
SEPARABLE DIFFERENTIAL EQUATIONS
——————————————————————

In Section 7.2, we learned how to solve a separable differential equation; that
is, a differential equation of the form

dy

dt
= f(y)g(t).

The equation is called “separable” because we can separate the two variables, y
and t in this case, to the two sides of the equation

dy

f(y)
= g(t)dt

and then integrate both sides ∫ dy

f(y)
=
∫
g(t)dt.

Evaluating these two integrals, using the methods from Chapter 8 if necessary,
yields y as an implicit function of t.

In this section we further explore this technique, which is called separation of
variables, and use it to solve a small sampling of the many separable differential
equations that naturally arise in science and economics.

——————————————————————

EXAMPLE 1:
The differential equation

dy

dt
=
y2 + 1

t+ 1

is separable (f(y) = y2 +1 and g(t) =
1

t+ 1
here). So we solve for y by separating

the variables:
dy

y2 + 1
=

dt

t+ 1

and integrating ∫ dy

y2 + 1
=
∫ dt

t+ 1
.



Evaluating these integrals yields

tan−1(y) = ln(t+ 1) + C (remember the C!).

When possible, as it is here, we isolate y so that we have an explicit formula for
y as a function of t :

y = tan (ln(t+ 1) + C) .

(Note that the “+C” is now part of the input for the tangent function.)
——————————————————————

EXAMPLE 2:
The differential equation

dy

dt
= y + t

is not separable. Try as hard as you want: you will not be able to get all the y’s
on one side of the equation and all the t’s on the other (unless you violate the
rules of algebra, which is a very bad idea!). We can also see that the equation
is not separable because y + t cannot be written in the form f(y)g(t), that is, a
function of y times a function of t. The solution to this non-separable differential
equation happens to be y = Cet− (t+1), which one can determine using methods
that are taught in Math 22 or AM 106. (However, you don’t need those classes
to plug this solution into the differential equation and verify that it satisfies the
equation.)

——————————————————————

INITIAL CONDITIONS AND UNIQUE SOLUTIONS
Whenever you solve a separable differential equation, you always get a “+C”

after the integration, so, since C is arbitrary, you have an infinite number of
solutions. To get a unique solution, an “initial condition” must be specified in
addition to the differential equation. Although the initial condition is usually the
value of the unknown, y, at t = 0, i.e.,

y(0) = y0,

sometimes it is the value of y at another time, t = t0, so we have

y(t0) = y0.

We still call this an “initial condition”, even though the name makes less sense in
this case. Sometimes we don’t even have t (time) as the independent variable in
our differential equation—we still use the term “initial condition”.
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There are two methods of using the initial condition to get the unique solu-
tion provided by separation of variables. You will want to master both because
both are commonly used in science (as well as math) classes and textbooks. We
demonstrate both methods in the example

y′ = tey (separable differential equation)

y(6) = 3 (initial condition: y = 3 when t = 6).

Note that it is implied here that y is a function of t, even though we only say
y′ = tey, instead of y′(t) = tey.

——————————————————————

METHOD 1: INDEFINITE INTEGRATION
We begin by applying the standard method used in Section 4.1 to our differ-

ential equation:
dy

dt
= tey

dy

ey
= tdt∫

e−ydy =
∫
tdt

−e−y =
1

2
t2 + C.

Next we substitute the initial condition (y = 3 at t = 6) into our last result to
determine the value of C :

−e−3 =
1

2
62 + C =⇒ C = −18− 1

e3
.

Finally, we substitute C back into our solution, and, since we can, we isolate y so
that it is an explicit function of t :

−e−y =
1

2
t2 − 18− 1

e3

y = − ln
(
−1

2
t2 + 18 +

1

e3

)
.

Note that this solution is only defined for times where −1

2
t2 + 18 +

1

e3
> 0.

——————————————————————
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METHOD 2: DEFINITE INTEGRATION
We perform the same separation as in the first method, but then we integrate

from the time of the initial condition, t0, to an arbitrary final time, tf . Note that
for the integral with respect to y this corresponds to integrating from y(t0) to y(tf ).

dy

dt
= tey

∫ y(tf )

y(to)
e−ydy =

∫ tf

t0
tdt

∫ y(tf )

3
e−ydy =

∫ tf

6
tdt

−e−y
∣∣∣∣∣
y(tf )

3

=
1

2
t2
∣∣∣∣∣
tf

6

−e−y(tf ) + e−3 =
1

2
t2f −

1

2
62.

Since tf is any arbitrary time, we can just replace it with t. Solving for y(t) gives
us

y(t) = − ln
(
−1

2
t2 + 18 +

1

e3

)
,

the same result as in the first method.
——————————————————————

A GREAT QUESTION (THOUGH YOU MAY BE SORRY YOU
ASKED IT!)

If you’re a thoughtful, curious type of person, you may have won-
dered why, in the definite integration method, we didn’t just integrate
from t0 to t instead of integrating from t0 to tf and then substituting
t for tf later. If we had done that, we would have had the expression∫ t

6
tdt,

which would not be correct notation (though many use it anyway)
because as the t in the integrand varies, the t in the upper limit would
also have to vary, which is not what we want to happen. If we want
to integrate from 6 to t and avoid this problem, we must change the
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dummy variable in the integrand to something (actually, anything!)
other than t; for example, we could have proceeded with the steps

e−ydy = tdt∫ y

3
e−zdz =

∫ t

6
sds.

Here z and s are our new dummy variables. Changing the dummy
variables is not an uncommon practice—and it definitely yields the
right answer—but it can be confusing when the original variables rep-
resent physical quantities, which is why many physical scientists avoid
it.

——————————————————————

APPLICATIONS (A.K.A. WORD PROBLEMS)
Since separable differential equations are so plentiful in the sciences, it is es-

sential to get some practice solving these equations in the same contexts where
you will encounter them in later courses. That means solving word problems, but
if you use the following steps you should be fine, both now and in subsequent
classes:

1. STAY CALM. (Ignoring this advice leads to half the problems people have
with word problems.)

2. Determine which symbols in your problem represent constants and which
symbols represent the two variables of interest.

3. Separate the two variables (constants can go on either side of the equation—
it makes no difference in your final answer), integrate the separated equation,
and use the initial condition to find a unique solution.

4. When possible, isolate the variable representing the unknown function; this
unknown will often, though not always, depend on t (time).

——————————————————————

EXAMPLE 3
Question: A gas is called “ideal” if it conforms to the relationship

PV = nRT
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where P is the pressure, V is the volume of the gas, n is the number of molecules
in the gas, R is a gas law constant, and T is the temperature. Using related rates,
which you had the pleasure of meeting in Section 3.10, the above relationship
can be differentiated with respect to time, t, and, for a fixed number of ideal gas
molecules held at a constant temperature, we have the following relationship:

dV

dt
=
−nRT
P 2

dP

dt
. (1)

Now assume the air in a balloon is ideal and maintains a constant temperature.
If the pressure at t = 0 is 3 pressure units and the balloon shrinks at the rate

dV

dt
= −t3, (2)

what is the pressure of the gas in the balloon as a function of time?

Answer: The question asks for P (t), so the two variables for which we want
to hunt are P and t. This leads us to look at equation (1). Since the number
of molecules in a balloon is fixed and the temperature is constant, n and T, as

well as R, are constants.
dV

dt
is a variable but we can use (2) to express

dV

dt
as a

function of t. Substituting (2) into (1) gives us our differential equation

−t3 =
−nRT
P 2

dP

dt
,

which is separable (a good sign!) The problem also gives us the initial condition

P (0) = 3.

Now we’re ready to find the unique solution. We will now solve our resulting equa-
tion using the definite integral method (although the indefinite integral method
will work just as well).

−t3dt = −nRT dP
P 2∫ tf

0
t3dt = nRT

∫ P (tf )

3

dP

P 2

t4

4

∣∣∣∣∣
tf

0

= nRT

− 1

P

∣∣∣∣∣
P (tf )

3


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t4f
4

= nRT

(
− 1

P (tf )
+

1

3

)
.

Replacing tf with t and isolating P gives our final answer:

P (t) =
1

1

3
− t4

4nRT

.

PROBLEMS
——————————————————————

In Problems 1–8 determine if the differential equation is separable. If it is
separable, use separation of variables to determine an infinite number of solutions
to the equation. (Recall that you will have an infinite number of solutions due to
the presence of the arbitrary constant C.)

Express your answers in explicit form, so, for example, an implicit solution
like ln(y + 3) = x+C should be re-expressed into a form where y is isolated, like
y = ex+C − 3.

1)
dy

dx
=

x

y2

2) y′ = y2 sinx

3)
dy

dt
= y2 + et

4)
dy

dt
=

y2

y + cos(t)

5) (x+ 1)y′ = cos2 y −π
2
< y < π

2

6)
dz

dt
=
z − 4t

t− z
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7)
df

dt
=
t(f 2 + f)

et
f > 0

8) r′ = r2t+ r2 + 9t+ 9

In Problems 9–22 determine a unique solution of the separable differential equa-
tion that satisfies the given initial condition. (You can leave your solution in an
implicit form. For example, the form y2 + y = 3x+ 2 is fine, as opposed to having
to isolate y as an explicit function of x.)

9)
dy

dt
= y2 y (1) = 2

10)
dy

dx
=

2x

1 + 2y
y (2) = 0

11) sin(2x) + y′ cos(3y) = 0 y
(
π
2

)
= π

3

12) rdr + θe−rdθ = 0 r (0) = 1

13)
dc

dt
= c3 ln(t) c(e2) = 1

14)
dz

dt
=

1

2z + t2z
z (0) = −2

15)
dM

dx
= M2 − 5M + 6 M (1) = 4

16)
dg

dθ
= g cos3(θ) g (0) = 3

17)
df

dt
= (f 2 − f)te−t f (0) = 13

18)
dρ

ds
= s cos(s) csc2(ρ) ρ

(
π
3

)
= π

6

19)
dh

dp
= ep sin(p) sec3(h) h(0) = 0

20)
dy

dx
=

(y + 2)2

√
4− x2

y(1) = 2
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21)
d2y

dt2
=
dy

dt

dy

dt
(0) = 2, y(0) = 3 [Hint: Define v(t) =

dy

dt
and solve the differential equation
for v(t) first. Then solve for y(t).]

22)
d2y

dt2
=

3t2

2dy
dt

dy

dt
(1) = −1, y(1) = 2 [See hint for problem 21.]

Problems 23–31 are adapted from undergraduate courses and texts in physics,
chemistry, biology, and engineering. Each involves solving a separable differential
equation. Remember to include units in your answers where appropriate.

23) Conservation of Momentum Early on in life you learn Newton’s second
law of motion: F = ma; that is, force equals mass times acceleration. Later on,

you learn that this is a simplification of
n∑
i=1

Fi = ma; that is, the sum of all the

forces acting on a body equals that body’s mass times its acceleration. But this

is also a simplification. The more general form is
n∑
i=1

Fi = d(mv)
dt

. The term d(mv)
dt

is the derivative of momentum (which is defined as the mass times the velocity of
a body) with respect to time, t. Only when the mass of the body stays constant

do we have that d(mv)
dt

= mdv
dt

= ma.

If there are no forces acting on a body, momentum is conserved, since d(mv)
dt

= 0
implies the momentum stays constant over time. If both the mass and velocity are
changing over time, then we can apply the product rule to obtain mdv

dt
= −v dm

dt
.

For example, the motion of a rocket ship in space is given by

m
dv

dt
= −udm

dt
,

where m is the mass (in thousands of kg) of the rocket (which changes as fuel is
consumed by the rocket), v is the velocity (in km/sec) of the rocket, and −u is
the velocity (in km/sec) relative to the rocket of the fuel exhaust ejected from the
back of the rocket. If the initial mass, m, of the rocket is 5 and the initial velocity
of the rocket is 0 (so m = 5 when v = 0), and u = 5

√
m, find the velocity of the

rocket when the mass is 4. Remember to include the correct units of the velocity
in your answer. Hint: you can “cancel” the dt’s in the differential equation.

24) Falling Bodies If a body is thrown from a plane, there are two forces that
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act upon it: the gravitational force, −mg, where m is the mass of the body and
g is the acceleration due to gravity, and the drag force from air friction, which is
well modeled by cv2, where c is a constant and v is the velocity of the body.

From our discussion of motion in the first paragraph of the previous problem,
we know that ma = Fgravity + Fdrag, and so we have the following differential
equation for the velocity v(t):

m
dv

dt
= −mg + cv2.

The value of g is 9.8 m/sec2. Assume we have a body that is initially at rest (that
is, v = 0 at t = 0) whose weight is m = 100 kg. Assume c = 98

250
kg/m for the way

this body falls.

a. Determine the time t as a function of the velocity v. Hint: you will need partial
fractions.

b. Invert the function you obtained in part (a). That is, determine v as a function
of t. (Note that since the body is falling, v is negative when t > 0.)

c. As t → ∞, v(t) will approach a terminal velocity. For this problem, what is
the body’s terminal velocity?

25) Reaction Rate Expressions If you take an introductory chemistry class,
you will discuss three kinetic mechanisms by which chemical reactions occur. The
models are called 0th, 1st, and 2nd order reactions. These numbers (0, 1, and 2)
correspond to the number of molecules that must collide for a reaction to occur
and also to the exponent in the differential equation describing the history of the
reactant chemical’s concentration:

dc

dt
= −k 0th order reaction

dc

dt
= −kc 1st order reaction

dc

dt
= −kc2 2nd order reaction

where k > 0 is called the “rate constant” and c(t) is the concentration of the
reactant chemical. Assume that for each of these three models, the concentration
at t = 0 is some given number c0.
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a. Use the definite integration method to show that

c = c0 − kt for a 0th order reaction,

c = c0e
−kt for a 1st order reaction, and

c =
1

1

c0

+ kt
for a 2nd order reaction.

b. Assuming that concentration is in units of mol/l (that is, moles per liter) and
time is in sec (that is, seconds), what are the units for k in a 0th order
reaction? a 1st order reaction? and a 2nd order reaction? Note that whether
you solve this by using the solutions to the differential equations in part
a or by using the differential equations themselves, you will get the same
answer. You might want to try it both ways to check yourself.

26) Limited population growth In section 7.2, you learned that y(t), the

number of bacteria in a petrie dish, is governed by the equation
dy

dt
= ky, and

therefore the number grows exponentially. This is true as long as the number
of bacteria is small, but as the number grows, one must take into account the
effect of factors that inhibit unbounded growth (like the fact that the amount of
food available is finite). These are taken into account in the logistic differential
equation:

dy

dt
= ky

(
1− y

K

)
.

Assume we have a petrie dish where k = K = 1 and y(t) represents the number
of bacteria (in 1000s). If we start with 500 bacteria (so y(0) = 0.5), determine
y(t). Hint: you will need to use partial fractions. Fun fact: If your solution is
correct, you should see that y(t) → 1 as t → ∞, and, more generally, y(t) → K
as t→∞.

27) Chemical Equilibrium The nature of the equilibrium between two (or
more) chemical solutions is given by K, the “equilibrium constant”. Although K
is called a constant, it actually changes values when the temperature, T, changes
via the equation

1

K

dK

dT
=

∆H

RT
where ∆H is the difference in enthalpies between the products and reactants and
R is the ideal gas law constant. If ∆H

R
= 3 and the equilibrium constant is 5
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when T = 100 kelvin, what is it when T = 200 kelvin? (Note that equilibrium
constants have units of concentration to some integer power. Here, we have a
reaction where that integer is zero, so K is unitless.)

28) Non-ideal Gases In thermodynamics, it can be shown that an adiabatic
process (i.e., one with no heat transfer) performed on an ideal gas will conform
to the relation

dT

T
= (1− γ)

dV

V

where V is the volume of the gas, T is the temperature of the gas, and γ is a ratio
between heat capacities. In practice, γ is mildly sensitive to temperature changes.
If, when temperature is in kelvins,

γ = 1 +
T 0.2

1000

and V = 300 liters when T = 400 kelvins, find V as a function of T.

29) Gas-liquid Equilibrium When a liquid phase and a gas phase of a
substance (e.g. water and water vapor) both exist and are in equilibrium, the
pressure of the gas phase, P, is related to the temperature, T. If the volume of
the liquid is small compared to the gas and the gas is ideal, this relationship is
given by the differential equation

dP

dT
=
PH lv

RT 2

where R is the ideal gas law constant and H lv stays essentially constant. If we use
units where R = 8, H lv = 32, and, at T = 100, P = 3, determine the pressure, P,
at an arbitrary temperature, T.

30) Electrical Circuit The capacitor charge, q, in a circuit with a resistor
and a capacitor is described by

ε = R
dq

dt
+
q

C

where ε, the electromotive force, R, the resistance, and C, the capacitance, are all
constants. If ε = 2 volts, R = 1 ohm, C = 1 farad, and t is measured in seconds,
determine q(t) given that q(0) = 0. Note that since are using SI units here, q(t)
will have units of coulombs.
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31) Heating or Cooling by Convection If air at a constant temperature, Tc,
flows over a small solid object whose temperature is T, the object’s temperature
is determined by Newton’s law of cooling:

dT

dt
= −k(T − Tc)

where t is time and k is a experimentally determined constant with units of
reciprocal time (so if t is in sec (seconds), k is in 1

sec). If the temperature, T,
equals some value T0 > Tc at t = 0, determine T (t). Note: if your answer is
correct, you will able to verify that T → Tc as t→∞.

Problems 32–34 are adapted from undergraduate courses and texts in economics
and finance. Problems 32 and 33 involve solving separable differential equations.
Problem 34 involves solving a linear differential equation. For all three problems,
time, t, is in years and money, y, is in dollars.

32) Better Interest Rates for Big Investors In section 7.2, you learned
that the value of an investment, y(t), which is compounded continuously at the

interest rate r, is governed by the equation
dy

dt
= ry. If the interest rate is related

to the size of the investment by r =

√
y

60
then we have the equation

dy

dt
=
y

3
2

60
.

a. If you initially invest $400 (i.e., y(0) = 400), what is y(t), the value of your
investment at later times?

b. For a given initial investment, y0, determine the time at which the worth of
the investment approaches infinity (!).

33) Funding Your Retirement If you put money into a bank and leave it

alone, its growth is governed by
dy

dt
= ry, as you saw in section 7.2. But what if

you also add money into your bank account at a continuous rate of k dollars per
year? Then the growth is governed by

dy

dt
= ry + k.
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If you remove money at k dollars per year, instead of adding it then, unsurpris-
ingly, the equation becomes

dy

dt
= ry − k.

Assume the bank gives a continuously compounded interest rate of 5%, so r =
0.05. Let’s say you start working at age 20 with no money in your retirement
account at the bank, but for the next 45 years you put money into your retirement
fund at a constant rate of $5000 per year.

a. When you retire at age 65, how much money will you have?

b. At age 65 you stop putting money into your account. Instead you draw it out
at a constant rate of, say, $60,000 per year. How old will you be when you
run out of money?

c. Redo parts a and b if you start adding money at the rate of $5000 per year
beginning at age 30, instead of age 20, and still retire at age 65. The results
are very different!

34) Linear Differential Equations in Retirement Savings In the previous
problem, we saw that the separable differential equation

dy

dt
= ry + k

describes the increase in a retirement account’s worth if we save at a constant
rate of k dollars per year. But we normally make more money over time and can
therefore save at a higher rate as we age, so a more realistic model is to have
k = a + bt, where a is the (positive) initial contribution rate at age 20, b is the
(positive) rate at which the contribution rate increases over time, and t is the time
after age 20 (so t = 0 at age 20, and t = 45 at age 65). This yields the differential
equation

dy

dt
= ry + a+ bt,

which is not separable. It is, however, a linear differential equation, which you
will study more if you take Math 22 or Applied Math 106. To solve this linear
equation, we subtract ry from both sides and then multiply by the integrating
factor e−rt, which yields

e−rt
dy

dt
+ e−rt(−r)y = e−rt(a+ bt).
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By the product rule, the left-hand side can be rewritten as
d(ye−rt)

dt
. Using this,

we can now solve our equation by integrating both sides with respect to t.
Use this method to determine the worth of your retirement account if you

start putting in money at age 20 and stop at age 65. Use r = 0.05, a = 5000, and
b = 100, which means you are contributing an additional $100 dollars more every
year compared to the scenario in part a of problem #33.

Answers to odd problems

1. y =
(

3
2x

2 + C
) 1

3

3. Not separable
5. y = tan−1 (ln(|x+ 1|) + C)

7. f =
(
Cee

−t(t+1) − 1
)−1

9. 1
y = 3

2 − t

11. sin(3y) = 3
2(cos(2x) + 1)

13. 1
2

(
1− 1

c2

)
= t(ln(t)− 1)− e2

15. ln
(
M−3
M−2

)
= x− 1 + ln

(
1
2

)
17. ln

(
13(f−1)

12f

)
= −e−t(1 + t) + 1

19. sin(h)− 1
3 sin

3(h) = ep

2 (sin(p)− cos(p)) + 1
2

21. y = 2et + 1

23. v = 10(
√
5− 2)kmsec

25. b. 0th order: mol
l· sec , 1

st order: 1
sec , 2

nd order: l
mol· sec .

27. K = 40
29. P = 3e4( 1

100
− 1

T )

31. T = Tc + (T0 − Tc)e
−kt

33. a. $100, 000
(
e

9
4 − 1

)
= $848, 773.58, b. 89.57 years old, c. $100, 000

(
e

7
4 − 1

)
=

$475, 460.27, 75.09 years old
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