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ABSTRACT

Flux-limited diffusion has become a popular method for treating radiation transport in multidimensional as-
trophysical simulation codes with multi-group flux-limited diffusion (MGFLD) undergoing increasing use in a
number of applications. The most computationally demanding aspect of this technique is the solution of the large
linear systems that arise from the implicit finite-difference scheme that is used to solve the underlying integro-
PDEs that describe MGFLD. The solution of these linear systems often dominates the computational cost of
carrying out astrophysical simulations. Hence, efficient methods for solving these systems are highly desirable. In
this paper we examine the numerical efficiency of a number of iterative Krylov subspace methods for the solution
of the MGFLD linear systems arising from a series of challenging test problems. The problems we employ were
designed to test the capabilities of the linear-system solvers under difficult conditions. The algorithms and
preconditioners we examine in this study were selected on the basis that they are relatively easy to parallelize. We
find that certain algorithm/preconditioner combinations consistently outperform others for a series of test prob-
lems. Additionally, we find that the method of preparing the linear system for solution by scaling the system has a

dramatic effect on the convergence behavior of the iterative methods.

Subject headings: methods: numerical — radiative transfer

1. INTRODUCTION

Multi-group flux-limited diffusion (MGFLD) can be applied
to radiation transport problems that arise in a wide variety of
astrophysical phenomena. The radiation can consist of pho-
tons, neutrons, neutrinos, or, in some circumstances, charged
particles. Despite the quantum behavior of each of these types
of radiation being distinct, the macroscopic flow of the radia-
tion is described by similar radiation transport equations. Typ-
ically, the physical problem one encounters is posed as an
initial value problem and requires the time integration of these
equations. One can attempt to solve these equations either by
deterministic approaches or by Monte Carlo simulation. In the
case of deterministic approaches, the characteristic structure of
these equations usually necessitates the use of implicit finite-
difference techniques. In turn, these implicit methods give rise
to large linear systems. The linear systems are sparse and
possess a structure that is in many cases a combination of
diagonal blocks plus outlying bands. The modest storage re-
quirements and overall efficiency of Krylov subspace iterative
methods are suitable for these problems. In the multidimen-
sional case, these systems are immense. Therefore, it is highly
desirable to solve these systems on parallel architectures, which
possess the required memory and CPU resources. Yet in order
to accomplish this, one needs to develop effective parallel
preconditioners. We report on our investigations into this area
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for a number of sparse approximate inverse (SPAI) precondi-
tioners in combination with several popular Krylov subspace
methods, including the generalized minimum residual method
with fixed restart length » (GMRES(n), Saad & Schultz 1986),
as well as the stabilized bi-conjugate gradient (BiCGSTAB,
van der Vorst 1992) and the conjugate gradient squared (CGS,
Sonneveld 1989) methods. Additionally, we have considered
Chebyshev iteration (Elman et al. 1985) as another Krylov
subspace method that has the added advantage of fewer inner
products.

The objective of this paper is to present a comparison of the
effectiveness of certain iterative sparse linear system methods
for the solution of implicitly differenced MGFLD equations.
The flux-limited approximation is often employed in com-
putational astrophysics as a method for modeling the multi-
dimensional flow of radiation. For example, the widely used
ZEUS-2D code (Stone & Norman 1992a, 1992b; Stone et al.
1992) has recently included gray flux-limited diffusion as a
technique for describing radiation flow (Turner & Stone 2001).
In most simulations where radiation transport equations are
handled by implicit finite-difference techniques the solution of
the sparse linear systems dominates the computational cost of
the simulation. Therefore, the efficient solution of the sparse
linear systems arising from the discretization is imperative. To
date, the only comparison of numerical methods for the solu-
tion of implicitly differenced flux-limited diffusion equations
has been undertaken by Baldwin et al. (1999), who com-
pared several algorithms for the iterative solution of gray flux-
limited diffusion equations in a radiation-hydrodynamic context.
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However, the test problems in the Baldwin et al. paper exhibit
behavior that is not necessarily relevant to astrophysical phe-
nomena. Furthermore, this work did not consider a class of
preconditioners that we explore. A brief preliminary comment
about preconditioning is appropriate, a topic that will be
addressed in more detail in § 6. The iterative convergence of
sparse linear system methods for solving Ax = b can often be
improved by the transformation of the system by another matrix
M~ into a new system M ' Ax = M~'b that transforms the
coefficient matrix into one with a more favorable spectrum
(Barrett et al. 1994). The matrix M ' is chosen so that A/ ~' A
is a good approximation of the identity matrix. A good pre-
conditioner accelerates the convergence of an iterative method
and, without any such preconditioning, many methods will fail
to converge.

For these reasons we investigate the efficiency of several
popular sparse linear system algorithms as applied to the
MGFLD linear systems. We have focused on Krylov subspace
algorithms because they are well suited for linear systems
arising from discretized partial differential equations and be-
cause of the relative ease with which they can be implemented
on massively parallel architectures. In addition we consider
several possible sparse approximate inverse preconditioners
that admit parallel implementations. The goal of these studies
is twofold: first, to assess how the iteration number for the
various preconditioner/iterative-method combinations scaled
with the size of the system on realistic MGFLD problems; second,
to compare the performance of the various preconditioner/iterative-
method combinations on these same MGFLD problems.

In this paper we restrict ourselves to problems with one
spatial and one spectral dimension. The reason for this is that
the size of the linear systems allows us to gain some insight into
the character of the preconditioner/iterative-method combi-
nations without the strenuous computation required for prob-
lems in two and three spatial dimensions. Our work in the paper
is focused on the comparison of iterative methods without the
complicating issues of parallel implementation. Parallel scal-
ability of the algorithms introduces another dimension to the
problem that complicates any comparative analysis of iterative
methods. In future work, we will consider scalability of the
methods on linear systems corresponding to problems with
higher spatial dimensionality.

In § 2 we delineate the differencing scheme that gives rise to
these problems. In § 3 we discuss the characteristics of the
linear systems in several important physical limits. In § 4 we
describe the model problems that we employ in these inves-
tigations. In § 5 we briefly discuss the Krylov subspace meth-
ods, and in § 6 we discuss the various preconditioners that we
have employed along with their motivation. In § 7 we report
on our results. And finally in § 8 we offer some comments
regarding the parallelism of the preconditioners and iterative
methods as well as some conclusions drawn from this work.

2. THE RADIATION TRANSPORT MODEL

A widely employed model for the flow of radiation is the
Aux-limited diffusion approximation in which the flux of radi-
ation is related to the gradient of either the energy density or
the number density in a manner that satisfies Fick’s law (Kittel
& Kroemer 1980). The energy density, E(¢), is defined as the
total energy of “particles” of radiation, with energy ¢, per unit
volume and is related to the number density, n, by E(€) = en(e).
If the spectral distribution of the radiation cannot be described
by a simple thermodynamic distribution function, one must
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discretize the spectrum into a series of energy zones or “groups”
and solve a flux-limited diffusion equation for each group.
This model of radiation transport is known as multi-group flux-
limited diffusion (MGFLD). Each group may be connected to
every other group by physical processes such as nonconser-
vative scattering. Other physical processes that may be present
are conservative scattering processes, i.c., scattering events in
which the energy of a “particle” of radiation remains un-
changed, and emission/absorption processes which either create
or destroy particles of radiation. In general, for this problem one
can write the monochromatic, radiation number/energy equa-
tion for radiation “particles” of energy ¢ as (Mihalas & Mihalas
1984)

OE(¢e)
ot

+ c/E(s’)mS(a’,e)de' —E(s)c//@‘v(e,s’)ds’, (1)

+ VF(e) = S(e) — E(e)ck’(¢)

where F is the flux of the radiation, S is the radiation emis-
sivity, kK is the absorption opacity, k° is the nonconservative
scattering opacity, and c is the speed of light. It is understood
that E, F, S, k“, and «° are all functions of the radiation energy
e, and we will hereafter omit the ¢ argument for the sake of
compact notation. The solution of equation (1) requires the
specification of an additional relationship, commonly referred
to as a closure, between the monochromatic energy density £
and the monochromatic flux F. The physical behavior of
this relationship in the limit where the surroundings are either
opaque to the radiation (“optically thick’) or transparent to
the radiation (“optically thin”’) is well understood. In one
dimension in the optically thin limit, the monochromatic en-
ergy density E and the magnitude of the monochromatic flux
F are related by

F =cE, (2)
while in the optically thick limit they are related by
F = D(e)VE, (3)

where D(¢) is a diffusion coefficient, with an energy-dependent
value, that depends on the problem-specific microphysical
interactions of radiation with matter. In intermediate (““opti-
cally translucent”’) regimes between the optically thin and op-
tically thick limits, the behavior is more complex. A number of
closures have been developed (Alme & Wilson 1974; Bruenn
et al. 1978; Minerbo 1978; Levermore 1984; Cernohorsky &
Bludman 1994) that try to bridge the gap between the two
limits. The form of these closures is

F = D(e,Ve)VE, (4)

where D(e,Ve) is a function of both ¢ and Ve such that F
achieves the correct value in both the optically thick and op-
tically thin limits. One of the more popular prescriptions for
this closure is that of Levermore & Pomraning (1981, here-
after LP), which we employ in this work. The LP closure is
given by
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Fic. 1.—Diagram of the energy-space mesh illustrating the location at which the monochromatic energy density is defined.

where R is the Knudsen number given by

rR=—E (6)

K'WE

In equations (5) and (6), w is the effective albedo given by

S+ KCE
W= T AE (7)
where k%€ is the total scattering opacity including both con-
servative and nonconservative scattering contributions, and
k' = k" + K* is the total opacity including absorption (k%)
and total scattering (x°°) contributions. In the test problems
considered in this paper, we will ignore absorption and emis-
sion (for reasons we will explain in § 4); thus, S = 0, k' = &,
and w = 1. As detailed in LP, this closure achieves the ap-
propriate limits as R — 0 and R — oco. The reader is referred
to LP for further details. With this closure, equation (1) as-
sumes the form of an integro-PDE in the variable E.

The implicit finite differencing scheme used to solve equa-
tion (1) is the spatially staggered mesh scheme that has been
formulated by Myra et al. (1987). This scheme is illustrated in
Figure 1. The same spatial discretization has also been adopted
by Turner & Stone (2001) in the widely employed ZEUS-2D
astrophysical radiation-hydrodynamics code. For the problems
considered in this paper we will assume spherical symmetry
and employ spherical polar coordinates. We discretize the
spatial coordinate » and the spectral coordinate € into N, radial
zones and N, energy groups, respectively. We denote the edges
of these dlscretlzed radial zones by r; using integer subscripts
and the zone centers by 7;,(1/2) using half-integer subscripts.
Similarly, group edges and group centers are denoted by ¢; and
Ek+(1/2)- Employing standard finite-differencing notation we
denote the time-level of the quantities by superscripts, i.e.,
the number density at zone center T (1/2) and group center
Ek+(1/2) is denoted at time ' by El+<1/2) k+(1/2)- Employing
this notation we can discretize equation (1) as

— E7

En+l
i /2k+0/2) ~ Bivappaean) _
At

(ri1)*F, z+l k+(1/2) (”t)ze ﬁ (1/2)
AV)iyap

+CZ i+ 1/2 JH(1/2) B (1/2),7+(1/2).k+(1/2)DE1(1/2)
J=Ny
n+1 s
= Bl ke0/2) Z R (1/2),k+(1/2),7+(1/2) DE7+(1/2),
j=1
(8)

where

1
AV)ivap) = 5[(’i+1)3 -], ©)

H?+(1/2),j+(1/2),k+(1/2) = (Vi+(1/2)v51‘+<1/2)75k+(1/2>)7 (10)

and where we have made use of the notation Ag (i) =
ere1 — ¢ and A = ¢"1 — 7. The flux is differenced as

n+1 _ gn+l
Ei+(l/2),k+(l/2) El*(l/Z),k‘F(l/Z) ' (11)

Tiv(172) — Vi—(1/2)

n+1 7
FIZ+(1/2) Di,k+(1/2>

Note that following Turner & Stone (2001) we hold the diffu-
sion coefficient constant throughout the time step, i.e. D, k+(1/2)
is defined at time ¢”.

By substituting equation (11) into equation (8) we can al-
gebraically manipulate the resulting equation into the form

Aivq2Mi-ay2) T Bivamivayz) + Ciry2)Mivr2) = Rivy2)s

(12)
where
T _ 1 1 1
Nit(12) = (1“7;’++(1/2).(3/2)7}-“7:'1:(1/2),(5/2)7 Ezn;r(l/z) N+(1/2))
(13)
and
T — n n n
Ri+(l/2) = (Ei+(l/2),(3/2)7Ei+(1/2),(5/2)7 SR 7Ei+(1/2),Ny+(1/2)>'

(14)

The superscript 7 in equations (13) and (14) indicates the
transpose. A;y(1/2), Biy(1/2), and Ciy(1/2) are Ny x N, matrices
given by
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Qi (1/2),3/2) 0 e 0 n(1/2) R1)2)
P B 0 Qit(1/2),(5/2) - - - 0 N3/2) R(3/2)
i+(1/2) = . ’ X = (22)
0 e 0 Q;
+(1/2),N,+(1/2) N, +(1/2) RN,+(1/2)

(15)

Biv1/2,6/2.6/2  Bit1/2).6/2).(5/2) Bis1/2).6/2).8,+(1/2)

Biv(12).65/2.6/2  Bir(1/2).5/2).(5/2) Bit(1/2), (5/2).N,+(1/2)

Biop =
Biv(1/28,40/2.6/2) Biv /28,4072, 5/2) + -+ Biv(1/2)N,40/2).N,+(1/2)
(16)
and
Vit (1/2),3/2) 0
0 Vi+(1/2),5/2) - - - 0
Cirap =
0 o 0 Yirqa2n+1/2)
(17)
where

2 ryn
(l"i) D,’k+(1/2)Al

Qi1 (1/2),k 2) = l ) (18)
R AV )i (Fiva/2) = 1i-12))

y _ (’”i+1)2D;’+1,k+(1/2)A’ (19)
4 (1/2),k+(1)2) = ,
TR AW )2) (risra) = Tiviy)

and

Bit(1/2),k4(1/2),j+(1/2) = —Kir(1/2), j4(1/2), 5+ (1/2) DEj1(1/2) CAL

+ 5k+(1/2),j+<1/2) (1 = Qi (1/2),k+(1/2) — 'Yi+(1/2),k+(1/2))
(=N,

+ Ok(1/2), j+(1/2) < Z KL (12) k(1/2), 6401 /2>Afz+<1/z>cm> :
(=1

(20)

In equation (20) we have made use of the Kronecker delta
function:

1, ifj=k,

Oj(1/2),k+(1/2) = {0 (21)

otherwise.

Equation (12) is a block tridiagonal linear system of N,N,
equations:

B(l/z) C(1/2) 0 0 .. 0
Az Biapy Cepy 000 .. 0
o ... 0 Av+a2) Br+ap

We shall refer to the matrix in equation (22) as the coefficient
matrix, and we will denote this matrix symbolically by .A. The
sub- and super-diagonal blocks of the coefficient matrix are
themselves diagonal. In the absence of a nonconservative scat-
tering opacity «°, the system is symmetric. The sparsity pattern
of the coeflicient matrix .4 for the simple case of N, = 4 and
Ny = 20 is illustrated in Figure 2.

Many radiation transport problems are solved in conjunction
with explicit hydrodynamic simulations where the time step At
is set by the Courant-Friedrichs-Lewy (CFL) stability limit
for the hydrodynamics. Alternatively, radiation transport sim-
ulations performed without hydrodynamic evolution are often
performed at a fixed transport CFL number. In either case the
time step is proportional to the zone size Ar. We adopt a fixed
CFL criterion in this paper even though we are not performing
hydrodynamic evolutions. This implies that the lower resolu-
tion simulations will have larger time steps. For this paper the
time steps are computed by

At = T<2]36) (23)

where 7 = 4.36 us and the 256 is chosen to make the scaling
factor unity for our smallest simulations. Such a time step is
typical in astrophysical simulations of neutron stars.

3. CHARACTERISTICS OF THE LINEAR SYSTEMS

Several of the test problems that we consider in this paper
describe important physical limits of the MGFLD equation.
These limiting problems also yield linear systems with widely
differing characteristics. The variety of the mathematical char-
acteristics of these systems is an important aspect of our testing
of the preconditioner/iterative methods. Some of the physical
limits of the MGFLD equation yield linear systems that de-
mand more from the preconditioners.

In all cases the linear systems arising from one-dimensional
MGFLD are block tridiagonal. The “4” and “C” blocks as
described by equations (15) and (17) will always be diagonal
although the magnitude of the diagonal elements of these
blocks may vary. Nevertheless, we identify three important
limiting cases for the MGFLD problem. The first is the opti-
cally thick limit when dominated by conservative scattering.
The second is the optically thick limit dominated by noncon-
servative scattering. The third is the optically thin limit. Each
of these limits produces linear systems with different charac-
teristics. We now describe these cases in turn.

3.1. Optically Thick Limit, Conservative Scattering

The simplest limit is the optically thick limit, sometimes
known as the diffusive limit, where the opacity is high and
conservative scattering is dominant while nonconservative
scattering is negligible. When nonconservative scattering
processes are negligible, each integral term in equation (1)
is effectively zero. In the limit where the conservative scat-
tering opacity becomes large, the diffusion coefficient given
by equation (5) is small and the flux of radiation given by
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Fic. 2.—Sparsity pattern of the coefficient matrix A.

equation (4) is essentially zero. Under these circumstances we
find that

Aiv1)2) = 0, (24)

Bir(1/2),3/2).(3/2) 0 . 0
0 Bir(1/2),(5/2).(5/2) - - - 0
BiA(l/Z) =~

0 cee 0 Bir(1/2), Ny +(1/2).N,4+(1/2)

(25)
and

Cit12) = 0. (26)

The coeflicient matrix is approximately diagonal, and the so-
lution of this system is trivial. The time evolution of the ra-
diation density is almost entirely due to the presence of any
absorption opacity in (i+(1/2),j+(1/2),k+(1/2) or the presence of
source terms on the right-hand side of the system.

3.2. Optically Thick Limit, Nonconservative Scattering

The second important limiting case that can arise is in the
optically thick limit, where nonconservative scattering is sig-
nificant. In this case the integral terms of equation (1) remain
present and the system takes the form

Aiva2) =0, (27)

Bis(1/2).(3/2), (3/2) Bis(1/2).3/2).(5/2) Bit(1/2),3/2), Ny +(1/2)

Bis(12).(5/2,3/2)  Bir1/2).(5/2),(5/2) Bit(1/2), (5/2). Ny +(1/2)

B,+(1/z) =

Bit(1/2),N,+(1/2).3/2) Bie(1/2),N,4(1/2).(5/2) -+ Pk (1/2).N,4(1/2),N,+(1/2)

(28)

and

Cir1/2) = 0. (29)

In this circumstance all of the elements of the center block
Bi+(1/2),j+(1/2),k+(1/2) may be large. However, the inverse of
this system may be obtained by computing the inverse of
Bit(1/2). If the number of energy groups is large the cost of this
computation may be prohibitive.

3.3. Optically Thin Limit

The third limit occurs in the optically thin case, where both
conservative and nonconservative scattering are negligible. In
this limit one can show algebraically that the diffusion coef-
ficient becomes

CE} ki1)2)

= (30)
(VE), k(172

Dﬁk+(1/2) ~
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The effect of this limit on the linear systems may most effec-
tively be seen in the plane-parallel case of the spherical coor-
dinate system, where r is large and where

1o/ ,0 o
In this limit the o and ~y coefficients both become proportional

to the CFL number o corresponding to the speed of light c,
where

_cAt
g =——.
Ar
For most applications ¢ >> 1. It is this fact that necessitates

the use of implicit numerical methods for equation (1). We can
then write the a and y coefficients as

(32)

Qi (1/2),k+(1/2) & > 122;322) = = l (V}EE)lffii(<ll//22>)Ar (33)
and
- D?+1,k+(1/2)At . E?+1,k+(l/2)
i (1/2)k(1/2) & W -7 (VEY. 1, kr(1/2)AF .
(34)

Equations (33) and (34) reveal that the diagonal elements of
each block become dominant as the time step Af and the CFL
number ¢ increase. Additionally, we can see that another stress-
ful case arises when the radiation distribution Ei x+(1/2) be-
comes uniform, i.e., £7 t1(1/2) & E. In this situation the gradient
of the radiation density VE goes to zero and the o and ~
coefficients blow up. This is usually dealt with numerically by
modifying the gradient to be

E”

E?+(1/2).k+(1/2) T Fi-(1/2),k+(1/2)

Ar

where ¢ is a small positive number chosen to prevent division
by zero in equations (33) and (34). In practice, this additional
term only has a significant effect when adjacent spatial zones
have virtually identical energy densities in the same energy
group. The inclusion of this term is a practical necessity to
prevent a division by zero in such a circumstance where the
radiation field is “flat.” In this optically thin limit with a flat
radiation field the linear system takes on the form

(VE) kr(1)2) =

+6, (35)

oF
— 0 ... 0
6
E
0 % .0
Ai+(l/2) ~ s (36)
oF
0 0 —
6
20F
] ——— 0 0
6
20E
0 ek 0
Bi+(1/2) ~ 6 ) (37)
0 L 0 1-%
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and
oFE
— 0 0
6
0 ﬂ 0
Cirq1)p) = 6 (38)
cF
0 0o —
6

Since the scattering opacity, x°, is negligible, there is no

coupling between the energy groups via the integral terms of
equation (1). Thus, the linear system can be separated into N,
uncoupled tridiagonal linear systems of the form

20F oE
0 0 0
s s
oF 20E oF
oz L 0
5 5 6
oE 20F okF
0 o & 2 =
s s s
oF 20F
0 0 0 e
5 5
n+1 "
E(),k+0112) El oy kv1)2)
n+1
ESp) k012 EG ), kv02)
X = (39)
En+l En
N,—(3/2),k+(1/2) N,—(3/2),k+(1/2)
BV ke ) B2 072

When oE/6 is large, we can factor out the constant and the
matrix in equation (39) becomes

+2 -1 0 0 ... 0
-1 42 -1 0 ... 0
: (40)
0 ... 0 -1 42 -1
0 ... 0 0 -1 +2

This limiting form corresponds to the second-order finite-
difference representation of the Laplacian in Cartesian coor-
dinates. The Laplacian possesses a dense inverse and the
condition number scales with the number of equations N,.
The condition number of a matrix cond(4) is defined to be
|| Al A= ||. If cond(A4) is small, 4 is said to be well condi-
tioned. If cond(4) is large, A4 is said to be ill conditioned and
solving a system with A4 as the coefficient matrix may be prob-
lematic, even if the system is preconditioned (Trefethen &
Bau 1997). In this asymptotic limit (optically thin and flat)
the condition number of the MGFLD coefficient matrix scales
with the number of equations N, and the linear system corre-
sponding to each group becomes ill conditioned as N, becomes
large. Furthermore, the overall linear system formed by com-
bining the N, systems of size N, x N, may be even more ill
conditioned.
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4. TEST PROBLEMS

In order to offer a robust test for preconditioner/iterative
method combinations we have constructed a set of simplified
test problems that models many of the behavioral features of a
variety of physical radiation transport applications.

These problems are based on the physical problem of proto—
neutron star cooling, which requires the modeling of multi-
group neutrino transport within the core of a collapsed star and
its surrounding environs. The problem must treat neutrino
transport over the entire range of behavior from the optically
thick to optically thin limits. Additionally, the problem involves
neutrino-electron scattering, which serves to couple strongly
the individual energy groups in the problem. The problem
involves simulating the flow of neutrinos out of a spherically
symmetric star. The spectrum is continuous, thus eliminating
the need to deal with spectral lines. The density is sufficiently
large in the center of the star that the neutrinos there are diffu-
sive, while in the medium around the star the matter is either
translucent or transparent to the neutrinos.

Rather than involve the complications of neutrino micro-
physics, we have simplified the essential behavioral features of
this problem into a less complex problem with simple param-
eterized opacities. By varying the parameters in these opacities
we obtain a suite of linear systems that are used to test pre-
conditioner/iterative method combinations. We assume that
matter is in a fixed configuration to avoid the complications of
radiation-hydrodynamic effects. The domain of computation is
a sphere with an outer radius of 107 cm. The “star” is given a
fixed density profile described by

p(}”) :max[pc eXp (_”/7’0)’,00]7 (41)

where p. = 10" g cm™3, 7y = 5x10* cm, and py = 10% g

cm—3. The central density of this object is typical of the core
collapse of a massive star midway through its collapse. The
spatial domain is discretized into a uniform number of radial
zones of width Ar = 107 /N, cm. The spectrum is discretized
into a series of groups with geometrically increasing values for
the group center: €, (3/2) = (€x 4 (1/2) With £3/2)= 2.5 MeVand
¢ =1.5. The group edges are defined by the geometrical mean
of adjacent group centers: &; = (5k+(1/2)5k,(1/2)) /2. Such a
grouping scheme is typical of that used in neutrino transport
models. For the models in this paper we employ N, = 20 groups.
Typically, in a supernova or proto—neutron star model (Myra
et al. 1987; Swesty et al. 1994) one would employ a geometrical
factor of ( = 1.3 for the discretization of the spectrum, but the
larger factor used here provides a more stressful test problem by
increasing the amount of scattering between groups. The initial
values for the radiation number densities are set according to

Pir(1/2) { My ? €3/2) }
Eii(1)2),k+(1/2) = ol . i) (42)

where m; is the total mass contained interior to »;, and m;, =
1.66056 x 10~2* g is the baryon mass. This initial radiation den-
sity is monotonically decreasing outward and provides for a
higher radiation density to be “trapped” in the diffusive inte-
rior and assures an outward flux of radiation.
The model for the microphysics has been considerably
simplified. The conservative scattering opacity is modeled as
2
Hf+(l/2)“k+(l/2) = ’iC(Pi+(1/2),€k+(1/2)) = S8cCepiv(1y2) (5k+(1/2)) )
(43)
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where C. = 1.02 x 1072 ¢cm? MeV? g~!. This conservative
scattering opacity is based on the real neutrino-nucleon scat-
tering opacity. The S, factor is an arbitrary factor that we have
inserted into the opacity to change the optical depth of the
model. In this paper we will consider multiple values of S..
The nonconservative scattering opacity is loosely based on the
physical process of neutrino-electron scattering. It has the
effect of changing the energy of the neutrinos causing them to
scatter into another energy group. Compton scattering would
play a similar role for photons. Our model for the noncon-
servative scattering opacity is

S
£i+(1/2)
x exp(=err12) = exvap|/Agiiarn)s  (44)

’ﬁf+(1/z>,j+(1/z),k+(1/z) Hf+(l/2),j+(1/2)

where S, is a parameter that we will typically take to be 10~2.
This model for the opacity is chosen to ensure that the scat-
tering is predominantly into adjacent groups and so that the
overall nonconservative opacity is a few percent of the con-
servative opacity. Additionally, the factor of 1/ ensures that
the nonconservative opacity increases linearly with energy.
This simplified opacity model avoids the tremendous com-
plication of the true neutrino-electron opacity (Bruenn 1985)
while ensuring the same qualitative behavior. The choice
of an exponential form ensures that the scattering amplitude
falls off for more distant groups, a generic feature for many
applications.

As mentioned before, we will assume that the absorption
opacity k“(¢) and the number emissivity S(¢) are both zero in
this paper, avoiding the complications of picking a realistic
form for these functions while at the same time making for a
more stressful test problem. A nonzero absorption opacity
would simply increase the value of the diagonal elements of the
corresponding linear systems moving the matrix toward diag-
onal dominance, a situation for which preconditioning is triv-
ial. By ignoring the absorption opacity we move the system
away from diagonal dominance toward a more difficult pre-
conditioning situation. The emissivity only enters into the
linear system in the right-hand side and thus has no effect on
how well conditioned the system is.

For the remainder of this paper we consider a suite of six
linear systems problems in which we choose the opacity
parameters to emphasize transport in the optically translucent
and optically transparent limits. The test problems were es-
tablished with several objectives in mind. First, we wanted to
understand how the numerical methods scaled with the number
of equations. Therefore, we created a series of three problems
employing a varying number of radial zones, i.e., N, = 256,
512, and 1024. In this case we kept S. = 1. A second objective
is to understand how the methods varied as the optical depth of
the problem varied. Thus, we consider two additional problems
with S, = 102 and S, = 1072 while keeping the number of
radial zones fixed at N, = 1024. Finally, we considered one
additional problem where nonconservative scattering is absent
(Ss = 0). This problem resulted in a symmetric system where
each of the tridiagonal blocks is itself diagonal. This inclusion
of this test problem allowed us to examine how the methods
perform on a system that is symmetric.

The complete set of problem parameters is delineated in
Table 1.
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TABLE 1
PROBLEM PARAMETERS

Problem N, S. S
256 1 102
512 1 102
1024 1 102
1024 102 102
1024 102 102
1024 102 0

5. ITERATIVE SOLVERS

As previously mentioned, we have considered four iterative
methods in our study of parallelizable methods for solving
the multi-group flux-limited diffusion equations. For the sake
of brevity we will not include the details of each of these
methods in this paper. Instead we refer the reader to Barrett
et al. (1994), Greenbaum (1995), and Saad (1996) for a thor-
ough discussion of these algorithms.

Three of the methods we consider (GMRES, BiCGSTAB,
and CGS) are easily implemented in a parallel context where
the parallelism is derived from a logically Cartesian spatial
domain decomposition. In the case of the GMRES algorithm
(Saad & Schultz 1986) we have only considered a short restart
length of five because of the large storage requirement associ-
ated with longer restart values. Hereafter, we denote this par-
ticular configuration of the GMRES algorithm by GMRES(5).
This short restart length yields a minimal storage requirement
comparable to the other methods.

The fourth method that we consider is based on Chebyshev
iteration (Elman et al. 1985) and is somewhat more compli-
cated. This method has been implemented as CHEBYCODE
(Ashby 1985). The algorithm consists of two major parts: de-
termining iteration parameters based on an estimation of the
convex hull surrounding the eigenvalues in the complex plane
and the Chebyshev iteration itself. The former (parameter
construction) step is based on the adaptive procedure of
Manteuffel (1978) and consists of a series of rather complex
procedures for finding the convex hull surrounding the eigen-
values. The latter (iterative) step is rather simple and is de-
scribed in Barrett et al. (1994). The parameter construction
step requires some estimate of the eigenvalues of the pre-
conditioned system, which are obtained by applying the
GMRES algorithm for the first four iterations (Elman et al.
1985). Using the residuals from the first four iterations one
can then estimate eigenvalues by the PM4 variant (J. Castor
1988, private communication) of the power method (Golub &
van Loan 1989), which requires a linear least-squares fit ac-
complished via a QR factorization or Householder transfor-
mation. The adaptive procedure of Manteuffel can then be
applied to estimate the convex hull and the iterative parameters.
The major restriction to this method is that all the eigenvalues
of the (preconditioned) system must lie entirely within either
the right or the left half-plane. In practice we have always
found such a situation in the radiation transport problems that
we have examined. The only inner products needed in the
parameter construction step are contained in the four GMRES
iterations and the QR (or Householder) steps.

The parameter construction step can be reapplied periodi-
cally to reestimate the iterative parameters. The initial param-
eter estimation takes place after the first four GMRES iterations.
For our test problems we have reestimated parameters every
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10 iterations after the initial estimation but a posteriori exam-
ination of the residuals revealed no significant gain in the re-
duction of the residual from frequent reestimation. In practice
we believe parameter reestimation is unnecessary for the prob-
lems in this paper. Such a strategy would minimize the number
of inner products needed. We also wish to note that the iteration
step requires only one matrix-vector multiply (MATVEC) per
iteration. If an inner product were required it would be for a
possible stopping criterion only.

Two of our algorithms, CGS (Sonneveld 1989) and
BiCGSTAB (van der Vorst 1992), are variants of the BiCG al-
gorithm, which is based on the Lanczos algorithm (Saad 1996,
p. 210; Kelley 1995, p. 11). However, we have not considered
the original BiCG algorithm because of the need for the
transpose of the coefficient matrix. The transpose version of a
MATVEC poses an additional communication requirement in a
parallel setting, and in practice we have found BiCG to be less
effective than the other algorithms that we are considering. The
BiCGSTAB, GMRES, and CGS algorithms are all well de-
scribed by Barrett et al. (1994), and we have implemented them
exactly as described. We refer the reader to Barrett et al. (1994)
for further details. We note that the BICGSTAB and CGS
algorithms require two MATVECs per iteration, which domi-
nate the computational cost of the algorithms. For GMRES(5)
we choose to count each pass of the middle loop of the algo-
rithm as one iteration, with a single MATVEC per iteration.

The other factor to weigh when comparing these algorithms
is the number of inner products required per iteration. For
problems employing fine-grained parallelism the communica-
tion cost of these inner products can form a bottleneck to
achieving good scalability. The CGS algorithm requires two
inner products per iteration in order to estimate the iterative
parameters, while BICGSTAB requires four inner products per
iteration. The GMRES(n) algorithm requires n(n + 3)/2 inner
products for every pass through the outermost loop (n iter-
ations), thus yielding on average (n + 3)/2 inner products per
iteration. By choosing a restart length of five, we find on av-
erage that we have four inner products per iteration. An addi-
tional inner product is needed in each of these algorithms if one
wishes to base the stopping criterion on the norm of residual.
For the problems in this paper we halt the iteration when the
norm of the residual divided by the norm of the right-hand side
becomes less than 5.12x107°. This stopping criterion was
determined by experiment to yield adequate accuracy with this
particular discretization scheme applied to a variety of neutrino
transport problems.

6. PRECONDITIONERS

To speed up the convergence of an iterative method, one
may use a preconditioning matrix M~ to transform the orig-
inal linear system, Ax = b, into the system M~ Ax = M~ b,
where M~ is chosen so that M~ A is a good approximation
of the identity matrix (Ashby et al. 1989, 1992). The pre-
conditioning matrix, M !, is often referred to simply as “the
preconditioner.” More generally, we may have two precon-
ditioning matrices, M; ! and M !, that yield the preconditioned
matrix M; ' AMy". There are many possible preconditioning
strategies, and a complete review is beyond the scope of this
work. We refer the reader to Benzi (2002) for a comprehensive
review of the subject.

For two- and three-dimensional problems the large size of
the linear systems resulting from the implicit discretization of
the MGFLD equations makes the use of parallel computing
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architectures a practical necessity. In this paper we consider
only one-dimensional problems for simplicity. However, we
focus on preconditioning strategies that are easy to implement
on massively parallel architectures. This focus on easily par-
allelizable preconditioners precludes consideration of some
commonly used preconditioners, one obvious example being
incomplete LU factorization (Greenbaum 1995). We choose to
avoid the use of incomplete factorizations because the forward
and backward solutions they require form a scaling bottleneck
on parallel computers. There has been recent work on im-
proving the scalability of incomplete factorizations, and we
refer the reader to the discussion of this work by Benzi (2002).
In this paper we chose to investigate an alternative precon-
ditioning method (SPAI preconditioning) that has a high de-
gree of inherent parallelism.

In addition to the SPAI preconditioners, we have investi-
gated three other preconditioners that were based on the linear
systems’ behavior as they approach asymptotic physical lim-
its. Preconditioner 1, which relies on the Thomas algorithm
(Thomas 1949), derives from the optically thin limit where the
coeflicient matrix becomes diagonal in each of the three blocks.
Under these circumstances the Thomas algorithm can be ap-
plied to each group individually to obtain the direct solution of
the system. Even when the system does not obtain this as-
ymptotic form, the Thomas algorithm can still be applied
group-by-group as a preconditioner. In our case the tridiagonal
system is formed by taking only the diagonal elements of
equations (15), (16), and (17). The resulting system is em-
ployed as a preconditioner, which, as we will see, can be re-
markably effective even in situations where it is not obvious
that it should. The major drawback to this preconditioner lies
in the recursive nature of the Thomas algorithm, which makes
it difficult to parallelize effectively.

Another preconditioner (preconditioner 2) that we have
considered is diagonal preconditioning, which renders an exact
solution in the limit of pure diffusion in the absence of non-
conservative scattering. The parallelization of this precondi-
tioner is trivial. The third preconditioner (preconditioner 3)
considered is block Jacobi preconditioning (Barrett et al.
1994), which yields an exact solution to the problem in the
limit of diffusion with nonconservative scattering. This pre-
conditioner is embarrassingly parallel when employed with a
spatial domain decomposition. However, because this method
requires the solution of the dense linear system involving the
B block, the cost of this preconditioner may be prohibitive
when the number of energy groups, and hence the block size,
becomes large. Nevertheless, this preconditioner may be ef-
fective in certain circumstances.

An alternative, and more scalable, approach to precon-
ditioning is to make use of SPAI preconditioners of a pre-
determined bandwidth (Benzi et al. 1996; Chow & Saad 1997,
1998; Gould & Scott 1998). This is the approach taken to
compute preconditioners 4—7 described below. We presuppose
that the coefficient matrix and its inverse would both be di-
agonally dominant and that creating an approximate inverse
of appropriate bandwidth would produce an efficient pre-
conditioner. The approximate inverse M~' is obtained by
minimizing (over all M~! with predetermined entries)

min | MTA-IE =" min | A A-el |3, (45)
j=1

where e; is the unit n-vector in the jth direction, the Frobenius
norm is defined by
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IGIE =D 1Gl*, (46)

i=1 j=1

where G is an arbitrary m x n matrix, and the L, norm is
defined by

kel =D bl (47)
i=1

where x is an arbitrary n-vector.

In equation (45) the right-hand minimization is over all
vectors 7z; with entries in positions corresponding to those in
the corresponding row of M~!. An advantage of the SPAI
preconditioners is the ability to parallelize the process of de-
termining the components of the preconditioner. For a specific
row of the approximate inverse the minimization that deter-
mines the elements of that row is independent of the minimi-
zation of all other rows. The minimization takes the form of a
linear least-squares problem that can be solved by means of a
QR decomposition. The size of the linear least-squares prob-
lem is determined by the number and position of the nonzero
elements in each row of the approximate inverse. As a practical
consideration, one desires to keep the number of elements in
each row of the approximate inverse as small as possible in
order that the linear least-squares problem remain small.

An important issue with the use of SPAI preconditioners
is the choice of the positions of the elements in each row of
the approximate inverse. A number of adaptive strategies have
been suggested for choosing the sparsity pattern of the ap-
proximate inverse (Grote & Huckle 1997; Tang 1999; Benzi
etal. 2001). These algorithms attempt to improve the efficiency
of the preconditioners by adaptively augmenting the sparsity
pattern of the preconditioner in order to minimize equation (45)
further. However, this strategy can possibly incur a commu-
nication cost on a parallel architecture by requiring non—
nearest-neighbor communications between processes as the
bandwidth of the approximate inverse is increased. While this
communication cost may be tolerable, the implementation is
nontrivial (Barnard et al. 1999).

For this reason we have chosen the simplified strategy of
considering a fixed sparsity pattern for the approximate inverse
that requires only nearest-neighbor communication (assuming
a one-dimensional process topology derived from a simple
one-dimensional domain decomposition; Gropp et al. 1994).
Our tests made use of several different fixed sparsity patterns
motivated by relatively simple physical and mathematical
considerations. Our choice of sparsity patterns was motivated
by looking at absolute values of the elements of the coefficient
matrix and its inverse for a small problem where the true in-
verse can be computed by brute force. This approach is best
illustrated by Figures 3 and 4, which present false color images
of the upper left corner of the coefficient matrix 4 (Fig. 3) and
the upper left corner of the inverse A7 (Fig. 4). The bright
colored elements in the image of the inverse A~ clearly reveal
that large elements are present in bands with the same spacing
as the bands that are present in 4. The location of these bands
reflects the coupling between the energy density E at spatially
adjacent points. Note that the size of the elements diminishes
with the distance away from the diagonal. The behavior of the
true inverse serves to motivate the placement of elements of a
sparse approximate inverse.

Preconditioners 4—9 in our study are SPAI preconditioners
that try six relatively simple sparsity patterns based on the
aforementioned physical and mathematical motivations.
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Fic. 3.—False color image of the absolute value of the upper left (100 x 100) corner of the coefficient matrix A for test problem 1. Brighter colors indicate larger

elements.

The simplest of the SPAI preconditioners we consider is
preconditioner 4 (SPAI 1), which uses a sparsity pattern con-
sisting of a single element located on the diagonal of the
approximate inverse. The value of this element is determined
by a least-squares fit (Benzi et al. 1996; Gould & Scott 1995).
Although the resulting matrix resembles preconditioner 2, the
diagonal preconditioner, the computation is different in that the
method used to determine the entries of the approximate in-
verse is a least-squares solution involving all the row elements
of the coefficient matrix rather than merely the diagonal as in
preconditioner 2.

Preconditioner 5 (SPAI 3) employs a tridiagonal sparsity
structure, which could account for strong coupling between
groups when nonconservative scattering is dominant. The val-
ues of the elements in this preconditioner are obtained by a
linear least-squares fit as described in equation (45).

Preconditioner 6 (SPAI 3C) also uses the same three element
approximate inverse. However, in this instance, the least-
squares fit made use of only the nonzero elements in the center
blocks of the coefficient matrix, ignoring other nonzero ele-
ments in the coefficient matrix. The motivation for this choice
was to reduce the amount of computation required for the least-
squares fit.

For preconditioner 7 (SPAI 5C) we employ a pentadiagonal
sparsity pattern for the approximate inverse. The motivation
for this choice was to study how the increase in bandwidth of
the approximate inverse within the center block would improve

the efficiency of the preconditioner. As with preconditioner 6,
this matrix makes use of only the nonzero elements in the
center blocks of the coeflicient matrix, ignoring other nonzero
elements in the coefficient matrix.

The sparsity patterns for preconditioners 8 and 9 are chosen
for a different reason. A comparison of the SPAI sparsity pat-
tern for preconditioners 8 and 9 (Figs. 5 and 6) with the true
inverse dominant value pattern (Fig. 4) illustrates the motiva-
tion for the placement of the bands in preconditioners 8 and 9.
Preconditioner 8 (SPAI 3T) is a three-banded sparse approxi-
mate inverse with two nonzero single-element bands spaced at
a distance equal to the block size, i.e., N, = 20, to either side of
the diagonal (see Fig. 5 for an illustration of the sparsity pattern
of this approximate inverse). This sparsity pattern allows
coupling between nearest spatial zones by placing elements in
the same bands in which they are found in the true inverse. The
values of the elements are determined by least-squares fitting
as described by equation (45). Similarly, preconditioner 9
(SPAI 5T) has five nonzero bands, with the four nondiagonal
bands spaced at a distance of N, and 2N, from the diagonal (see
Fig. 6 for an illustration). This pattern allows influence from
the two nearest spatial zones located to either side of a specified
zone. Because we are considering only sparsity patterns that
allow the nearest spatial zones to influence a given zone,
these two preconditioners are parallelizable under a logically
Cartesian spatial domain decomposition with only nearest-
neighbor communication.
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Fi6. 4—False color image of the absolute value of the upper left (100 x 100) corner of the inverse of the coefficient matrix .A~! for test problem 1. Brighter colors

indicate larger elements.

7. RESULTS

We now examine the application of the iterative methods
and preconditioners previously described. Before applying
these methods to the linear systems we scale the systems so
that the diagonal elements are unity. This is especially nec-
essary in multigroup radiation transport applications as the
resultant matrix elements can vary widely from row to row
because of the energy dependence of the opacities. By scaling
we eliminate the variation among rows, which helps to min-
imize problems associated with round-off error.

7.1. Effects of Initial Scaling

We begin with a comment on scaling the rows or columns
of a matrix A. Let D be the diagonal of A. By row scaling,
we mean multiplying on the left by D! (assuming that the
inverse exists), whereas by column scaling we mean multi-
plying on the right by D!, These scalings may be viewed as
preconditioning operations. To explain, the general form of
preconditioning is M; ' AMy". Thus, row scaling means that
M; =D, Mg =1, whereas column scaling means that Mz =
D, M, =1.

Let D'/? be a diagonal matrix, the nonzero elements of
which are the square roots of the corresponding diagonal ele-
ments (assumed positive) of D. If we take My = D2 = M;,
then (since M} = Mp) we have M;'AMy' = Mz ' AM;T,
where My T means the transpose of the inverse of My. We call

this symmetric scaling. Symmetric scaling preserves the sym-
metry of the symmetric part of the coefficient matrix. For the
test problems in this paper we consider both row and sym-
metric scaling.

The effects of symmetric and row scaling are shown in
Tables 2, 3, and 4, where we compare the results of the various
preconditioner/algorithm combinations on problems 1, 2, and
3. In these tables we list both the number of iterations, N;, and
the number of MATVECs, N,,, required for convergence. The
latter quantity is a machine-independent approximate measure
of the total work required for convergence. We prefer this
approximate measure to actual code timings, which can vary
among platforms. A meaningful comparison of code timings
would require the code for each individual preconditioner
and iterative method to be tuned for a specific architecture.
Furthermore, inevitable uncertainty as to whether the code
has been optimally tuned leads to an uncertainty in the com-
parisons among preconditioners and algorithms. Counting
MATVEC:s for each method avoids this uncertainty while still
providing a rough metric for the total work. We have timed the
setup phase for the preconditioner setup (and in the case of
CHEBYCODE the parameter estimation) we have found that
for most cases the setup time was on the order of the cost of one
or two matvecs. However, our preconditioner code was written
for maximum flexibility in investigating preconditioners as
opposed to speed, while the MATVEC has been optimized for
computational efficiency. Optimization of code for a specific
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Fic. 5.—Sparsity pattern of preconditioner 8.

preconditioner is likely to yield a substantially lower time for
the setup of that preconditioner. For this reason we view this
rough estimate as an upper bound on the cost of the pre-
conditioner setup.

An “NC” entry in the tables indicates nonconvergence of
the preconditioner/algorithm combination. We consider failure
to achieve convergence in 200 iterations as a nonconvergent
result. We have found those cases in which convergence is not
achieved in 200 iterations either evidence stagnation of the
residual, or show such a slow decline in the residual, that the
iterative-method/preconditioner combination is impractical for
use.

The set of test problems 1-3 reveals some surprising results.
First we note a clear difference between the symmetric and
row scaling cases. In general, row scaling yields a superior rate
of convergence in the linear system. Many of the combinations
that fail to converge with symmetric scaling achieve conver-
gence with row scaling. While we are at a loss for an expla-
nation of this behavior, it is manifest in almost all of our test
problems. The sole exception to this trend is the symmetric
linear system in problem 6. In that case both symmetric and
row scaling yield nearly identical results (within one iteration),
which is expected since the two methods are the same in that
special case.

If we consider only the row scaling case, which yields faster
convergence of the iterative methods, we can see that the best
results are obtained with preconditioners 1, 8, and 9. However,
recall that preconditioner 1 uses the Thomas algorithm, which

is recursive and difficult to parallelize. Comparable perfor-
mance is obtained with preconditioners 8 and 9, which do not
suffer from this drawback. In fact, because they require only
nearest-neighbor communication the latter two preconditioners
are relatively easy to parallelize under a spatial domain de-
composition.

Problem 1 also reveals this fact about the performance
of our four Krylov subspace methods: when employed with
preconditioners 8§ and 9 CHEBYCODE and BiCGSTAB both
converge with comparable numbers of MATVECs. Note that
CHEBYCODE requires only one MATVEC per iteration, while
BiCGSTAB and CGS require two. Thus, the five iterations
required by BiCGSTAB and CGS when used in conjunction
with preconditioner 9 require roughly the same amount of
work, as CHEBYCODE does with 11 iterations.

7.2. Changing the Size of the System

We now turn to the effects of changing the size of the linear
system. This could be accomplished in two ways. The first
approach increases the spatial resolution of the simulation by
decreasing the zone size while keeping the spatial domain fixed
in size. The second approach is to enlarge the spatial domain of
the simulation while keeping the zone size fixed. We choose
the former approach since many long-timescale astrophysical
radiation transport simulations involve the simulation of an
object of fixed size. Typically, the simulations are carried out
with time steps determined by specifying the largest permis-
sible CFL number, which is chosen so as to maintain sufficient
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Fi. 6.—Sparsity pattern of preconditioner 9.

TABLE 2
ProBLEM 1: N, =256, S, =1, S; = 1072

CHEBYCODE BiCGSTAB CGS GMRES(5)
Preconditioner N; (N, N;i (N) N; (Nn) Ni (Nw)

Symmetric Scaling

1 (ThOMAS).eceveeerrrereereeeeeeeeeeeeeee 19 (19) 7 (14) 6 (12) 15 (15)
2 (Diagonal) ..........oeeeereeeeeeeeeeee 41 (41) 10 (20) 11 (22) 20 (20)
3 (Block Jacobi).......vvvvvveeveeeeere. 29 (29) 8 (16) 13 (26) 15 (15)
4 (SPAI 1) ..o, NC 53 (106) 174 (348) 195 (195)
5 (SPAL 3)........ 53 (53) 24 (48) 21 (42) 35 (35)
6 (SPAI 3C) 90 (90) 25 (50) 28 (56) 45 (45)
7 (SPAI 5C) 87 (87) 27 (54) 28 (56) 50 (50)
8 (SPAI 3T) NC 56 (112) 103 (206) 120 (120)
9 (SPAI 5T) NC 58 (116) 101 (202) 145 (145)

Row Scaling

1 (ThOMAS)..ceeeeeerreseeeereeeeeeeeeeee 15 (15) 5(10) 5 (10) 10 (10)
2 (Diagonal)...........oeeeeeeeereeeeereen 27 (27) 9 (18) 10 (20) 20 (20)

3 (Block Jacobi).....vvvvvvveeeeeeeeere. 25 (25) 8 (16) 13 (26) 15 (15)
VG TN ) P 25 (25) 9 (18) 10 (20) 20 (20)
LR TN L) Y 21 (21) 8 (16) 10 (20) 15 (15)
R SN LS J 28 (28) 9 (18) 9 (18) 15 (15)
VG TN IS Y 26 (26) 9 (18) 9 (18) 15 (15)
LRI 3 W 11 (11) 5(10) 7 (14) 15 (15)
NG SN 11 (11) 5(10) 5 (10) 10 (10)

Notes.—The number of iterations, ;, are shown followed by the number of MATVECs, N,,, in parentheses.
An entry of “NC” indicates no convergence.



TABLE 3
ProBLEM 2: N, =512, S, =1, S; = 1072

CHEBYCODE BiCGSTAB CGS GMRES(5)
Preconditioner Ni (N) Ni (Nm) N;i (Nw) N;i (Nw)

Symmetric Scaling

1 (ThOMAS) ... 18 (18) 6 (12) 6 (12) 15 (15)
2 (Diagonal) oo 40 (40) 11 (22) 10 (20) 20 (20)
3 (Block Jacobi)... . 31 31) 8 (16) 13 (26) 15 (15)
4 (SPAI 1)..... ; 186 (186) 48 (96) 46 (92) 85 (85)
5 (SPAI 3).... ; 40 (40) 19 (38) 18 (36) 30 (30)
6 (SPAI 3C) coovveeveeeeereeeereeeeeeeeee 80 (80) 20 (40) 21 (42) 30 (30)
VS TN IS Y 87 (87) 30 (60) 23 (46) 35 (35)
8 (SPAI 3T).coooeeereeeeereeeeeeeeeseer, NC 49 (98) 52 (104) 80 (80)
CXES NI ) W NC 50 (100) 51 (102) 85 (85)

Row Scaling

1 (ThOMAS) ... 15 (15) 5 (10) 5 (10) 10 (10)
2 (Diagonal)...... . 26 (26) 8 (16) 10 (20) 20 (20)
3 (Block Jacobi)... 26 (26) 8 (16) 11 (22) 15 (15)
4 (SPAI 1)..... ; 23 (23) 9 (18) 10 (20) 20 (20)
LR TN k) Y 21 21) 8 (16) 10 (20) 15 (15)
6 (SPAI 3C) coovveeveeveeeeeeereeeeeeenee 28 (28) 9 (18) 11 (22) 15 (15)
VS TN TS Y 26 (26) 9 (18) 9 (18) 15 (15)
8 (SPAT 3T).coovveereeeeeeeeeeeesessesr, 12 (12) 6 (12) 7 (14) 15 (15)
B TN I W 11 (11) 5 (10) 5 (10) 10 (10)

Notes.—The number of iterations, N;, are shown followed by the number of MATVECs, N,,, in paren-
theses. An entry of “NC” indicates no convergence.

TABLE 4
ProBLEM 3: N, = 1024, S, =1, S, = 1072

CHEBYCODE BiCGSTAB CGS GMRES(5)
Preconditioner N; (Ny) N; (Np) N; (Nn) N; (Np)

Symmetric Scaling

1 (ThOMAS) oo 17 (17) 6 (12) 6 (12) 15 (15)

2 (Diagonal)..... . 38 (38) 11 (22) 10 (20) 20 (20)
3 (Block Jacobi)... . 29 (29) 8 (16) 13 (26) 15 (15)
4 (SPAT 1) e 64 (64) 30 (60) 36 (72) 75 (75)
LR TN k) Y 27 27) 15 (30) 13 (26) 20 (20)
6 (SPAI 3C) coovveeveeeeeeeeeeeeeeeeeesee 64 (64) 21 (42) 20 (40) 25 (25)
7 (SPAI 5C) vovvvvvreeeeeeeeereeeeeeeeeeee 59 (59) 20 (40) 18 (36) 25 (25)
8 (SPAI 3T)... ; NC 31 (62) 35 (70) 65 (65)
9 (SPAI 5T).coovvveveeeeeeeeeeeeeeereereee NC 33 (66) 34 (68) 45 (90)

Row Scaling

1 (ThOMAS) .....eeeeeeeeeeeeeeeeeereeeeeene 10 (10) 5 (10) 5 (10) 10 (10)
2 (Diagonal)..... 25 (25) 9 (18) 9 (18) 20 (20)
3 (Block Jacobi)... 24 (24) 8 (16) 11 (22) 15 (15)
4 (SPAI I)..... 23 (23) 9 (18) 13 (26) 20 (20)
LR TN k) Y 20 (20) 8 (16) 10 (20) 15 (15)
6 (SPAI 3C) covvvvvreveeereeeereeeeeeeeeee 26 (26) 9 (18) 8 (16) 15 (15)
VS TN TS Y 24 (24) 9 (18) 9 (18) 15 (15)
8 (SPAI 3T).covvvvovereeereeeereeeeeeeeeee 11 (11) 5 (10) 5 (10) 10 (10)
SIS SN ) W 12 (12) 5 (10) 5(10) 10 (10)

Notes.—The number of iterations, N;, are shown followed by the number of MATVECs, N,,, in paren-
theses. An entry of “NC” indicates no convergence.
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accuracy. If the zone size is reduced, the time step must be
reduced to maintain the specified CFL number. This decrease
in the time step affects the linear system and, potentially, the
convergence of the iterative method. As the time step is de-
creased, the off-diagonal elements decrease in size. Whether
this decrease can offset the rise in condition number associated
with an increased number of equations is the subject of test
problems 2 and 3. We maintain the same opacity parameters in
problem 2 and problem 3 while increasing the spatial resolu-
tion. In problem 2 the resolution is doubled to 512 spatial zones
and in problem 3 it is quadrupled to 1024 spatial zones.

A comparison of the number of iterations among problems
1-3 for each of the numerical methods in the row scaling case
shows no significant increase in the number of iterations as the
size of the system is doubled and subsequently doubled again.
We therefore conclude that these preconditioner/iterative-
method combinations scale with the size of the system when
the CFL number is held constant. This is a promising indica-
tion that these preconditioning strategies may scale to much
larger numbers of equations arising out of three-dimensional
MGFLD problems. However, there is clearly work that needs
to be done to investigate further this possibility. We also note
that the symmetric scaling case continues to provide conver-
gence problems for all of the numerical methods.

Another major observation to draw from test problems 1, 2,
and 3 is that preconditioners 8 and 9, which possess a sparsity
pattern accounting for the influence of adjacent spatial zones,
continue to perform well with all four Krylov subspace meth-
ods. In contrast, the sparse approximate inverses 4, 5, 6, and 7,
which are achieved by fitting a sparsity pattern consisting of a
few elements adjacent to the diagonal, yield inconsistent re-
sults, working well with some methods and less well with others.
In problem 3, preconditioners 4—7 perform approximately as
well as they do in problems 1 and 2. This can be understood in
terms of the behavior of the elements of the B block given by
equation (20). In an optically thick situation the elements of the
entire B block can become large in magnitude. In contrast, the
diagonal elements of the 4 and C blocks become smaller as
the diffusion coefficient becomes smaller. An additional be-
havior that arises is that the time step becomes larger as the
zone size increases with decreasing N,. Consequently, the cA¢
terms in the equation for 0 become larger relative to the di-
agonal elements of the B block. Thus, the true inverse of the
coefficient matrix becomes well approximated by a block-
diagonal matrix consisting of the inverses of the B blocks. This
is evidenced by the fact that both the diagonal preconditioner
and the block-Jacobi preconditioners work even with sym-
metric scaling when the other preconditioners fail.

A third observation is that CHEBYCODE and BiCGSTAB,
in conjunction with preconditioners 8 and 9, are competitive
with respect to the number of MATVECs required to achieve
convergence. In general, GMRES(5) and CGS seem to re-
quire only slightly more work to achieve convergence. An-
other aspect to this problem is the number of inner products
that are required. However, in a parallel implementation
CHEBYCODE may have an advantage over BICGSTAB, and
the other methods that we have considered, because of the
relatively small number of global reduction operations re-
quired in a message passing context.

7.3. Changing Optical Depth

Another interesting aspect of the behavior of the methods is
how the iterative performance varies as the optical depth of the

problem changes. This is achieved by varying the parameter
S, in problems 3, 4, and 5. Problem 3 acts as the baseline
problem. In problem 4 the opacity is decreased by 2 orders of
magnitude relative to problem 3, while in problem 5 it is
increased by 2 orders of magnitude relative to problem 3.

The results from this study are listed in Tables 4, 5, and 6.
The symmetric scaling cases in problems 4 and 5 continue to
manifest the same convergence difficulties, while row scaling
continues to yield rapid convergence with most precondi-
tioners. The SPAI preconditioners remain the best performers.
Overall, preconditioners 8 and 9 continue to perform quite
well. Preconditioners 5, 6, and 7 perform much better in the
optically thick case (problem 5) than they do in the optically
thin case (problem 4). This behavior is due to the increased
importance of group-to-group scattering in the optically thick
case, where the elements near the diagonal of the coefficient
matrix obtain larger magnitudes. Thus, fitting an approximate
inverse to these elements yields a better approximation of
the true inverse. The importance of the group-to-group scat-
tering in problem 5 also explains the improved performance of
the block Jacobi preconditioner relative to problem 4. In gen-
eral, the block Jacobi preconditioner is not competitive with
the sparse approximate inverse preconditioners unless the
problem is optically thick. For problems 3—5, CHEBYCODE,
BiCGSTAB, and CGS offer comparable results for the same
numbers of MATVECs. In a parallel context CHEBYCODE
again should be the clear winner because of the small number
of required global reduction operations. Furthermore, for
preconditioners 8 and 9, the number of iterations to conver-
gence does not seem to be a function of optical depth.

7.4. The Symmetric Case

The results from test problem 6 (Table 7) illustrate the per-
formance of these methods on a symmetric problem in the
optically thin limit. This problem can also be interpreted as a
gray flux-limited diffusion problem because the resulting band
structure of the matrix reflects only nearest-neighbor spatial
coupling between zones. In this case the Thomas preconditioner
becomes an excellent approximation to the true inverse of the
coefficient matrix. This is manifested by the fact that most
algorithms converge in a single iteration (five iterations for
GMRES(5)) for preconditioner 1 with both row and symmetric
scaling. Nevertheless, the recursive nature of preconditioner 1
makes it an undesirable choice on parallel platforms.

With the exception of preconditioner 1, the SPAI precondi-
tioners 8 (SPAI 3T) and 9 (SPAI 5T) again offer the best per-
formance. This is illustrated in Figure 7, where we compare the
convergence of preconditioners 8 and 9 with diagonal pre-
conditioning for the BICGSTAB method with row scaling. In
Figure 7 we have employed a tighter convergence tolerance
than we would normally employ to illustrate that the SPAI
preconditioners outperform diagonal preconditioning even as
the residual is reduced over many orders of magnitude. While
we have depicted the performance for the BICGSTAB method,
examination of Table 7 reveals the fact that each of the four
iterative methods, when used in combination with the best
preconditioners, require approximately the same work to obtain
convergence. The results from approximate inverse precondi-
tioners SPAI3T and SPAIST indicate that SPAI preconditioners,
which account for the spatial coupling between adjacent zones,
are potentially useful for gray flux-limited diffusion problems.
We also wish to point out that this test problem does not man-
ifest the widely disparate behavior between symmetric scaling



TABLE 5

ProBLEM 4: N, = 1024, S, = 1072, S, = 102

CHEBYCODE BiCGSTAB CGS GMRES(5)
Preconditioner N; (Nw) N; (Nw) N;i (Nw) N; (Nw)
Symmetric Scaling
1 (ThOmas)......ccceoeueueuerernnrirnerreeeenee 10 (10) 4(8) 4(8) 10 (10)
2 (Diagonal) ......cccovveevueveeininrercicninne 31 (3D 8 (16) 9 (18) 15 (15)
3 (Block Jacobi)......cccoccrevieininininiiene. 27 (27) 8 (16) 13 (26) 15 (15)
4 (SPAI 1)...... 22 (22) 8 (16) 10 (20) 20 (20)
5 (SPAI 3)... 20 (20) 9 (18) 10 (20) 15 (15)
6 (SPAI 3C) ... 27 (27) 9 (18) 10 (20) 15 (15)
7 (SPAL 5C) oo, 27 (27) 9 (18) 10 (20) 15 (15)
8 (SPAI 3T)...cuiiiciiiciiiciiciiccee 15 (15) 5(10) 5(10) 10 (10)
9 (SPAI 5T).cccuvirieiereieinniereeeeeeeeee 11 (11) 5(10) 6 (12) 10 (10)
Row Scaling

1 (ThOmas).....covvveueuerireererceireciecreneenene 10 (10) 4(8) 4(8) 10 (10)
2 (Diagonal) ........ccoeveueueueicicinieiniiniins 26 (26) 8 (16) 8 (16) 15 (15)
3 (Block Jacobi)........cccccvuviiiniciiininnnne. 25 (25) 8 (16) 11 (22) 15 (15)
4 (SPAL 1) o 22 (22) 9 (18) 9 (18) 15 (15)
5 (SPAI 3)... 20 (20) 8 (16) 10 (20) 20 (20)
6 (SPAL 3C) .o 26 (26) 9 (18) 10 (20) 15 (15)
7 (SPAL 5C) .o 26 (26) 9 (18) 10 (20) 15 (15)
8 (SPAI 3T)..cuveiueiicreicrinereeeeeee 11 (11) 5 (10) 7(14) 10 (10)
9 (SPAI 5T)..ocuiiiiiiiiiiiiiciiccccee 10 (10) 4(8) 5 (10) 10 (10)

Nortes.—The number of iterations, N;, are shown followed by the number of MATVECSs, N, in parentheses. An

entry of “NC” indicates no convergence.

TABLE 6

PrOBLEM 5: N, = 1024, S, = 10%, S; = 1072

CHEBYCODE BiCGSTAB CGS GMRES(5)
Preconditioner Ny (V) N; (V) N; (V) N; (V)
Symmetric Scaling
1 (ThOmas)......cccccvueeeueecrnrnerenenene 22 (22) 9 (18) 8 (16) 20 (20)
2 (Diagonal).......ccccovuviriniicecanee 22 (22) 9 (18) 8 (16) 20 (20)
3 (Block Jacobi)........ccoeueueinnnnnne 7(7) 3(6) 3(6) 5(5)
4 (SPAI 1) o NC NC NC NC
5 (SPAI 3) i NC 42 (84) 63 (126) 60 (60)
6 (SPAIL 3C) .o NC 41 (82) 117 (234) 80 (80)
7 (SPAI 5C) .o NC 64 (128) 168 (336) 170 (170)
8 (SPAIL 3T)..cuiiiiiciciciciciriinee NC NC NC NC
9 (SPAI 5T).ccuieiiiiciiieinininnnens NC NC NC NC
Row Scaling

1 (Thomas).......ccccoeeurueereuvuninnnnn. 14 (14) 5(10) 5(10) 10 (10)
2 (Diagonal).....ccccoovuvervrericcccceens 14 (14) 5 (10) 5 (10) 10 (10)
3 (Block Jacobi)........ccccceuvuvienee. 5(5) 3(6) 3(6) 5(5)
4 (SPAI 1) oo 99 5 (10) 6 (12) 10 (10)
5 (SPAIL 3) i, 6 (6) 3(6) 3(6) 5(5)
6 (SPAIL 3C) . 6 (6) 3(6) 3(6) 5(5
7 (SPAIL 5C) .o, 6 (6) 3(6) 3(6) 5(5)
8 (SPAIL 3T).cuvuiviieciciireininenirienns 9(9) 5 (10) 5 (10) 10 (10)
9 (SPAI 5T)..ccureiiiiciciciniriirine 9(9) 5 (10) 5 (10) 10 (10)

Nortes.—The number of iterations, »;, are shown followed by the number of MATVECs, N,,, in parentheses.

An entry of “NC” indicates no convergence.
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TABLE 7
ProBLEM 6: N, = 1024, S, = 1072, S, =0

CHEBYCODE BiCGSTAB CGS GMRES(5)
Preconditioner N; (V) Ni (N) Ni (N) N;i (Ny)

Symmetric Scaling

1 (ThOMAS) ... 1(1) 102 102 5(5)
2 (Diagonal) ......ccoooroeeeerereee. 24 (24) 8 (16) 14 (28) 15 (15)
3 (Block Jacobi).........ccccooo... 24 (24) 8 (16) 14 (28) 15 (15)

YR N | J 20 (20) 9 (18) 12 (24) 15 (15)
5 (SPAI 3) oo 20 (20) 9 (18) 12 (24) 15 (15)
6 (SPAI 3C) covvvveeveeeeerereeeeee 24 (24) 8 (16) 14 (28) 15 (15)
VECIIN 1o Y 24 (24) 8 (16) 14 (28) 15 (15)
8 (SPAI 3T).oooovooveereereeeeneee 12 (12) 5 (10) 5 (10) 10 (10)

CRCI NI » N 9 (9) 3 (6) 4 (8) 10 (10)

Row Scaling

1 (ThOMAS) ... 1(1) 102 1(2) 5(5)

2 (Diagonal) ......ooerreevrrrere. 23 (23) 8 (16) 10 (20) 15 (15)
3 (Block Jacobi)..........cccooe.... 23 (23) 8 (16) 10 (20) 15 (15)
4 (SPAI 1) 19 (19) 8 (16) 9 (18) 15 (15)
LRI TN ) 19 (19) 8 (16) 9 (18) 15 (15)
6 (SPAL 3C) covvveeeeereereeee. 23 (23) 8 (16) 10 (20) 15 (15)
R IN Ko Y 23 (23) 8 (16) 10 (20) 15 (15)
8 (SPAI 3T).cooeoveeeeereereeereeene 11 (11) 5 (10) 5 (10) 10 (10)

S SN W 9 (9) 3(6) 3(6) 10 (10)

Notes.—The number of iterations, N;, are shown followed by the number of MATVECs, N, in
parentheses. An entry of “NC” indicates no convergence.

—— SPAI-5T preconditioning
-« « = Diagonal preconditioning
— — SPAI-3T preconditioning

lllllllllllllllllllllﬂllllllllllllll.'l

0 10 20 30
Iteration Number

Fi. 7—Convergence of BICGSTAB method with row scaling on test problem 6.
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Fic. 8.—Iteration count for the BICGSTB algorithm vs. relative time step size for the parameters specified in problem 6.

and row scaling. The performance of these two scaling meth-
ods is much closer than is seen in the other test problems. This
is merely a consequence of the symmetry of the underlying
problem.

7.5. Changing the Size of the Time Step

A final effect that we have considered is the influence of the
time step size on the effectiveness of the preconditioners. For
this representative study we have included only the BICGSTAB
algorithm with diagonal preconditioning and our two most
robust SPAI preconditioners: SPAI3T and SPAIST. We have
scaled the time step relative to the original time step prescribed
by equation (23). In Figure 8 the number of iterations to achieve
convergence is plotted against the relative time step size (given
by ratio of the new time step to the original time step) for
problem 6. This study has considered a time step increased by
factors of 2—128. We have also increased the maximum number
of iterations allowed for convergence in order to allow for
the increase in condition number of the system that usually
accompanies an increasing time step size. The increase in the
iteration count with time step size for all preconditioners is
immediately apparent. However, the gap in iterative perfor-
mance between the preconditioners increases steadily with in-
creasing time step size. The merits of the SPAI preconditioners
compared with diagonal preconditioning are obvious.

8. COMMENTS AND CONCLUSIONS

The test problems that we have considered in this paper were
designed to span the range of behavior found in typical one-
dimensional MGFLD problems. By examining the perfor-
mance of preconditioner/iterative method combinations on
these problems, we are able to offer some general conclusions

about the efficacy of these combinations for use in MGFLD
problems.

One of the most important results we have discovered is that,
as a preconditioning step, row scaling seems to provide sub-
stantially better performance than symmetric scaling. This
behavior is puzzling, and we have been unable to find an ex-
planation for it. Nevertheless, the results clearly indicate that
symmetric scaling slows convergence or, in many cases, pre-
vents convergence in conjunction with the methods we have
investigated. Further work is needed in order to obtain some
mathematical insight into this behavior.

Second, we have found that SPAI preconditioners offer com-
petitive iterative performance. In particular, preconditioners
8 and 9, which take into account the influence from nearby
spatial zones, have yielded the best rate of convergence. These
preconditioners can be computed with a minimum of work
and could also be easily parallelized with only nearest-neighbor
communication. The preconditioners with sparsity patterns that
did not account for the spatial influence of adjacent zones did
not, in general, offer the best convergence. The sole exception
to this was problem 5, where the strong coupling between en-
ergy groups, due to scattering, gave preconditioners 4, 5, and 6
a slight advantage. These sparsity patterns could be combined
with those of preconditioners § and 9 for problems that had
both optically thick and thin regions. Since preconditioner 9
only slightly outperformed preconditioner 8 on some problems,
the additional computational cost of solving a larger least-
squares problem to compute the approximate inverse may not
yield a significant speedup. This trade-off could also be prob-
lem-size and machine dependent and would require detailed
comparisons on a particular platform.

Third, we have found that when the problem size is scaled up
while keeping the CFL number fixed the number of iterations
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seems to remain approximately constant for a specific problem.
This is a consequence of the decrease in size of the off-diagonal
elements of the linear system that accompanies the decrease in
time step. The increasing diagonal dominance that results off-
sets the increasing condition number arising from the growing
size of the linear system. It is unlikely that the number of
iterations would remain constant for either time-independent
problems or for problems where the size of the computational
domain is increased while holding the spatial resolution fixed.
The increase in iteration count with time step size is seen in
Figure 8. However, our time step study does reveal that, at
least, some of the SPAI preconditioners continue to be effective
at larger time step sizes.

Finally, we found that similar numbers of MATVECs were
required in order to achieve convergence for the CHEBYCODE
and BiCGSTAB algorithms when these methods were used in
conjunction with the best preconditioners. We therefore con-
clude that these algorithms have a comparable cost when

EFFICIENT SOLUTION OF MGFLD PROBLEMS 387

implemented sequentially. The GMRES(5) and CGS algorithms
seem to offer similar performance in most cases. However, when
the potential costs of inner products on a distributed memory
architecture are factored in, the CHEBYCODE algorithm may
offer an advantage because of the minimal number of global
reduction operations. The scalability of this algorithm is the
focus of our continued investigations.
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