NOTES:

- 1. Make sure your NAME is on the front of the green book.
- 2. PLEASE label (or underline or | box in |) all ANSWERS clearly.
- Start EACH problem on a NEW PAGE SIDE!
- 4. Problems can be written in the blue book in ANY ORDER, but they must be properly LABELED.
- 5. There are 100 points possible on this test. The point value of each problem is listed in parenthesis after the number.
- 6. Show your WORK! partial credit is possible only when all work needed to obtain an answer is presented legibly.
- 7. NO CALCULATORS.

1. (12) If $f(x) = \frac{x}{x+1}$ and $g(x) = x - \frac{1}{x}$, find (a) f(g(x)) and (b) g(f(x)). The final answers should NOT have any fractions in the numerators or denominators nor be a sum or difference of two separate fractions.

29/33 2. (8) Evaluate:
$$\lim_{x\to 1} \frac{(x^2-4)(x-1)}{x^2-3x+2}$$

2.3 /33 3. (8) Evaluate:
$$\lim_{t \to 3} \frac{2t^3 - 18t}{3t - 9}$$

2.3 /33 3. (8) Evaluate:
$$\lim_{t \to 3} \frac{2t^3 - 18t}{3t - 9}$$
3. (8) Evaluate: $\lim_{t \to 3} \frac{2t^3 - 18t}{3t - 9}$

3. (8) Evaluate: $\lim_{t \to 3} \frac{2t^3 - 18t}{3t - 9}$

(a) What is $\lim_{x \to 1^+} f(x)$?

(a) what is
$$\lim_{x \to 1^+} f(x)$$
?

(b) what is
$$\lim_{x\to 1^-} f(x)$$
?

 $\frac{21}{33}$ 5. (15) Using ONLY the definition of the derivative (and not anything you learned from other courses!), calculate the derivative of $f(x) = 2x^2 - 2x$.

12/33 6. (14) Let
$$f(x) = \frac{(x-5)(x+2)(x-1)}{x^2+x-2}$$
.

- (a) What are the point(s) of discontinuity?
- (b) How should f(x) be defined at this (these) point(s) to make it continuous (i.e., can you "remove" this (these) point(s) to make a "continuous extension")?

7/33 7. (16) Evaluate: HAKOBT (a)
$$\lim_{y\to 0} \frac{\sin 2y}{2\cos y}$$
.

(b)
$$\lim_{\theta \to 0} \frac{\sin 3\theta}{4\theta}$$
.

 $\frac{25}{33}$ 8. (15) What is (are) the asymptote(s) of $y = \frac{x^2+1}{x+1}$? For each asymptote, give its type (i.e., vertical, horizontal, or oblique)

$$M+(1-F23-M1D)I$$
1, $f(x)=\frac{x}{x_{1}}$, $g(x)=x-\frac{1}{x}$ a) $f(g(x))=\frac{x-\frac{1}{x}}{x-\frac{1}{x+1}}=\frac{x^{2}-1}{x^{2}+x-1}$

b) $g(f(x))=\frac{x}{x+1}-\frac{1}{x}$ = $\frac{x}{x+1}-\frac{x+1}{x}=\frac{x^{2}-(x+1)^{2}}{x(x+1)}=\frac{x^{2}-x-1}{x^{2}+x-1}$

2. $\lim_{x\to 1}\frac{(x^{2}-x)(x-1)}{x^{2}-3x+2}=\lim_{x\to 1}\frac{(x+2)(x/2)(x/1)}{(x/2)(x/1)}=\lim_{x\to 1}x+2=1+2=3$

3. $\lim_{x\to 3}\frac{2t^{3}-19t}{3t-q}=\lim_{x\to 1}\frac{2t(t^{2}-9)}{3(t-3)}=\lim_{x\to 1}\frac{2t(t+3)(t+3)}{3(t+3)}=\frac{2\cdot h\cdot 6}{h}$

1. $\int_{1}^{\infty}(x)=\int_{1}^{\infty}\frac{(x+1)^{2}-(x+1)^{2}-1}{x^{2}+x-1}=\frac{1}{x^{2}+x-1}=\frac{-2x-1}{x^{2}+x-1}$

2. $\lim_{x\to 1}\frac{(x^{2}-1)(x-1)}{x^{2}-1}=\lim_{x\to 1}\frac{2t(t+3)(t+3)}{x^{2}+x-1}=\frac{x^{2}-1}{x^{2}+x-1}=\frac{-2x-1}{x^{2}+x-1}$

3. $\lim_{x\to 1}\frac{(x^{2}-1)(x+1)}{x+1}=\lim_{x\to 1}\frac{2t(t+3)(t+3)}{x+1}=\frac{2\cdot h\cdot 6}{x+1}=\frac{1}{1}=0$

5. $\int_{1}^{\infty}(x)=\lim_{x\to 1}\frac{f(x)-h\cdot 6}{h}=\lim_{x\to 1}\frac{2(x+h)^{2}-2(x+h)-(2x^{2}-h)}{h}=\lim_{x\to 1}\frac{2x^{2}+4x+1+21^{2}-4x-21+2x^{2}+1}{h}$

6. $\int_{1}^{\infty}(x)=\lim_{x\to 1}\frac{f(x)-h\cdot 6}{x^{2}+x-2}=\frac{(x-5)(x+2)(x-1)}{(x+2)(x-1)}\Rightarrow a)$

6. $\int_{1}^{\infty}\frac{(x)-h\cdot 6}{x^{2}+x-2}=\frac{(x-5)(x+2)(x-1)}{(x+2)(x-1)}\Rightarrow a)$

6. $\int_{1}^{\infty}\frac{(x)-h\cdot 6}{x^{2}+x-2}=\frac{(x-5)(x+2)(x-1)}{(x+2)(x-1)}\Rightarrow a)$

7. $\lim_{x\to 1}\frac{h\cdot 6}{x^{2}+x-2}=\frac{h\cdot 2}{x^{2}+x-2}=\frac{h\cdot 2}$