when extending to the orthant. Essentially,

we follow the proof of Proposition 2.16, with VK in place of V , ρK in place
of ρ, and λKi in place of θi. So set σ =

∑
i∈VK

λKi ; in the end, we care about
the set σ = 1. But, while working on the extended space, in place of the
equation λi = ρKλ

K
i we will use the equation σλi = ρKλ

K
i . Observe that

Xid[σ] = σ and Xid[ρK ] = ρK , so Xid[
σ
ρK

] = 0. So then, using this fact along

with λKi = σ
ρK
λi, we conclude that the above form is

nj !iXid
(dλKK) = nj !

(
σ
ρK

)|VK |
iXid

dλK ,



BLOW-UP WHITNEY FORMS 39

where dλK =
∧

i∈VK
dλi. Restricting to σ = 1 and recalling that VK = Vj

and ρK = ρj , we see that we indeed have our previously-defined form ωVj .

So, both pF and ωF are smooth on T̃ , and hence so is ψF = pFωF . □

Proposition 3.11. Each flag F yields a k-dimensional face of T̃ . The sub-
faces of this face correspond to flags F ′ that are formed by further subdividing
the partition sets of F .

Specifically, for a flag F , the face of T̃ corresponding to the flag F is given

by the equations λ
Eii′
i′ = 0 for every edge Eii′ joining vertices i and i′ with

i ∈ Vj, i
′ ∈ Vj′ and j < j′.

Moreover, this face is isomorphic to Θ̃F :=
∏

j T̃j, where, as before Tj

denotes the simplex with vertex set Vj, and T̃j is its blow up. In particular,
the interior of the face is isomorphic to the interior of ΘF .

Proof. We begin with the claimed incidence relation, which is easy to show.
Observe that we have a constraint for every pair of vertices that are in
different sets of the partition. Therefore, if F ′ is formed by subdividing a
flag F , the set of constraints grows, and so the face corresponding to F ′ is
a subset of the face corresponding to F .

For the remaining claims, we must show that the equations λ
Eii′
i′ = 0,

along with a point in the k-dimensional space Θ̃F , determine a unique point
in T̃ . Before we compute, we give some intuition, via the Poisson process
framework. As before, we think of the λi as rates of Poisson processes,
but now the rates in later Vj are “infinitesimal” when compared to the
rates in earlier Vj . Nonetheless, within a Vj , we can compare the rates to
each other. The quantity λKi is, as before, the probability that particle i
is received before any other particles in VK . Previously, this would just be

λi∑
i′∈VK

λi′
, but now we consider rates infinitesimal relative to λi to be zero,

and we also consider the case that λi is itself infinitesimal with respect to
another λi′ for i

′ ∈ VK , in which case the probability is zero.
So, let K be an arbitrary face. Let j be the smallest value such that Vj

contains a vertex of K. Let L be the face of K given by the vertices VK ∩Vj ,
and let L′ be the (potentially empty) face of K given by the remaining
vertices VK \ Vj , so VK = VL ⊔ VL′ , with VL nonempty. Since L ≤ Tj ,

we have the value of λLi from the given point in Θ̃F :=
∏

j T̃j . So, we set

λKi := λLi for i ∈ VL. Meanwhile, for i′ ∈ VL′ , we set λKi′ := 0. We easily

verify that λKi := λLi is consistent notation in the case where K = L due to
K ≤ Tj for some j.

We must show that this choice of λKi defines a valid point in T̃ that
satisfies the equations, and that this choice is unique. Working first on
uniqueness, note that for i ∈ VL and i′ ∈ VL′ , we have, by construction,
that i is in an earlier partition set compared to i′, so we have the constraint

λ
Eii′
i′ = 0. Since K contains Eii′ , the definition of T̃ forces λKi′ = ρKEii′

λ
Eii′
i′ =

0. We conclude then that the constraints force λKi′ = 0 for all i′ ∈ VL′ . Note
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that the argument relied on VL being nonempty, but that it is possible for
VL′ to be empty, in which case the statement is vacuous. So then, using this
fact and the definition of T̃ , we have that 1 =

∑
i∈VK

λKi =
∑

i∈VL
λKi = ρKL .

So then, the definition of T̃ forces, for i ∈ VL, that λ
K
i = ρKL λ

L
i = λLi .

We now check that our choice of λKi satisfies all of the constraints. First,
in the case where K = Eii′ with i ∈ Vj , i

′ ∈ Vj′ , and j < j′, we have that

L is the vertex i and L′ is the vertex i′, and so we set λ
Eii′
i′ = λKi′ = 0 as

required.
Next, we verify the constraints in the definition of T̃ . First, we have that∑
i∈VK

λKi =
∑

i∈VL
λLi = 1, using the fact that λKi′ = 0 for i′ /∈ VL and the

fact that the λLi come from a valid point of T̃j and hence must sum to one.
So now it remains to verify the constraint that λHi = ρHKλ

K
i for all i ∈ VK

when K ≤ H. So now, let j be the smallest value such that Vj contains a
vertex of H. Then either Vj also contains a vertex of K, or it does not. If
not, then λHi = 0 for all i ∈ VK , so ρHK = 0, and the constraint reads 0 = 0.
If so, then j is also the smallest value such that Vj contains a vertex of K.
So, as before, let L have vertices VK ∩ Vj and L′ have vertices VK \ Vj , and
now letM have vertices VH∩Vj andM ′ have vertices VH \Vj . For i′ ∈ VL′ ⊆
VM ′ , by construction we have λHi′ = λKi′ = 0, so the constraint is satisfied.
Meanwhile, for i ∈ VL ⊆ VM , because L ≤M ≤ Tj and we have a valid point

of T̃j , we have that λMi = ρML λ
L
i . By construction, we have λHi = λMi and

λKi = λLi . In particular, ρHK =
∑

i∈VK
λHi =

∑
i∈VL

λHi =
∑

i∈VL
λMi = ρML .

So, substituting into λMi = ρML λ
L
i we obtain λHi = ρHKλ

K
i . □

Proposition 3.12. Let F be a flag, let ψ̃ be a k-form on T̃ that is smooth
up to and including the boundary, and let ψ be the corresponding k-form
on T , smooth on the interior but generally discontinuous at the boundary.
Then evaluating the degree of freedom ΨF (ψ) as defined in Definition 2.24

is equivalent to integrating ψ̃ over the face of T̃ corresponding to F .

Proof. We first note the equivalence of the θi from the quasi-cylindrical

coordinate system and the λ
Tj

i from the definition of the blow-up. Indeed,
the defining equations of the θi are λi = ρjθi for all i ∈ Vj , where ρj =∑

i∈Vj
λi. As shown above, the isomorphism on the interior between T and

T̃ is given by λi = λTi . Finally, the defining equations of T̃ yield λTi = ρTTj
λ
Tj

i ,

where ρTTj
=
∑

i∈Vj
λTi .

So, the ΘF discussed in the quasi-cylindrical coordinate section and the
ΘF discussed in the blow-up simplex section are the same. In particular,
integrating over the face of T̃ corresponding to F is equivalent to integrating
over Θ̃F , which is equivalent to integrating over its interior, which is the same
as integrating over the interior of ΘF .

It remains to analyze the limit procedure in Definition 2.24. When we
take the limit as ρn−k → 0 while leaving λi for i /∈ Vn−k nonzero, the effect
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is to send λ
Eii′
i′ =

λi′
λi+λi′

to zero whenever i /∈ Vn−k and i′ ∈ Vn−k. Similarly,

when we take the limit as ρj′ → 0 while keeping λi nonzero for i ∈ Vj

with j < j′, the effect is to send λ
Eii′
i′ to zero whenever i ∈ Vj with j < j′

and i′ ∈ Vj′ . So, the limiting procedure precisely lands us in the face of

T̃ corresponding to F . Moreover, the limiting procedure in Definition 2.24
occurs pointwise for a fixed θ ∈ Θ̊F ; consequently, we land at the point in
the interior of the face of T̃ corresponding to this value of θ. Per the above
isomorphism between the interior of the face of T̃ corresponding to F and
Θ̊F , we conclude that every point in the interior of the face is attained by
this limit procedure. □

Theorem 3.13. The cohomology of the complex of blow-up Whitney forms
is zero except in degree zero, where it is generated by the constants.

Proof. We view T̃ as a cell complex, where the cells are the faces of T̃
corresponding to the flags F , as discussed above. Viewing blow-up Whitney
forms as smooth k-forms on T̃ , the integration pairing on k-cells yields
a map between the space of blow-up Whitney k-forms and the space of
cellular k-cochains. By unisolvence and the preceding proposition, this map
is an isomorphism. Moreover, this map commutes with d, since Stokes’s
theorem tells us that d is dual to the boundary operator ∂, which is the
definition of d on cellular cochains. Therefore, we have an isomorphism of
cochain complexes, so we have an isomorphism of cohomology. Since T̃ is
topologically a ball, its cellular cohomology vanishes, except in degree zero,
where it is generated by the constants. □

3.3. Speculation on global cohomology of triangulations.

3.3.1. Informal discussion. In the preceding section, we showed that the
complex of blow-up Whitney forms has the correct cohomology on a sin-
gle simplex. For ordinary Whitney forms, we know that the complex has
the right cohomology not only on a single simplex but also on a simplicial
triangulation with many elements. Is the same true of blow-up Whitney
forms? Answering this question is beyond the scope of this paper, but it
turns out that even asking the right question is subtle in the context of
blow-up Whitney forms.

Constructing finite element spaces involves two ingredients. The first
ingredient is understanding the space on a single element; it is this first in-
gredient that we have understood for blow-up Whitney forms. The second
ingredient is imposing continuity conditions between elements, or, equiva-
lently, understanding how to properly identify degrees of freedom on adja-
cent elements. For ordinary Whitney forms, doing so is easy: the degrees
of freedom correspond to faces (of any dimension), so if two elements share
a face, we identify those degrees of freedom. Equivalently, we insist that if
elements T and T ′ share a face K, then restriction of ψ on T to K should be
equal to the restriction of ψ on T ′ to K. So, then, the complex of Whitney
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Figure 8. If we glue together blown up triangles (see Fig-
ure 5) along shared edges, “holes” appear at the vertices.

forms is once again isomorphic to the complex of simplicial cochains, this
time globally, and so the cohomology of the Whitney complex is equal to
the simplicial cohomology of the full space.

So then, how should we relate degrees of freedom for blow-up Whitney
forms? Consider the case of scalar fields in two dimensions. If we identify
all the degrees of freedom associated to a vertex, we will, in particular,
identify degrees of freedom within a single simplex. As a result, we will
obtain the usual Lagrange elements, and our theory will end up reducing to
the ordinary Whitney complex.

So then, as discussed in the introduction, we could identify degrees of
freedom corresponding to flags P < E < T and P < E < T ′, where T and
T ′ are adjacent elements that share edge E; see Figure 4, top left. (Recall
from the introduction that each flag given by (V0, V1, . . . , Vn−k) is identified
with the increasing sequence of faces TV0 < TV0∪V1 < · · · < TV0∪V1∪···∪Vn−k

.)
We see that there are no identifications within a triangle, so we still have
the blow-up space on each triangle. Moreover, being in the kernel of d
means being constant on each triangle, and these identifications are enough
to enforce constancy on each connected component of the triangulation, so
we have the right zeroth cohomology.

What about first cohomology? Intuitively, if we join blown up simplices
along shared edges, we will still have “holes” at the vertices, so we expect
to get the wrong first cohomology. See Figure 8 for an illustration. To solve
this problem, we need not only to identify degrees of freedom corresponding
to flags E < T and E < T ′, but also declare that, for each vertex P , the
degrees of freedom associated to P < T must sum to zero over the triangles
T containing P . Intuitively, we are saying that the integral of the one-form
around the “hole” is zero. Note that the gradient of a scalar field will always
have zero integrals over these closed loops, so we still have a complex. But
now we prevent these holes from contributing to the cohomology.



BLOW-UP WHITNEY FORMS 43

While so far, the identifications appear ad hoc, they do fit into a general
framework. Around each vertex P , we have a topological circle S1, and we
insisted that integrals over it be zero. But, around each edge E, we have
a topological zero-sphere S0, a two-point set, where the two points have
opposite sign. So, our identification for scalar fields can be equivalently
viewed as insisting that the integral of the scalar field over this two-point set
is zero. Our identification for one-forms at edges can also be viewed this way,
but since we are integrating a one-form over a zero-dimensional set, we must
view it in the context of Fubini’s theorem, where the result of integration
is itself a one-form, which we insist must be zero. Of course, going through
the definitions, this condition just yields the usual requirement that the
restrictions to the edge from both sides are equal.

3.3.2. General framework for continuity conditions. These observations sug-
gest the following generalization. For each d-dimensional face K with d < n,
we obtain an (n− d− 1)-dimensional sphere going around it, which we can
denote SK . Note that, within each element T , we can give coordinates to
the portion of the sphere in T by using λK

c

i , where Kc is the face opposite
to K, that is VKc is the complement of VK in VT . Thus, in the language of
simplicial complexes, this (n − d − 1)-dimensional sphere SK is the link of
K, denoted Lk(K). Notably, the fact that the link is topologically a sphere
is an explicit condition in the definition of piecewise linear (PL) manifolds;
subtle counterexamples arise if this condition is not met.

In any case, if an element T contains the faceK, then considering the two-
subset flag where V0 = K and V1 = Kc, we have shown in Proposition 3.11
that T̃ has an (n − 1)-dimensional boundary face isomorphic to K̃ × K̃c.

We can call the disjoint union of these K̃ × S̃K , because S̃K is the blow-up
of SK . Of course, for the purposes of integration, we can ignore measure
zero sets, so for these purposes we can think of this “neighborhood” of K
as K × SK .

So, then, to construct the global complex of blow-up Whitney forms on a
triangulation, we start with the discontinuous space by taking the direct sum
over the elements of the triangulation of the complexes on each element, and
then we impose the following continuity constraints. For each d-dimensional
face K with d < n, we can consider K̃ × S̃K . Integrating a k-form over S̃K ,
we obtain a k−(n−d−1)-form on K̃, and we insist that this (k+d+1−n)-
form on K̃ be zero. Explicitly, let ψ be a discontinuous k-form, that is,
an element of the direct sum of the blow-up complexes on each element.
On each element T containing K, we look at the boundary component of
T̃ that is isomorphic to K̃ × K̃c. Assuming an orientation of the manifold
and hence T and T̃ , we have the boundary orientation of K̃× K̃c; assuming
additionally a globally defined orientation of K, we obtain an orientation of
K̃c as well. We integrate ψ over K̃c, obtaining a (k+ d+1−n)-form on K̃.
Then we sum over all T containing K. Our continuity condition is that the
sum is zero.
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3.3.3. Continuity conditions in terms of degrees of freedom. We expect that
the above continuity condition is also what we will need for the higher-order
generalizations, but for the blow-up Whitney forms, we can be more explicit
in terms of the degrees of freedom. Fix a face K of the triangulation of
dimension d < n, and fix a flag F on VK with n− k subsets (one fewer than
usual). Note that this requires that n − k ≤ d + 1. For each element T
containing K, construct a flag FT by appending VT \ VK to the flag F ; this
flag now has our usual n − k + 1 subsets. Note that VT \ VK is the vertex
set of what we called Kc above, and note that this operation on flags is the
reverse of the dimension-reduction operation in Proposition 2.38.

So then, with appropriate signs/orientations, we insist that the sum over
T of the degrees of freedom ΨFT

is zero. If, as above, we hold fixed the
orientations of all faces of the triangulation, then we can take the sign to be
the sign of the ordering of VT given by a positive ordering of VK followed
by a positive ordering of VT \ VK . We then impose this condition for every
face K of the triangulation and every flag F on VK .

We will now give explicit examples for how to implement these continuity
conditions, matching the informal discussion of 3.3.1.

Example 3.14 (Scalar fields). Recall that the continuity conditions are
vacuous unless n−k ≤ d+1. For scalar fields, k = 0, so we only get continuity
conditions for faces K of dimension d = n− 1. So then SK is the 0-sphere,
and so, as in the two-dimensional discussion above, the continuity condition
is equivalent to simply identifying the degrees of freedom for matching flags
K0 < K1 < · · · < Kn−1 = K < T and K0 < K1 < · · · < Kn−1 = K < T ′

of the two adjacent elements T and T ′ on either side of hyperface K. In
summary, we have

• One degree of freedom per incidence K0 < K1 < · · · < Kn−1 in the
triangulation, where each Kj has dimension j.

Example 3.15 (Two dimensions). For the purposes of this discussion, we
will use the letters P , E, and T to refer to faces of dimension 0, 1, and
2, respectively, of the original global triangulation. As discussed above, for
scalar fields, we have one degree of freedom per incidence P < E.

Moving on to one-forms, we have k = 1, so we get continuity conditions
for flags on K with n − k = 1 subset. So, the flag is determined by K,
and there are two distinct possibilities, one where K = E, and one where
K = P .

The case K = E corresponds to the long edges in Figure 8. So then SK
is the 0-sphere, and the continuity condition amounts to identifying degrees
of freedom E < T and E < T ′ for the two elements on either side of E.

The more interesting case K = P corresponds to the short edges around
a hole in Figure 8. So then SK is the 1-sphere, informally, the circle around
the hole. Each of these edges is given by P < T where T is an element
containing the vertex P , and the condition is that the sum of the degrees of
freedom on each of these edges is zero, that is,

∑
T>P ΨP<T = 0. As a result
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of this condition, for the global complex, we have one less degree of freedom
than the number of edges around a vertex. In terms of implementation, to
each vertex P , assign a base element TP . We then have a degree of freedom
per every incidence P < T where T ̸= TP , and then we compute ΨP<TP

using the condition
∑

T>P ΨP<T = 0.
To summarize:

• For zero-forms, one degree of freedom per incidence of the form P <
E.

• For one-forms:
– One degree of freedom per edge E, and
– One degree of freedom per incidence P < T for T ̸= TP , where

∗ for each vertex P , TP is an arbitrarily assigned base ele-
ment containing P , and

∗ when computing the shape function on TP , we set

ΨP<TP
= −

∑
T>P
T ̸=TP

ΨP<T .

• For two-forms, one degree of freedom per element T .

Example 3.16 (Three dimensions). For the purposes of this discussion, we
will use the letters P , E, F , and T , to refer to faces of dimension 0, 1, 2,
and 3, respectively, of the original global triangulation, so, for scalar fields,
we have one degree of freedom per incidence P < E < F .

There are now three types of one-form degrees of freedom, corresponding
to the three types of edges in the blow-up tetrahedron. Referring to Figure 7,
let us refer to the three types of edges in the blow-up of a tetrahedron as
big edges, small edges, and tiny edges. We now have n − k = 2, so we are
looking at flags on K with 2 subsets.

The big edges correspond to flags of the form E < F = K. In this case,
SK is the 0-sphere, and the continuity condition amounts to identifying
degrees of freedom E < F < T and E < F < T ′ for the two elements on
either side of F . The small edges are similar. They correspond to flags
of the form P < F = K, and once again we identify degrees of freedom
P < F < T and P < F < T ′.

The tiny edges are more interesting. They correspond to flags of the
form P < E = K, so now SK is the 1-sphere, and the condition is that∑

T>E ΨP<E<T = 0, summing over all elements containing the edge E. In-
formally, if we perform the gluing illustrated in Figure 8 in three dimensions
using blow-up tetrahedra (Figure 7), we will have cylindrical holes around
each edge. Each end of this cylinder is a loop, and we require that degrees of
freedom on tiny edges sum to zero around each loop. As above, in terms of
implementation, we assign a base element TE to each edge E, and then we
leave out the degrees of freedom of the form P < E < TE , instead computing
ΨP<E<TE

from the continuity condition.
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Finally, let us consider two-forms. There are three types, corresponding
to the three kinds of faces in Figure 7, which we will refer to as big hexagons,
rectangles, and small hexagons. Here n − k = 1, so the flags are the single
face K.

The big hexagons correspond to K = F , and there we simply identify
degrees of freedom F < T and F < T ′ correpsonding to the two elements
on either side of F .

The rectangles correspond to K = E, and the condition is
∑

T>E ΨE<T =
0, summing over all elements containing the edge E. In terms of the cylindri-
cal holes, this condition states that the degrees of freedom of the rectangular
faces that make up each cylinder sum to zero. We can implement the global
degrees of freedom by leaving out E < TE as before.

The small hexagons correspond to K = P . Now SK is a 2-sphere. Infor-
mally, if we collapse the cylindrical holes discussed above, we still are left
with spherical holes around each vertex. As a result of this collapse, the small
hexagons become small triangles, and these small triangles make up these
spheres around each vertex. The condition that

∑
T>P ΨP<T = 0 states

that, for each sphere, the degrees of freedom on these small hexagons/triangles
sum to zero.

In summary:

• For zero-forms, one degree of freedom per incidence P < E < F .
• For one-forms:

– One degree of freedom per incidence E < F ,
– One degree of freedom per incidence P < F , and
– One degree of freedom per incidence P < E < T for T ̸= TE ,

where
∗ for each edge E, TE is an arbitrarily assigned base element
containing E, and

∗ when computing the shape function on TE , we set

ΨP<E<TE
= −

∑
T>E
T ̸=TE

ΨP<E<T .

• For two-forms:
– One degree of freedom per face F ,
– One degree of freedom per incidence E < T for T ̸= TE , where

∗ as before, for each edge E, TE is an arbitrarily assigned
base element containing E, and

∗ when computing the shape function on TE , we set

ΨE<TE
= −

∑
T>E
T ̸=TE

ΨE<T .

– One degree of freedom per incidence P < T for T ̸= TP , where
∗ for each vertex P , TP is an arbitrarily assigned base ele-
ment containing P , and
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∗ when computing the shape function on TP , we set

ΨP<TP
= −

∑
T>P
T ̸=TP

ΨP<T .

• For three-forms, one degree of freedom per element T .

Remark 3.17. In the examples above, it appears that we do something
different when K has codimension one, since there is no need to choose a
base element. But we could choose a base element if we wanted to. For
example, for two-forms in three dimensions with face F between elements
T and T ′, we can choose T ′ to be the base element. Since T is the only
non-base element containing F , there is just one degree of freedom, which
is assigned to the incidence F < T . Then we set ΨF<T ′ = −ΨF<T . The
sign is appropriate because F is positively oriented with respect to one of T
and T ′ and negatively oriented with respect to the other. We can see that
the end result is equivalent to simply assigning a degree of freedom to F , as
before.

Conjecture 3.18. Consider a PL manifold with a given triangulation.
With the aforementioned continuity conditions, the space of blow-up Whit-
ney forms on this triangulation is a differential complex whose cohomology
matches the simplicial cohomology of the manifold.

3.4. Towards higher order complexes. In finite element exterior calcu-
lus [3], the Whitney form complex P−

1 Λk generalizes to complexes of differ-
ential forms with coefficients that are higher degree polynomials, namely the
P−
r Λk and Pr−kΛ

k complexes. Like the complex of Whitney forms, these
complexes have the right cohomology. Also like Whitney forms, the degrees
of freedom, that is, the basis elements of the dual space, are associated to
faces of the triangulation. However, for these higher order spaces, there are
generally multiple degrees of freedom per face, made explicit via a duality
relationship between the P and P− spaces.

We would like to similarly generalize the bP−
1 complex of blow-upWhitney

forms to higher degree. As discussed in the introduction, we expect that our
two new perspectives, namely the Poisson process ensemble and the blow-up
simplex T̃ , to be key. As with blow-up Whitney forms, we expect that the
basis functions of these higher order spaces to be expressed as probabilities of
sequences of arrival times. Likewise, we expect that the degrees of freedom
for blow-up finite element exterior calculus will be associated to faces of the
blow-up simplex T̃ , in contrast to ordinary finite element exterior calculus,
where they are associated to faces of T . We expect that these degrees of
freedom will be glued together as speculated in the previous section.

As a first step towards this goal, we focus on the scalar case k = 0 and
propose a candidate for bPrΛ

0, the space of blow-up scalar fields of “degree”
r, which specializes to the shadow form scalar space bP1Λ

0 = bP−
1 Λ0 of this

paper when r = 1.
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Definition 3.19. As before, let V be a set, and consider a collection of |V |
Poisson particle sources, each with rate λi. A degree r arrival experiment is
performed as follows.

Receive the first r particles, and record the number of particles received
from each Poisson source. Then, silence/ignore the sources from which at
least one particle was received. Then receive another r particles. Repeat
until all sources have been silenced.

We call a possible outcome of such an experiment an arrival sequence.

Definition 3.20. The probability of a particular arrival sequence is a func-
tion of the λi. We let bPrΛ

0 be the span of these functions.

Conjecture 3.21. These probability functions are linearly independent and
hence form a basis for bPrΛ

0.

Definition 3.22. To each arrival sequence, we associate a flag by recording
the sets of sources silenced at each step.

The example of bP3Λ
0 in two dimensions (with V = {0, 1, 2}) is presented

in Table 3. Similarly to P3Λ
0, there is one degree of freedom per vertex, two

per edge, and one per face. However, for P3Λ
0, these are vertices, edges,

and faces of T , whereas for bP3Λ
0, these are vertices, edges, and faces of T̃ .

As a result, there are 6 + 2 · 6 + 1 = 19 degrees of freedom total.
It is very easy to show that the proposed higher order space of blow-up

scalar fields contains the usual polynomial scalar fields.

Proposition 3.23. The higher-order blow-up space bPrΛ
0 contains the usual

space PrΛ
0 of polynomial scalar fields.

Proof. Group the arrival sequences according to the first set of r particles
received. The sum of the corresponding probabilities / basis functions is the
probability that a particular set of r particles was received first. For given
integers ri summing to r, the probability that the first set of r particles
received had ri particles from each source i is

r!
∏
i∈V

1

ri!
λrii .

Up to a constant factor, these functions are precisely the standard mono-
mial/Bernstein basis for the space PrΛ

0 of polynomials of degree at most r
on the simplex T , or, equivalently, the space of homogeneous polynomials
of degree r on RV . □

Also, we have a blow-up analogue of the geometric decomposition of [4].
Namely, the flag F associated to an arrival sequence is the unique minimal
face of T̃ on which the associated probability does not vanish.

Proposition 3.24. Consider an arrival sequence with associated probability
p and flag F . Consider a face of T̃ with associated flag F ′. Then p vanishes
on the face F ′ unless the face F is a (not necessarily proper) subface of F ′.
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flag / face of T̃ arrival sequence probability / basis function

012 000 | 111 | 222
(
λ30
λ3012

)(
λ31
λ312

)(
λ32
λ32

)
{01}2 001 | 222 3

(
λ20λ1
λ3012

)(
λ32
λ32

)
{01}2 011 | 222 3

(
λ0λ

2
1

λ3012

)(
λ32
λ32

)
0{12} 000 | 112 3

(
λ30
λ3012

)(
λ21λ2
λ312

)
0{12} 000 | 122 3

(
λ30
λ3012

)(
λ1λ

2
2

λ312

)
{012} 012 6

(
λ0λ1λ2
λ3012

)
Table 3. A proposed space bP3Λ

0 of blow-up scalars of de-
gree r = 3 in dimension n = 2. We list the basis functions
associated to four of the flags on {0, 1, 2}; the other flags can
be obtained by permuting the indices. As before λ12 and λ012
are shorthand for λ1 + λ2 and λ0 + λ1 + λ2, respectively. We
may set λ012 = 1 if we want to interpret the Poisson rates
λi as barycentric coordinates associated with the vertices of
the triangle. Note also that the last factor in the first three
rows is equal to 1, but we include it for completeness.

Note that we are abusing notation by interchangeably using F for the
face of T̃ and for its associated flag. So, to be proper, per Proposition 3.11,
we should say that p vanishes on the face unless the ordered partition F is
a subdivision of the ordered partition F ′ (including the trivial subdivision
where F = F ′).

Proof. For i1, i2 ∈ V , we will say i1 <F i2 if i1 ∈ Vj1 , i2 ∈ Vj2 , and j1 < j2.
In other words, an ordered partition of V defines a weak ordering on V ,
where vertices in subsets of the partition further to the left are smaller than
vertices in subsets of the partition further to the right. We take similar
notation for flag F ′.

We recall that, in terms of Poisson rates, the statement that we are on
face F ′ can be interpreted as saying that λi1 ≫ λi2 whenever i1 <F ′ i2,
that is, rates later in the flag are infinitesimal relative to earlier rates; see
the intuition discussion in the proof of Proposition 3.11. If so, then we
must silence/ignore source i1 before we can receive a particle from source
i2, which means that i1 <F i2 per the definition of the flag associated to an
arrival sequence. In other words, presuming that p does not vanish on F ′,
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we have that i1 <F ′ i2 implies i1 <F i2. Noting that it remains possible for
i1 ∼F ′ i2 and i1 <F i2, we see that the flag F is a subdivision of the flag F ′,
as desired. □

We conjecture that these higher-order blow-up spaces for scalar fields can
be generalized to differential forms in a way that preserves the key properties
of the finite element exterior calculus spaces.

Conjecture 3.25. On a simplex T , the shadow forms / blow-up Whitney
form complex bP−

1 Λk and the higher-order blow-up scalar fields bPrΛ
0 can

be generalized to a differential complex bP−
r Λk that is exact except at k = 0.

Moreover, these spaces can be blow-up geometrically decomposed in the
sense of [4], that is, for r ≥ 1 we can construct bases where each k-form in
the basis has a unique minimal face on which it does not vanish, but now
this condition is about faces of the blow-up T̃ , not T .

Moreover, for each flag/face F of T̃ , consider the space bP−
r Λk(F ) of the

restriction of the full space to that face, and consider its subspace bP̊−
r Λk(F )

of forms that vanish on ∂F . Then the trace-vanishing blow-up spaces bP̊−
r Λk(F )

are isomorphic to the corresponding classical spaces P̊−
r Λk(F ). Here, the

P̊−
r Λk(F ) are defined using the isomorphism F̊ ∼=

∏
j T̊j (see Proposition 3.11),

so the classical FEEC spaces P̊−
r Λk(Tj) yield P̊−

r Λk(F ) via the tensor prod-
uct construction [1].

One important note about the above conjecture is that, whereas the faces
of T are all simplices, the faces of T̃ , or, more precisely, their interiors, are
products of simplices. Products of simplices include products of intervals,
namely cubes. So, as a welcome side effect, this conjecture may also yield to
a unified perspective that encompasses finite element exterior calculus not
only on simplicial meshes but also on cubical meshes.
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