Math 13 (sect. 3) (10:30 AM)—Fall, 2024 D.C. Smolarski, S.J.

NOTES:

- 1. Make sure your NAME is on the front of the green book.
- 2. Problems can be written in the green book IN ANY ORDER, but please START each problem on a NEW PAGE (EITHER side) and label it properly.
- 3. PLEASE label (or underline or box in) all ANSWERS clearly.

perfect SLOTES perproblem

- 4. There are 100 points possible on this test. The point value of each problem is listed in parentheses after the number.
- 5. Show your WORK partial credit is possible only when all work needed to obtain an answer is presented legibly.
- 6. NO CALCULATORS!

1. (14) Find the line tangent to the curve given parametrically by x = 2t and $y = t^2 + 1$ 28/32 VEASIEST" when t=2.

2. (14) Compute the length of the curve given parametrically by $x = t^2/2$ and y =17/32 $(2t+1)^{3/2}/3$ between the points where t=0 and t=4.

3. (14) Find the Cartesian equation of the curve that has the following parametric 10/32 equations: $x = \tan t$ and $y = \sin t$. "HARDEST"

4. (28) Identify the following curves (if they exist): 13/32

(a)
$$2\pi^2 - 3u^2 + 4\pi - 12 = 0$$
 (b) $u^2 + 2u - x + 12 = 0$

(a)
$$2x^2 - 3y^2 + 4x - 12 = 0$$

(b) $y^2 + 2y - x + 2 = 0$
(c) $x^2 + y^2 - 4x + 2y + 10 = 0$
(d) $3x^2 + 4y^2 - 6x = 8$

5. (18) Let $\vec{A} = \vec{\imath} - 2\vec{\jmath} + 6\vec{k}$ and $\vec{B} = 4\vec{\jmath} - 5\vec{k}$.

- (a) Find the directions of \vec{A} and \vec{B} .
- (b) Are \vec{A} and \vec{B} the same length?

6. (12) Let $\vec{A} = \vec{\imath} - 3\vec{\jmath} + 3\vec{k}$, $\vec{B} = -\vec{\imath} + 2\vec{\jmath} + 5\vec{k}$, and $\vec{C} = 2\vec{\jmath} - 16\vec{k}$, determine whether 12/32 vector $\vec{D} = \vec{A} + \vec{B}$ is parallel to \vec{C} . Give reasons for your answer.

1.
$$x=2t$$
 $y=t^2+1 \Rightarrow \frac{dx}{dt}=2t \Rightarrow \frac{dy}{dx}=\frac{2t}{t}=\frac{1}{t}=2$
 $x\Big|_{t=2}=4$ $y\Big|_{t=2}=5$ $y=2x-8 \Rightarrow y=2x-3$

2.
$$x = \frac{L^{2}}{2}$$
 $y = \frac{(2t+1)^{3/2}}{3}$ $\Rightarrow (\frac{\partial x}{\partial t})^{2} + (\frac{\partial y}{\partial t})^{2} = \int_{0}^{t} \sqrt{(\frac{\partial x}{\partial t})^{2}} \frac{\partial y}{\partial t} dt$

$$\frac{\partial x}{\partial t} = \frac{2t}{2} = t \quad \frac{\partial y}{\partial t} = \frac{3}{2} \frac{(2t+1)^{3/2}}{3} = t^{2} + 2t + 1$$

$$= (2t+1)^{3/2} = (2t+1)^{3/2} = (2t+1)^{3/2} = (2t+1)^{3/2} = (2t+1)^{3/2}$$

3.
$$x=tant$$
 $y=sint$

$$= sint$$

$$= sint$$

$$= sint$$

$$= sint$$

$$= sint$$

$$= x = y$$

$$= x = x$$

4. a)
$$2x^{2}-3y^{2}+4x-12=0$$

 $2(x^{2}+2x+1)-3y^{2}=12x^{2}=14$
 $\frac{(x+1)^{2}}{7}-\frac{y^{2}}{14/3}=1$ hypotheles

$$\frac{(x+1)^{2}}{(x+1)^{2}} - \frac{y^{2}}{14/3} = 1 \quad \text{hyperboles}$$

$$(y+1)^{2} + x + y^{2} - 4x + 2y + 10 = 0$$

$$(x^{2} + 4x + 4) + 4y^{2} - 2y + 1) = -10 + 4 + 1$$

$$(x-2)^{2} + (y-1)^{2} = -5$$

$$(x-1)^{2} + y^{2} = 1$$

b) y2+24 -x+2=0

42+24+1 = x-2+1

a)
$$dir(\vec{x}) = \frac{\vec{7} - 2\vec{j} + 6\vec{k}}{\sqrt{1 + 4 + 36}} = \frac{\vec{7} - 2\vec{j} + 4\vec{k}}{\sqrt{41}} = \frac{4\vec{j} - 5\vec{k}}{\sqrt{41}} = \frac{4\vec{j} - 5\vec{k}}{\sqrt{41}} = \frac{4\vec{j} - 5\vec{k}}{\sqrt{41}}$$

$$\vec{C} = (-2)\vec{D}$$

$$\vec{C} = (-2)\vec{D}$$